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ABSTRACT
Optimizing the hypervolume indicator within evolutionary
multiobjective optimizers has become popular in the last
years. Recently, the indicator has been generalized to the
weighted case to incorporate various user preferences into
hypervolume-based search algorithms. There are two main
open questions in this context: (i) how does the specified
weight influence the distribution of a fixed number of points
that maximize the weighted hypervolume indicator? (ii) how
can the user articulate her preferences easily without speci-
fying a certain weight distribution function?

In this paper, we tackle both questions. First, we theoreti-
cally investigate optimal distributions of µ points that maxi-
mize the weighted hypervolume indicator. Second, based on
the obtained theoretical results, we propose a new approach
to articulate user preferences within biobjective hypervolume-
based optimization in terms of specifying a desired density
of points on a predefined (imaginary) Pareto front. Within
this approach, a new exact algorithm based on dynamic pro-
gramming is proposed which selects the set of µ points that
maximizes the (weighted) hypervolume indicator. Experi-
ments on various test functions show the usefulness of this
new preference articulation approach and the agreement be-
tween theory and practice.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

1. INTRODUCTION
In the context of evolutionary multiobjective optimiza-

tion, the hypervolume indicator is a set quality measure be-
ing a refinement of the Pareto dominance, i.e., whenever a
Pareto set approximation entirely dominates another one,
then the measure of the former will be larger. Hence, max-
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imizing the hypervolume indicator is, in general, in accor-
dance to the Pareto dominance relation [15, 13, 20]. In re-
cent years, this significant property has made the indicator
popular as a selection criterion in evolutionary multiobjec-
tive optimizers [4, 14, 18].

An important question in this context concerns the bias
of the hypervolume indicator when introduced into search.
In a recent study [2], this bias has been investigated theo-
retically by characterizing the distribution of µ points that
maximize the hypervolume indicator, so-called optimal µ-
distributions. When hypervolume-based algorithms are em-
ployed, the inherent bias of the hypervolume indicator is
often unwanted but rather the incorporation of the user’s
own preference into search is desired. Several approaches
for articulating these user preferences are known from the
literature, e.g., by defining preference points [11], specifying
preferred search directions [10] or defining linear minimum
and maximum tradeoffs [6]. For a general overview of artic-
ulating user preferences, we refer to [16, 7, 17].

Recently, a general framework to incorporate user pref-
erences into hypervolume-based search algorithms has been
proposed [18]. The so-called weighted hypervolume indica-
tor allows stressing certain regions of the objective space
by applying a weight distribution. It has been shown for
three different weight distribution functions that optimizing
the weighted hypervolume indicator results in solutions clus-
tered in regions with higher weight whereas regions with low
weight contain only a few solutions. Further work improved
the applicability of this weighted hypervolume approach to
problems with many objectives by means of Monte Carlo
sampling [1].

Two main questions arise in this context: (1) what is the
bias of the weighted hypervolume indicator, i.e., how can
the distribution of µ points maximizing the weighted hyper-
volume be characterized ? (2) how can the user articulate
and integrate her preferences easily into the search without
defining the weight distribution functions by hand?

Both questions are tackled in this paper. First, we inves-
tigate the optimal distribution of µ points optimizing the
weighted hypervolume indicator; generalizing the results for
the unweighted case presented in [2] to the weighted case.
Second, we propose a new approach to articulate user pref-
erences by defining a reference front and a desired density
of points on that front. This user preference is automati-
cally transferred into a weight distribution function for the
weighted hypervolume of [18], the optimization of which
guarantees that the resulting distribution of solutions on the
actual front follows the desired density.



This paper is organized as follows: In Sec. 3 we general-
ize the theoretical results on optimal µ-distributions from
[2] to the weighted hypervolume. Based on the theoretical
results on optimal µ-distributions, we propose in Sec. 4 a
new approach for articulating user preferences in terms of
defining a desired density of points on a predefined front
for biobjective problems. In Sec. 4.2 we incorporate the
weighted hypervolume into search and propose a new ex-
act algorithm for selecting the best q individuals from a set
of p solutions that maximize the overall (weighted) hyper-
volume by means of dynamic programming for biobjective
problems. In Sec. (5), we apply the new approach to several
test problems for scenarios with known and unknown Pareto
fronts.

2. PRELIMINARIES
In this study we consider biobjective optimization prob-

lems F : X → Z. The two objective functions (F1(x),F2(x))
= F(x) map the decision space X to the objective space
Z ⊆ R

2 and are, without loss of generality, to be minimized.
Let � denote the weak Pareto dominance relation defined as
x � y if and only if F1(x) ≤ F1(y) and F2(x) ≤ F2(y). The
Pareto-optimal set Ps then consists of all solutions x∗ ∈ X,
such that ∄ x ∈ X with x � x∗ and x∗ 6� x. The image of
Ps under F is called Pareto front or front for short. For the
sake of simplicity, we describe the Pareto front in terms of a
function f mapping the image of the Pareto set under F1—
which is presumed to be a closed interval [xmin, xmax]—onto
the image of the Pareto set under F2, see Fig. 1(a).

Throughout this study, we assume the optimization goal of
maximizing the weighted hypervolume indicator of [18], i.e.,
finding a set A of µ solutions that maximizes the weighted
hypervolume. A set of µ points maximizing the unweighted
hypervolume indicator has been denoted in [2] as an opti-
mal µ-distribution and we use the same term here for the
weighted case as well. For simplicity, we define the weighted
hypervolume indicator only for sets of objective vectors in-
stead for solution sets A ⊆ X as it was already done in
[18] and [2]. For a set of µ biobjective objective vectors
S = {(xµ

1 , yµ
1 ), . . . , (xµ

µ, yµ
µ)}, we define the weighted hyper-

volume indicator Iµ
H,w according to [18] and as a generaliza-

tion of [2] as

Iµ
H,w(S) :=

µ
X
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Z x
µ
i+1

x
µ
i

 

Z y
µ
0

y
µ
i

w(x, y)dy

!

dx (1)

where xµ
µ+1 = r1, yµ

0 = r2, and ~r = (r1, r2) is the reference
point of the hypervolume indicator, see Fig. 1(a). Note that
for points (xi, f(xi)) that all lie on the front described by f ,
Eq. 1 results in a µ-dimensional function Iµ

H,w(xµ
1 , . . . , xµ

µ)
that is equivalent to Eq. 2 in [2] if we choose w(x, y) = 1.

3. THEORETICAL BACKGROUND
The theoretical results presented in this section build the

basis of the new preference articulation approach proposed
later on in this paper. To this end, we investigate the in-
fluence of the weighted hypervolume indicator on optimal
µ-distributions by deriving the limit density when µ goes
to infinity. We then build on this result and provide for a
desired density the corresponding weight that will allow a
user to articulate his preferences.

3.1 Limit Density of Optimal µ-Distributions
for the Weighted Hypervolume

In [2], we argued that, besides for linear fronts, it is very
difficult to determine the optimal µ-distributions for arbi-
trary fronts exactly and therefore investigated optimal µ-
distributions in the limit case of µ to ∞. This limit is
expressed as a density—approximating the percentage of
points in a particular segment of the front. Here, we gen-
eralize this approach so as to obtain the density of points
associated to the weighted hypervolume. Before we do so,
note that optimal µ-distributions exist in the weighted case
under the same assumption as for the unweighted case in [2,
Theorem 1]: if the function f describing the Pareto front is
continuous, there exists (at least) one set of µ points maxi-
mizing the weighted hypervolume1.

We assume without loss of generality that xmin = 0 and
that f : x ∈ [0, xmax] 7→ f(x) with f(xmax) = 0 [2, Fig. 5].
We also assume that f is continuous within [0, xmax], is dif-
ferentiable and that its derivative is a continuous function f ′

defined in the interval ]0, xmax[. An optimal µ distribution
is defined as a set of µ points maximizing the weighted hy-
pervolume indicator Iµ

H,w((xµ
1 , . . . , xµ

µ)). However, instead of

maximizing the weighted hypervolume indicator Iµ
H,w, it is

easy to see that, since r1r2 is constant, one can equivalently
minimize

r1r2 − Iµ
H,w((xµ

1 , . . . , xµ
µ)) =

µ
X

i=0

Z x
µ
i+1

x
µ
i

Z f(x
µ
i
)

0

w(x, y) dy dx

with xµ
0 = 0, f(xµ

0 ) = r2, and xµ
µ+1 = r1 (see Fig. 1(b)). If

we subtract the area below the front curve, i.e., the integral
R xmax

0
(
R f(x)

0
w(x, y)dy)dx of constant value (Fig. 1(c)), we

see that minimizing

µ
X

i=0

x
µ
i+1
Z

x
µ
i

f(x
µ
i
)

Z

0

w(x, y) dy dx −
xmax
Z

0

f(x)
Z

0

w(x, y) dy dx (2)

is equivalent to maximizing the weighted hypervolume indi-
cator (Fig. 1(d)).

For a fixed integer µ, we consider a sequence of µ ordered
points in [0, xmax], xµ

1 , . . . , xµ
µ that lie on the Pareto front.

We assume that the sequence converges—when µ goes to
∞—to a density δ(x) that is regular enough. Formally, the
density in x ∈ [0, xmax] is defined as the limit of the number
of points contained in a small interval [x, x + h[ normalized
by the total number of points µ when both µ goes to ∞
and h to 0, i.e., δ(x) = limµ→∞

h→0

“

1
µh

Pµ

i=1 1[x,x+h[(x
µ
i )
”

. As

explained above, maximizing the weighted hypervolume is
equivalent to minimizing Eq. 2, which is also equivalent to
minimizing

Eµ = µ

"

µ
X

i=0

Z x
µ
i+1

x
µ
i

 

Z f(x
µ
i
)

0

w(x, y)dy

!

dx−

Z xmax

0

 

Z f(x)

0

w(x, y)dy

!

dx

#

. (3)

1The proof is similar to the one in [2]: the µ-
dimensional function in Eq. 1 is continuous and upper
bounded by the hypervolume of the entire front, i.e.
R r1

xmin

R r2

f(xmax)
1y>f(x)w(x, y)dydx.
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Figure 1: Illustration of the idea behind deriving the optimal density: Instead of maximizing the weighted
hypervolume indicator I

µ

H,w((xµ
1
, . . . , xµ

µ)) (a), one can minimize (b) which is equivalent to minimize the
integral between the attainment surface of the solution set and the front itself (c) which can be expressed
with the help of the integral of f (d).

We now conjecture that the equivalence between minimizing
Eµ and maximizing the hypervolume also holds for µ going
to infinity. Therefore, our proof consists of two steps: (1)
compute the limit of Eµ when µ goes to ∞. This limit is
going to be a function of a density δ. (2) Find the density δ
that minimizes E(δ) := limµ→∞ Eµ. The first step therefore
consists in computing the limit of Eµ.

Lemma 1. If f is continuous, differentiable with the deri-
vative f ′ continuous, if x → w(x, f(x)) is continuous, if
xµ

1 , . . . , xµ
µ converge to a continuous density δ, with 1

δ
∈

L2(0, xmax)2, and ∃ c ∈ R
+ such that

µ sup

„„

sup
0≤i≤µ−1

|xµ
i+1 − xµ

i |
«

, |xmax − xµ
µ|
«

→ c

then Eµ converges for µ→∞ to

E(δ) := −1

2

Z xmax

0

f ′(x)w(x, f(x))

δ(x)
dx . (4)

Proof. For the sake of readability, this proof has been
sent to the appendix.

The limit density of the µ-distribution, as explained be-
fore, is minimizing E(δ). It remains therefore to find the
density minimizing E(δ). This optimization problem is posed
in a functional space, the Banach space L2(0, xmax) and is
also a constraint problem since the density δ has to satisfy
the constraint J(δ) :=

R xmax

0
δ(x)dx = 1. The constraint

optimization problem (P) that needs to be solved is summa-
rized in:

minimize E(δ), δ ∈ L2(0, xmax)

subject to J(δ) = 1
(P)

Theorem 1. The density solution of the constraint opti-
mization problem (P) equals

δ(x) =

p

−f ′(x)w(x, f(x))
R xmax

0

p

−f ′(x)w(x, f(x))dx
. (5)

Proof. This proof is similar to the proof of Theorem 7 in
[2] where −f ′ needs to be replaced everywhere by −f ′w.

2L2(0, xmax) is a functional space (Banach space) defined
as the set of all functions whose square is integrable in the
sense of the Lebesgue measure.

3.2 Deriving the Weight from Given Density
In the previous section, we characterized the density δ(x)

of points that maximize the weighted hypervolume indica-
tor for a given weight distribution w(x, y) and front shape
f(x). Here, we use the result from the opposite direction:
given user-defined preferences, expressed by a density3, we
are interested in the corresponding weight distribution. This
allows to model user preferences in a concise manner by op-
timizing the weighted hypervolume indicator as we will see
in the following.

Instead of specifying the density δ(x), which is the den-
sity projected onto the x-axis, it is more convenient for
the user to define the density δF of points on the front it-
self, which results from δ(x) by dividing it by the norm of
the tangent at the corresponding point on the front, i.e.,
δF (x) = δ(x)/

p

1 + f ′(x)2. Transforming the density this
way, we see that the density on the front δF (x) is propor-

tional to
q

−f ′(x)w(x,f(x))

1+f ′(x)2
which implies that

w
`

x, f(x)
´

∝ 1 + f ′(x)2

−f ′(x)
· δF (x)2 . (6)

Note that the weight is a strictly positive finite function if
−f ′(x) is and that it peaks to infinity if the derivative of f
either goes to zero or to −∞.

Since it is more convenient to define the desired density
as a function δφ

F (φ) of the angle φ rather than as a function

of x, in the following we use δF (x) = δφ
F (arctan (f(x)/x)).

The weight distribution is only defined for points (x, f(x))
on the front. In order to make the weight useful for search, it
is extended to the rest of the objective space in the following
section.

4. ARTICULATING USER PREFERENCES
This section builds on the theoretical results from the pre-

vious section and proposes an approach to articulate user
preferences in hypervolume-based evolutionary algorithms.
First we present a way to generalize the weight distribu-
tion of Eq. 6 to the entire objective space. Second, we
propose a method to perform environmental selection based

3Practically speaking, the user can define the desired density
for example with the help of a graphical user interface in
terms of piecewise linear or polynomial functions. For the
user, this might be more convenient than specifying a weight
distribution function over the entire objective space.



Figure 2: Different arrangements of stripes to rep-
resent a weight distribution function: radial (left),
parallel (middle) or freely (right).

on the weight distribution derived. Thereby, the weighted
hypervolume—and at the same time the user’s preference—
is optimized.

4.1 Extending the Weight Distribution to the
Entire Objective Space

In principle, any non-negative function can be chosen as
the extension of w to points not on the front. For practical
applications, however, a few things need to be considered:

1. The number of solutions is finite which leads to con-
tributions that extend beyond the front. If the weight
varies greatly in this region, the resulting distribution
of points might be a bad approximation of δφ

F .
2. During search, the solutions are not mapped to the

Pareto front where the weight w(x, f(x)) is defined. In
those cases, the resulting distribution should possibly
meet the user’s expectations and not hinder conver-
gence to the front.

3. The corresponding hypervolume indicator should be
calculable in reasonable time.

To address all three issues, we propose to use a two-dimen-
sional piecewise constant weight distribution function, where
straight lines separate the objective space into stripes Si of
constant weight denoted by wi, see Fig. 24. A stripe Si

usually covers more than one Pareto-optimal point such that
the weight wi is not defined uniquely. Instead, we set the
weight wi to the mean

wi =

R

γi
w(s) ds
R

γi
ds

,
γi : {x ∈ R|(x, f(x)) ∈ Si} 7→ R

2,
t 7→ (t, f(t))

(7)

where the curve γi denotes the part of the Pareto front inside
Si. Since the weight usually varies along γi, the weight
according to (7) does not reflect (6) precisely. However, the
approximation by wi can be made arbitrarily accurate by
increasing the number of stripes.

Besides facilitating the calculation of the hypervolume in-
dicator, the stripes have the advantage of the weight remain-
ing constant if a solution is moving along the direction of the
stripe. Many different arrangements of stripes are possible,
see Fig. 2. Here, we propose using rays starting from the
ideal point ~zI = (zI

1 , zI
2) at equally separated angles ranging

from 0◦ to 90◦ to separate the stripes

Srays
i =



(x, y)|φi ≤ arctan

„

x− zI
1

y − zI
2

«

< φi+1

ff

(8)

where φi = (i−1)/n ·90◦ and 1≤ i≤n. For example, on the
left-hand side of Fig. 2 nine rays and zI = (0, 0) are used.

4In this setting, the corresponding hypervolume calculation
can be done easily by determining intersections of straight
lines and calculating the area of triangles and trapezoids.

4.2 Optimizing the Hypervolume in 2D
The weighted hypervolume indicator represented by the

stripes proposed before, shall be used as the optimization
criterion of an evolutionary algorithm in order to find solu-
tions that meet the corresponding user preference as good
as possible. Several evolutionary algorithms aiming at max-
imizing the hypervolume indicator in their environmental
selection step which can be formulated as solving the hyper-
volume subset selection problem (HSSP) [3]: given a set of
solutions A and 0 ≤ q ≤ |A|, find a subset A∗ ⊆ A with
|A∗| = q, such that the weighted hypervolume indicator of
A∗ is maximal.

While for more than two objectives the HSSP problem is
expected to be difficult and for this reason greedy heuristics
are used to tackle the HSSP, e.g., in [4, 14, 18], we pro-
pose an efficient exact algorithm for the case of 2 objectives
here—using the fact that the hypervolume contribution of
an objective vector only depends on its two adjacent neigh-
bors5. Exploiting this property, dynamic programming [8]
can be used to solve the problem exactly in time O(|A|3) as
opposed toO(|A|2) for the greedy approach by combining so-
lutions of smaller subproblems P t−1

c in a bottom-up fashion
to solutions for larger subproblems P t

c : for a fixed solution
ac ∈ A and a t ∈ {0, . . . , |A|}, we define the subproblem
P t

c as finding the set At
c ⊆ A of t solutions maximizing the

hypervolume such that At
c contains ac and in addition, only

elements ak lying to the right of ac, i.e., f1(ac) ≤ f1(ak).
Obviously, {ac} is the solution for P 1

c . According to the
above made statement, the solution for P t

c with t > 1 can
now be easily found when considering the unions of {ac}
with the solutions of all P t−1

k with f1(ac) ≤ f1(ak) and
taking the resulting solution set with the highest hypervol-
ume. Once the solutions for t = q are determined, the sub-
set which then has the largest hypervolume corresponds to
the solution to the overall problem. Algorithm 1 shows the
pseudo code of the procedure where sets St

c of indices in-
stead of the sets At

i are considered for clarity. We illustrate
the algorithm by means of an example:

Example 1. Consider six objective vectors o1 to o6 of
which one likes to choose those q = 3 that maximize the
hypervolume, see Fig. 3. In the first stage (a), the optimal
subsets of size 1 and their hypervolume value are calculated
(Lines 1 and 2 in Alg. 1). Please note that some subsets do
not exist or will not be used to build the overall solution and
can therefore be neglected (dashes).

In the next stages, the subsets of size t = 2 to q (Lines
3-13) are determined for all individuals oc (Lines 4-12). To
this end, the hypervolume of combining oc with any subset
to its right of size t − 1 (Lines 6-8) are calculated. For
example, in Fig. 3(b) o3 is combined with the subset S1

5 to
form S2

3 = {3, 5} with hypervolume h1
3 = 127. In this way,

all subsets of size 2 (c) and then of size 3 (d) are determined.
Reaching t = q, the optimal solution to the overall problem

corresponds to the set with the largest hypervolume, in this
example S3

1 = {1, 3, 5} with value h3
1 = 142 (Line 14).

Note that the advantage of the exact algorithm over often
used greedy approaches for HSSP is that it overcomes the
non-convergence of greedy algorithms, see [5] for details.
5For example, in Figure 3(a) the hypervolume contribution
of o2 is bounded by o1 and o3 but not by o4, o5 or o6. This in
turn means, that the increase in hypervolume, when adding
o2 to any subset whose left-most element is o3, is equal.
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Figure 3: Three out of six objective vectors need to
be selected. Algorithm 1 starts by calculating sub-
sets of size 1 (a). Then the results (b) are combined
to sets of size of 2 (c) and finally of size 3 (d).

5. EXPERIMENTS
In this section, the theoretical concept to model (Sec. 3)

and to optimize (Sec. 4) user preferences by a weighted hy-
pervolume indicator are examined by simulations. To this
end, the algorithm and the test problems used are presented
first. After that, the Pareto front approximations obtained
by the algorithm are visually compared to the expected den-
sity that corresponds to the user’s preference.

5.1 Experimental Setup
The approach derived in Sec. 4 is applied to different test

problems and user preferences. Unless noted otherwise, the
latter is modeled by 90 stripes starting from the origin which
corresponds to a resolution of 1◦, see Eq. 8. The reference
point of the hypervolume is set to (1000, 1000) to ensure the
extremes in the optimal µ-distribution if possible [2].

The evolutionary algorithm in use first generates an initial
population of α individuals that code potential solutions as
real vectors. Thereafter, µ parent individuals are selected
uniformly at random to generate λ offspring using the SBX
crossover operator and the variable-wise polynomial muta-
tion operator [9]. The recombination and mutation proba-
bilities were set according to [12]. After that, non-dominated
sorting and front-wise removal is carried out as in [18]. From
the set F of equally ranked solutions, the omission of which
would result in a population P ′ that is smaller than α, the
q = α − |P ′| solutions computed by Alg. 1 that solve the
HSSP on F are taken to fill up the population to |P ′| = α.
The above steps are repeated for N generations. In this
study N = 1, 000 and α= λ= µ = 50. The main difference
between the described algorithm and standard hypervolume-
based algorithms such as SIBEA [18] is the environmental
selection step where Alg. 1 is used instead of a greedy strat-
egy to solve the HSSP.

As test problems, ZDT1 (front shape f(x) = 1 − √x),
ZDT2 (f(x) = 1− x2), and ZDT3 (discontinuous front) [19]
as well as DTLZ2 (f(x) =

√
1− x2) [12] are used. For some

simulations, the objective functions are offset or scaled.

Algorithm 1 HSSP-Solver(O, q, r,Cw
H)

Require: A matrix O := (oi,j)p×2, where the rows rep-
resent the objective vectors sorted in ascending order
according to the first objective; subset size q ≥ 1; ref-

erence point r = (r1, r2). Cw
H(~l, ~u) returns the weighted

hypervolume of the rectangle from ~l to ~u.
Ensure: Returns a set S that references rows of O that

maximize the weighted hypervolume.
1: h1

i ← hi := Cw
H

`

(oi,1, oi,2), r
´

∀ 1 ≤ c ≤ p

2: S1
c ← {c} ∀ q ≤ c ≤ p ⊲ optimal subsets

3: for t = 2 to q do ⊲ bottom-up approach
4: for c = q − t + 1 to p− t + 1 do ⊲ subproblem
5: l← (0, . . . , 0)
6: for d = c + 1 to p− t + 1 do
7: ld = ht−1

d + Cw
H

`

(oc,1, oc,2), (od,1, r2)
´

8: end for
9: m← arg maxi li

10: St
c ← {c} ∪ St−1

m ⊲ merge c with Sm and . . .
11: ht

c ← lm ⊲ . . . update hypervolume
12: end for
13: end for
14: m← arg maxi hq

i ⊲ pick best subset
15: return Sq

m ⊲ solution to overall problem

Table 1: Densities used for the experiments.

Figure Density

4(a) δφ
F (φ) ∝ 1− (φ/90◦)3

4(b) δφ
F (φ) ∝



1, φ∈{[30◦,50◦],[70◦,90◦]}

0.1, otherwise

4(c)
δφ

F (φ) ∝ 3 ·
`

5 ·10−3 +(φ−45◦)2
´−1

+
`

5 · 10−3 + (φ− 10◦)2
´−1

4(d) as in 4(b)

4(e) δφ
F (φ) ∝ 1

4(f) δφ
F (φ) ∝

8

>

<

>

:

3, φ∈[78.3◦,83.8◦ ]

1, φ∈[39.7◦,54.8◦ ]

2, φ∈[14.9◦,33.3◦ ]

1·10−3 , otherwise

5(a) to 5(f) as in 4(c)

5.2 Results
In the following, the distribution of points obtained when

using different weight functions and test problems are pre-
sented. To this end, a graphical representation is used that
shows multiple elements (see Fig. 4(a)): (i) the solutions
found ( ) together with the Pareto front ( ); (ii) the front,
specified by the user, that is used to calculate the weight
rays ( ) if differing from the Pareto front; (iii) the weight
per ray proportional to the length of gray bars ( ) and at in-
tervals of 10◦ the direction of the rays ( ) (iv) the density
desired by the user ( ) as a function of the angle in polar
coordinates with 0 lying at the radius where the weight bars
start (e.g., at r = 1.2 for Fig. 4(a)); and (v) the obtained
density represented by the solutions in terms of a histogram
( ) in the same coordinate system than the desired density.

5.2.1 Test Problems with Known Pareto Fronts
If the Pareto front is known, e.g., for test problems, the

weight rays directly follow from Eq. 6 and 7. Figures 4(a) to
4(c) show the results on ZDT1 for (a) stressing the second
objective (b) desiring a piecewise constant density and, (c)
preferring two preference points. Analytic descriptions of



(a) (b) (c)

(d) (e) (f)

Figure 4: Shows the solutions found together with the Pareto front for different test problems, i.e., ZDT1
(a)-(c), ZDT2 (d), DTLZ2 (e) and ZDT3 (f). The underlying densities (listed in Tab. 1) are shown as a
function of the angle, as well as the corresponding weight and the obtained density (see text for details).

the desired densities are listed in Tab. 1.
Figures 4(d) to 4(f) show: (d) the same weight as in (b)

but for ZDT2, (e) trying to obtain a uniform density on
DTLZ2, and (f) focusing on different parts of the discon-
tinuous front of ZDT3. As one can see, the distribution of
solutions found closely matches the predetermined density.
Difficulties arise mainly where the front is very steep or flat
and therefore a high weight is necessary to compensate this,
e.g., at the extremes of DTLZ2 in Fig. 4(e).

5.2.2 The Typical Case of Unknown Fronts
If the front is unknown like in practice, one has to assume a

front shape or find an approximate front shape by running an
algorithm with respect to the unweighted hypervolume. For
simplicity, we assume the front to be linear here. Then, the
obtained density does not correspond to the desired density
if the real front differs from the assumption or if the front
is not reached. In Fig. 5(a) to 5(c) the weight distribution
is derived for an assumed linear front, but the real front
was (a) convex, (b) concave, and (c) concave while being
scaled. In the latter example, the density is not affected by
the scaling due to the radial nature of the weight rays.

If the assumed front lies at a different position than the
real front, the obtained density differs from the desired one,
see Fig. 5(d) and (e), even if the shape is correct as in (d).

5.2.3 Number of Weight Rays

Setting the number of rays to 90 does not lead to any
visually noticeable impreciseness. However, if the resolution
is decreased by using only a small number of rays, e.g., 15 in
Fig. 5(f), the density obtained clearly reflects the step like
character of the weight distribution.

6. CONCLUSIONS
The hypervolume indicator has an inherent characteristic

in terms of how a set of µ solutions, optimizing the hyper-
volume indicator, is distributed on the Pareto front, which
has been expressed in terms of density in [2]. However, the
bias can be modified by applying weight distribution func-
tions as shown in [18]. Here, the two precursor studies have
been combined to derive the density for the weighted case.
On the one hand, this allows to determine the bias of the
weighted hypervolume in a concise manner. On the other
hand, the dual viewpoint has been taken to determine the
weight distribution for a given density and front shape. This
enables to express user preferences in a very precise way by
a unary indicator.

To utilize the indicator for search, an approximation of the
weight distribution function by means of piecewise constant
rays has been suggested. It allows simplifying the hyper-
volume calculation while maintaining desirable properties.
Additionally, an algorithm based on dynamic programming



(a) (b) (c)

(d) (e) (f)

Figure 5: See Fig. 4(b) for a legend to the visual elements. Additionally, the front used to calculate the
weight is depicted. The test problems are (modified versions) of ZDT1 for (a), (d) and (f); ZDT2 (b); and
DTLZ2 (e). The underlying density is the same in all six cases (see Tab. 1), consult the text for details.

that selects solutions yielding maximal hypervolume value
has been proposed. A visual comparison of the obtained
Pareto front approximations with the expected density—
provided by the user—has shown the practical usefulness of
the theoretical concept as well as the efficiency of the pro-
posed algorithm. The approach is restricted to biobjective
problems, though. Therefore, we should aim at extending it
to more objectives in future studies. The approach has also
to show its usefulness in real-world applications.

APPENDIX
Proof of Lemma 1
Let us first note that the Cauchy-Schwarz inequality implies that

Z

xmax

0

|f ′(x)w
`

x, f(x)
´

|

|δ(x)|
dx ≤

s

Z

xmax

0

`

f ′(x)w(x, f(x))
´2dx

Z

xmax

0

(1/δ(x))2dx (9)

and since x → f ′(x)w(x, f(x)) ∈ L2(0, xmax) and 1
δ

∈ L2(0, xmax),
the right-hand side of Eq. 9 is finite and Eq. 4 is well-defined.

Step 1. In a first step we are going to prove that Eµ defined in
Eq. 3 satisfies

Eµ = µ
µ

P

i=0

“

− 1
2 f ′(xµ

i )w(xµ
i , f(xµ

i ))(xµ
i+1 − xµ

i )2

+ O((x
µ
i+1 − x

µ
i )

3
)
”

(10)

To this end, we elongate the front to the right such that f equals
f(xmax) = 0 for x ∈ [xmax, xµ

µ+1]. Like that, we can decompose

R

xmax
0

R f(x)
0 w(x, y)dydx into

Pµ
i=0

R x
µ
i+1

x
µ
i

R f(x)
0 w(x, y) dy dx, where

we have used the fact that
R x

µ
µ+1

xmax

R f(x)
0 w(x, y)dydx = 0. Using the

right hand side of the previous equation in Eq. 3, we find that

Eµ = µ
“

Pµ
i=0

R x
µ
i+1

x
µ
i

R f(x
µ
i

)

0 w(x, y) dy dx−

Pµ
i=0

R x
µ
i+1

x
µ
i

R f(x)
0 w(x, y) dy dx

”

and thus

Eµ = µ

µ
X

i=0

Z

x
µ
i+1

x
µ
i

Z

f(x
µ
i

)

f(x)

w(x, y) dy dx (11)

At the first order, we have that

Z

f(x
µ
i

)

f(x)

w(x, y)dy = w(x
µ
i , f(x

µ
i ))(f(x

µ
i )− f(x))+O((x − x

µ
i )) (12)

Since f is differentiable, we can use a Taylor approximation of f in
each interval [xµ

i , xµ
i+1] and write f(x) = f(xµ

i ) + f ′(xµ
i )(x − xµ

i ) +

O((x − xµ
i )2), which thus implies that

f(xµ
i ) − f(x) = −f ′(xµ

i )(x − xµ
i ) + O((x − xµ

i )2)

and thus the left hand side of Eq. 12 becomes

−w(xµ
i , f(xµ

i ))f ′(xµ
i )(x − xµ

i ) +O((x − xµ
i )2)

By integrating the previous equation between xµ
i and xµ

i+1 we obtain

Z

x
µ
i+1

x
µ
i

Z

f(x
µ
i

)

f(x)

w(x, y) dy dx =

− 0.5w(xµ
i , f(xµ

i ))f ′(xµ
i )(xµ

i+1 − xµ
i )2 + O((xµ

i+1 − xµ
i )3)



Summing up for i = 0 to i = µ, multiplying by µ and using Eq. 11
we obtain Eq. 10, which concludes Step 1.

Step 2. We now decompose 1
2

R

xmax
0

f′(x)w(x,f(x))
δ(x)

dx into

1

2

µ−1
X

i=0

Z

x
µ
i+1

x
µ
i

f ′(x)w(x, f(x))

δ(x)
dx+

1

2

Z

xmax

x
µ
µ

f ′(x)w(x, f(x))

δ(x)
dx

For the sake of convenience in the notations, for the remainder of
the proof, we redefine xµ

µ+1 as xmax such that the previous equation

becomes

1

2

Z

xmax

0

f ′(x)w(x, f(x)

δ(x)
dx =

1

2

µ
X

i=0

Z

x
µ
i+1

x
µ
i

f ′(x)w(x, f(x)

δ(x)
dx (13)

For µ to ∞, the assumption µ sup((sup0≤i≤µ−1 |xµ
i+1−xµ

i |), |xmax −

xµ
µ|) → c implies that the distance between two consecutive points

|xµ
i+1−xµ

i | as well as |xµ
µ−xmax| converges to zero. Let x ∈ [0, xmax]

and let us define for a given µ, ϕ(µ) as the index of the points such
that xµ

ϕ(µ)
and xµ

ϕ(µ)+1
surround x, i.e., xµ

ϕ(µ)
≤ x < xµ

ϕ(µ)+1
. Since

we assume that δ is continuous, a first order approximation of δ(x) is
δ(xµ

ϕ(µ)
), i.e. δ(x) = δ(xµ

ϕ(µ)
) + O(xµ

ϕ(µ)+1
−xµ

ϕ(µ)
) and therefore by

integrating between xµ

ϕ(µ)
and xµ

ϕ(µ)+1
we obtain

Z

x
µ
ϕ(µ)+1

x
µ
ϕ(µ)

δ(x)dx = δ(xµ

ϕ(µ)
)(xµ

ϕ(µ)+1
− xµ

ϕ(µ)
)

+ O((xµ

ϕ(µ)+1
− xµ

ϕ(µ)
)2) (14)

Moreover by definition of the density δ,
R

x
µ
ϕ(µ)+1

x
µ
ϕ(µ)

δ(x)dx approxi-

mates the number of points contained in the interval [xµ

ϕ(µ)
, xµ

ϕ(µ)+1
[

(i.e. one) normalized by µ:

µ

Z

x
µ
ϕ(µ)+1

x
µ
ϕ(µ)

δ(x)dx = 1 + O((xµ

ϕ(µ)+1
− xµ

ϕ(µ)
)) (15)

Using Eq. 14 and Eq. 15, we thus have

1

δ(xµ

ϕ(µ)
)

= µ(xµ

ϕ(µ)+1
− xµ

ϕ(µ)
) + O(µ(xµ

ϕ(µ)+1
− xµ

ϕ(µ)
)2) .

Therefore for every i we have that

1

δ(xµ
i )

= µ(x
µ
i+1 − x

µ
i ) + O(µ(x

µ
i+1 − x

µ
i )

2
) . (16)

Since x → f ′(x)w(x, f(x))/δ(x) is continuous, we also obtain
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x
µ
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µ
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f ′(x)w(x, f(x)

δ(x)
dx =
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Injecting Eq. 16 in the previous equation, we obtain
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Multiplying by 1/2 and summing up for i from 0 to µ and using Eq. 13
we obtain

1

2

Z

xmax

0

f ′(x)w(x, f(x))

δ(x)
= −Eµ +

µ
X

i=0

O(µ(xµ
i+1 − xµ

i )3) (17)

Let us define ∆µ as sup((sup0≤i≤µ−1 |xµ
i+1 − xµ

i |), |xmax − xµ
µ|). By

assumption, we know that µ∆µ converges to a positive constant c.
The last term of Eq. 17 satisfies

|

µ
X

i=0

O(µ(xµ
i+1 − xµ

i )3)| ≤ Kµ2(∆µ)3

where K > 0. Since µ∆µ converges to c, (µ∆µ)2 converges to c2.

With ∆µ converges to 0, we therefore have that µ2∆3
µ converges to

0. Taking the limit in Eq. 17 we therefore obtain

−
1

2

Z
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0

f ′(x)w(x, f(x))

δ(x)
dx = lim

µ→∞
Eµ
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