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TVaR-based capital allocation with copulas

Mathieu Bargès∗‡ Hélène Cossette‡ Étienne Marceau‡

Abstract

Because of regulation projects from control organizations such as the European solvency II
reform and recent economic events, insurance companies need to consolidate their capital reserve
with coherent amounts allocated to the whole company and to each line of business. The present
study considers an insurance portfolio consisting of several lines of risk which are linked by a
copula and aims to evaluate not only the capital allocation for the overall portfolio but also
the contribution of each risk over their aggregation. We use the tail value at risk (TVaR) as
risk measure. The handy form of the FGM copula permits an exact expression for the TVaR of
the sum of the risks and for the TVaR-based allocations when claim amounts are exponentially
distributed and distributed as a mixture of exponentials. We first examine the bivariate model
and then the multivariate case. We also show how to approximate the TVaR of the aggregate
risk and the contribution of each risk when using any copula.

Keywords: Capital allocation; Tail value at risk; Dependence models; Copulas; Discretization
methods

1 Introduction

In recent years, a lot of research has focused on insurance capital allocation. Indeed the European
Solvency II project and the recent events encourage insurance companies to consolidate their finan-
cial reserves and investments. Risk measures are well-known tools to determine the capital amount
that has to be allocated to a risk portfolio. Artzner et al. (1999) proposed an axiomal definition
of a coherent risk measure that can be used for allocation issues. This coherence property has also
been discussed in Wang (2002). Using their definition, Artzner et al. (1999) proposed the tail value
at risk (TVaR), also called expected shortfall (ES), as a coherent alternative to the non-coherent
risk measure value at risk (VaR). Applied to continuous random variables, the TVaR can identi-
cally be defined as the conditional tail expectation (CTE). But these two risk measures differ in
discrete contexts where the CTE is no longer coherent. The differences between these definitions
and properties have been highlighted in Acerbi et al. (2001) and Acerbi and Tasche (2002).

In the literature on capital allocation, continuous situations are widely studied in contrast
with discrete cases. That is why most of the references speak in terms of CTE. The capital
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allocation principle has first been introduced by Tasche (1999) where the capital allocated to
each risk is expressed in terms of the CTE of the aggregate risk. This top down allocation me-
thod has then been used to provide several closed formulae and approximations of the CTE and
the CTE-based allocations for different types of multivariate continuous distributions. The first
multivariate top down model was considered by Panjer (2002) where the risks have a multiva-
riate normal distribution. This work has been extended to a multivariate elliptical distribution in
Landsman and Valdez (2003) and in Dhaene et al. (2008). A multivariate gamma distribution for
risks has been studied in Furman and Landsman (2005) as well as a multivariate Tweedie distri-
bution in Furman and Landsman (2007). In these papers, explicit expressions for the CTE and
the CTE-based allocation are derived. Other closed form expressions for the CTE of the sum of
multivariate phase-type distributed risks and the contribution of one risk to the portfolio have
been given in Cai and Li (2005). More recently, Chiragiev and Landsman (2007) found a CTE
and CTE-based allocation for multivariate Pareto risks. Further information on the CTE-based
allocation of risk capital can be found in Kim (2007).

In most papers mentioned above, the dependence between the different lines of business of the
insurance company is due to the construction of a multivariate distribution. In the present paper,
we propose introducing dependence with a copula. Copulas are currently seen as effective and
flexible tools to represent dependence between random variables. Furthermore, in order to have
the risk measure coherence property in every continuous and discrete situation, we propose using
the TVaR as defined in Acerbi et al. (2001) and Acerbi and Tasche (2002) to develop a top down
approach of the capital allocation. Indeed, the Committee of European Insurance and Occupational
Pensions Supervisors (CEIOPS) advises in the Solvency II context the use of the TVaR for the
evaluation of the Solvency Capital Requirement (SCR); see CEIOPS (2006) and CEIOPS (2007).

First, closed form expressions for the TVaR and then the TVaR-based contribution of one risk
over the aggregation of all risks are obtained when the Farlie-Gumbel-Morgenstern copula describes
the dependence between the risk marginals. With most copulas introducing dependence between
different risks however, we are not able to reach closed form expressions. Consequently, we also
present approximation methods to evaluate the TVaR and the TVaR-based allocation by the use
of different discretization methods of continuous random variables which are applicable with any
copula and any marginals.

In the first section, we give the general definitions for the tail value at risk of the aggregate
risk and the contribution of one of the risks. The second section deals with the application of
the TVaR-based allocation rule using the FGM copula and exponential distributed risks. We first
consider two lines of business and then pursue to a multivariate context. We widen our results to
risks that are distributed as mixture of exponentials in section 3. For these two last sections, we
are able to have closed form expressions for both the TVaR and the individual risk contribution
based on it. Then, we expose approximation methods for the TVaR and TVaR-based allocation
when the dependence structure is defined by any copula. The results are illustrated with numerical
applications.
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2 Definition of the TVaR and the TVaR-based allocation

In this section, we define the tail value at risk (TVaR) for the aggregate risk and the TVaR-based
allocation rule. We consider the aggregate claim amount (or loss) S of a portfolio of n risks. The
claim amount (or loss) for risk i is denoted by Xi. Thus we have S = X1 + ...+Xn where all Xi’s
are non-negative random variables.

The value at risk at level κ, 0 < κ < 1, of S is defined by

V aRκ(S) = inf(x ∈ R, FS(x) ≥ κ).

It is well known that the VaR is a risk measure that is not coherent. Thus we choose to work with
the tail value at risk of S as introduced in Acerbi and Tasche (2002), Schmock and Straumann
(1999) and Schmock (2006) at level κ, for κ ∈ (0, 1). Its definition is

TV aRκ(S) =
1

1− κ

∫ 1

κ
V aRu(S)du

=
E
[
S1{S>V aRκ(S)}

]
+ V aRκ(S)

(
Pr (S ≤ V aRκ(S))− κ

)
1− κ

,

which is a coherent risk measure. When S is continuous, Pr(S ≤ V aRκ(S)) = κ which implies
that the TVaR is exactly the conditional tail expectation (CTE) meaning TV aRκ(S) = E[S|S >
V aRκ(S)] = CTE(S). In financial risk management, the TVaR is called the expected shortfall.

The additivity of the expectation allows the decomposition of the TVaR (CTE) into the sum
of TVaR contributions as follows

TV aRκ(S) =
n∑

i=1

TV aRκ(Xi;S),

where the TVaR contribution of the ith risk to the total risk represents the part of the capital that
is allocated to risk i. For κ ∈ (0, 1), it can be expressed as

TV aRκ(Xi;S) =
E
[
Xi × 1{S>V aRκ(S)}

]
+ βSE

[
Xi × 1{S=V aRκ(S)}

]
1− κ

,

with

βS =

{
Pr(S≤V aRκ(S))−κ
Pr(S=V aRκ(S))

, if Pr (S = V aRκ(S)) > 0,

0, otherwise.

3



For continuous distributions, we have

TV aRκ(Xi;S) =
1

1− κ
E
[
Xi × 1{S>V aRκ(S)}

]
= E[Xi | S > V aRκ(S)]

= CTEκ(Xi|S).

That means that the TVaR-based contribution of one risk is equal to the CTE-based contribution
of the same risk when all the marginals are continuous.

Note that

E[Xi | S = s] = E[Xi | X1 + ...+Xn = s]

=

∫ s

0
xfXi|S(x | S = s)dx

=

∫ s

0
x
fXi,S(x, s)

fS(s)
dx.

Then, the CTE-based contribution can be expressed as

CTEκ(Xi|S) =

∫ ∞

V aRκ(S)
E[Xi | S = s]fS|S>V aRκ(S)(s)ds

=
1

Pr(S > V aRκ(S))

∫ ∞

V aRκ(S)
E[Xi | S = s]fS(s)ds

=
1

1− κ

∫ ∞

V aRκ(S)

∫ s

0
xfXi,S(x, s)dxds. (1)

3 TVaR and the TVaR-based allocation with exponential margi-
nals and the FGM copula

In this section, we derive the expression for the TVaR and the TVaR-based allocation for two
exponentially distributed risks joined by a FGM copula. We also extend the results obtained with
this bivariate model to a multivariate model. The exponential distribution is a classical distribution
for the risk random variables. Its convenient and practical mathematic properties permit to develop
explicit results. We are aware that the FGM copula introduces only light dependence. However,
it admits positive as well as negative dependence between a set of random variables. As said in
Yeo and Valdez (2006) where the FGM copula is used to link claim variables in a credibility model,
even if it can model only weak dependence, the FGM copula permits to assign a unique dependence
parameter for each pair or group of risks and allows a more complex dependence structure than
most of the copulas which use only one or few parameters. Furthermore, its handy form allows
explicit calculus and thus exact results. This copula was also used to describe different correlation
relations on the financial markets in Gatfaoui (2005) and Gatfaoui (2007).
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3.1 The bivariate case

LetX1 andX2 be two exponentially distributed random variables representing the claim amounts of
two insurance risks. Their cumulative distribution functions (cdf) and probability density functions
(pdf) are given by

FXi(xi) = 1− e−λixi ,

fXi(xi) = λie
−λixi , for i = 1, 2.

In order to simplify our presentation, we restrain our study to the constraints λ1 ̸= λ2, λ1 ̸=
2λ2, λ2 ̸= 2λ1. It is possible to find adjusted results without these constraints by applying a similar
method as the one exposed below.

A dependence structure for (X1, X2) based on the bivariate FGM copula is introduced. The
FGM copula is defined by

CFGM
θ (u1, u2) = u1u2 + θu1u2(1− u1)(1− u2)

for ui ∈ [0, 1], i = 1, 2, and dependence parameter θ ∈ [−1, 1].

The density of the bivariate FGM copula is

cFGM
θ (u1, u2) =

∂2CFGM
θ (u1, u2)

∂u1∂u2
= 1 + θ(1− 2u1)(1− 2u2)

= 1 + θ(2u1 − 1)(2u2 − 1),

where ui = 1− ui, i = 1, 2.

The TVaR of the aggregate risk S = X1 +X2 is given in the following proposition.

Proposition 1 Let X1 and X2 be two exponentially distributed random variables with joint cdf
defined by a bivariate FGM copula as follows

FX1,X2(x1, x2) = CFGM
θ (FX1(x1), FX2(x2)),

with θ ∈ [−1, 1]. Then, the TVaR of the aggregate risk S = X1 +X2 at level κ, 0 < κ < 1, is

TV aRκ(S) =
1

1− κ

[
(1 + θ)ζ(V aRκ(S);λ1;λ2)− θζ(V aRκ(S); 2λ1;λ2)

−θζ(V aRκ(S);λ1; 2λ2) + θζ(V aRκ(S); 2λ1; 2λ2)

]
, (2)

where ζ(x; γ1, γ2) =
γ2

γ2−γ1
e−γ1x

(
x+ 1

γ1

)
+ γ1

γ1−γ2
e−γ2x

(
x+ 1

γ2

)
.
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Proof. The joint pdf of (X1, X2) is given by

fX1,X2(x1, x2) = cFGM
θ (FX1(x1), FX2(x2))fX1(x1)fX2(x2)

= fX1(x1)fX2(x2) + θfX1(x1)fX2(x2)(1− 2FX1(x1))(1− 2FX2(x2))

= (1 + θ)λ1e
−λ1x1λ2e

−λ2x2 − θ2λ1e
−2λ1x1λ2e

−λ2x2

−θλ1e
−λ1x12λ2e

−2λ2x2 + θ2λ1e
−2λ1x12λ2e

−2λ2x2 .

Let h(x, λ1, λ2) be the distribution function of a generalized Erlang random variable X

h(x, λ1, λ2) =
λ1λ2

λ2 − λ1
e−λ1x +

λ1λ2

λ1 − λ2
e−λ2x.

Then, the pdf of S can be expressed as a combination of generalized Erlang pdf’s

fS(s) =

∫ s

0
fX1,S(x, s)dx

=

∫ s

0
fX1,X2(x, s− x)dx

= (1 + θ)h(s;λ1;λ2)− θh(s; 2λ1;λ2)− θh(s;λ1; 2λ2) + θh(s; 2λ1; 2λ2), (3)

where the first component of fS(s) is∫ s

0
(1 + θ)λ1e

−λ1xλ2e
−λ2(s−x)dx = (1 + θ)λ1λ2e

−λ2s

∫ s

0
ex(λ2−λ1)dx

= (1 + θ)
λ1λ2

λ2 − λ1
e−λ1s + (1 + θ)

λ1λ2

λ1 − λ2
e−λ2s

= (1 + θ)h(s;λ1;λ2).

The three other components can be found similarly.

Thus, the TVaR of S takes the form

TV aRκ(S) = E[S | S > V aRκ(S)]

=

∫ ∞

V aRκ

s
fS(s)

Pr(S > V aRκ(S))
ds

=
1

1− FS(V aRκ(S))

∫ ∞

V aRκ(S)
sfS(s)ds

=
1

1− κ

∫ ∞

V aRκ(S)
s

[
(1 + θ)h(s;λ1;λ2)− θh(s; 2λ1;λ2)

−θh(s;λ1; 2λ2) + θh(s; 2λ1; 2λ2)

]
ds. (4)
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Define∫ ∞

V aRκ(S)
sh(s;λ1;λ2)ds =

∫ ∞

V aRκ(S)
s

(
λ1λ2

λ2 − λ1
e−λ1s +

λ1λ2

λ1 − λ2
e−λ2s

)
ds

=
λ1λ2

λ2 − λ1

{[
−s

e−λ1s

λ1

]∞
V aRκ(S)

+

∫ ∞

V aRκ(S)

e−λ1s

λ1
ds

}

+
λ1λ2

λ1 − λ2

{[
−s

e−λ2s

λ2

]∞
V aRκ(S)

+

∫ ∞

V aRκ(S)

e−λ2s

λ2
ds

}

=
λ1λ2

λ2 − λ1

(
V aRκ(S)

e−λ1V aRκ(S)

λ1
+

e−λ1V aRκ(S)

λ2
1

)

+
λ1λ2

λ1 − λ2

(
V aRκ(S)

e−λ2V aRκ(S)

λ2
+

e−λ2V aRκ(S)

λ2
2

)

=
λ2

λ2 − λ1
e−λ1V aRκ(S)

(
V aRκ(S) +

1

λ1

)
+

λ1

λ1 − λ2
e−λ2V aRκ(S)

(
V aRκ(S) +

1

λ2

)
= ζ(V aRκ(S);λ1, λ2). (5)

Inserting (5) in (4), we obtain

TV aRκ(S) =
1

1− κ

[
(1 + θ)ζ(V aRκ(S);λ1;λ2)− θζ(V aRκ(S); 2λ1;λ2)

−θζ(V aRκ(S);λ1; 2λ2) + θζ(V aRκ(S); 2λ1; 2λ2)

]
,

with

ζ(x; γ1, γ2) =
γ2

γ2 − γ1
e−γ1x

(
x+

1

γ1

)
+

γ1
γ1 − γ2

e−γ2x

(
x+

1

γ2

)
.

A closed form expression for the TVaR-based capital attributed to risk i, i = 1, 2, is given in
the next proposition.

Proposition 2 Let X1 and X2 be two exponentially distributed random variables with joint cdf
defined by a bivariate FGM copula. Then, the TVaR-based contribution of risk i, i = 1, 2, to the
aggregate risk S = X1 +X2 at level κ, 0 < κ < 1, is

TV aRκ(Xi;S) =
1

1− κ

[
(1 + θ)ξ (V aRκ(S);λi;λj)− θξ (V aRκ(S); 2λi;λj)

−θξ (V aRκ(S);λi; 2λj) + θξ (V aRκ(S); 2λi; 2λj)

]
, (6)
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where ξ (x; γi; γj) =
γje

−γix(x+ 1
γi

)

γj−γi
− γje

−γix−γie
−γjx

(γj−γi)2
and i ̸= j.

Proof. Let i = 1 and j = 2. Recall that for continuous random variables the TVaR-based
allocation is equal to the CTE-based allocation. From (1), we have

TV aRκ(X1;S) = E[X1 | S > V aRκ(S)]

=
1

Pr(S > V aRκ(S))

∫ ∞

V aRκ(S)

∫ s

0
xfX1,S(x, s)dxds,

where ∫ s

0
xfX1,S(x, s)dx =

∫ s

0
xfX1,X2(x, s− x)dx

=

∫ s

0
x

(
(1 + θ)λ1e

−λ1xλ2e
−λ2(s−x) − θ2λ1e

−λ1xλ2e
−λ2(s−x)

−θλ1e
−λ1x2λ2e

−λ2(s−x) + θ2λ1e
−λ1x2λ2e

−λ2(s−x)

)
dx

= (1 + θ)λ1λ2

(
se−λ1s

λ2 − λ1
− e−λ1s − e−λ2s

(λ2 − λ1)2

)
−θ2λ1λ2

(
se−2λ1s

λ2 − 2λ1
− e−2λ1s − e−λ2s

(λ2 − 2λ1)2

)
−θλ12λ2

(
se−λ1s

2λ2 − λ1
− e−λ1s − e−2λ2s

(2λ2 − λ1)2

)
+θ2λ12λ2

(
se−2λ1s

2λ2 − 2λ1
− e−2λ1s − e−2λ2s

(2λ2 − 2λ1)2

)
.

The first component on the right-hand side of the last equality is given by∫ s

0
x(1 + θ)λ1e

−λ1xλ2e
−λ2(s−x)dx = (1 + θ)λ1λ2e

−λ2s

∫ s

0
xex(λ2−λ1)dx

= (1 + θ)λ1λ2e
−λ2s

([
x
ex(λ2−λ1)

λ2 − λ1

]s
0

−
∫ s

0

ex(λ2−λ1)

λ2 − λ1
dx

)

= (1 + θ)λ1λ2e
−λ2s

(
s
es(λ2−λ1)

λ2 − λ1
−

[
ex(λ2−λ1)

(λ2 − λ1)2

]s
0

)

= (1 + θ)λ1λ2e
−λ2s

(
s
esλ2e−sλ1

λ2 − λ1
− esλ2e−sλ1 − 1

(λ2 − λ1)2

)
= (1 + θ)λ1λ2

(
se−λ1s

λ2 − λ1
− e−λ1s − e−λ2s

(λ2 − λ1)2

)
.
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Denoting V = V aRκ(S), we have

TV aRκ(X1;S) =
1

1− FS(V )

∫ ∞

V

{
(1 + θ)λ1λ2

(
se−λ1s

λ2 − λ1
− e−λ1s − e−λ2s

(λ2 − λ1)2

)
−θ2λ1λ2

(
se−2λ1s

λ2 − 2λ1
− e−2λ1s − e−λ2s

(λ2 − 2λ1)2

)
− θλ12λ2

(
se−λ1s

2λ2 − λ1
− e−λ1s − e−2λ2s

(2λ2 − λ1)2

)
+θ2λ12λ2

(
se−2λ1s

2λ2 − 2λ1
− e−2λ1s − e−2λ2s

(2λ2 − 2λ1)2

)}
ds

=
1

1− FS(V )

[
(1 + θ)

(
λ2e

−λ1V (V + 1
λ1
)

λ2 − λ1
− λ2e

−λ1V − λ1e
−λ2V

(λ2 − λ1)2

)

−θ

(
λ2e

−2λ1V (V + 1
2λ1

)

λ2 − 2λ1
− λ2e

−2λ1V − 2λ1e
−λ2V

(λ2 − 2λ1)2

)

−θ

(
2λ2e

−λ1V (V + 1
λ1
)

2λ2 − λ1
− 2λ2e

−λ1V − λ1e
−2λ2V

(2λ2 − λ1)2

)

+θ

(
2λ2e

−2λ1V (V + 1
2λ1

)

2λ2 − 2λ1
− 2λ2e

−2λ1V − 2λ1e
−2λ2V

(2λ2 − 2λ1)2

)]
.

We finally obtain

TV aRκ(X1;S) =
1

1− κ

[
(1 + θ)ξ (V aRκ(S);λ1;λ2)− θξ (V aRκ(S); 2λ1;λ2)

−θξ (V aRκ(S);λ1; 2λ2) + θξ (V aRκ(S); 2λ1; 2λ2)

]
,

where

ξ (x; γ1; γ2) =
γ2e

−γ1x(x+ 1
γ1
)

γ2 − γ1
− γ2e

−γ1x − γ1e
−γ2x

(γ2 − γ1)2
.

The TVaR-based allocation for the second risk is symmetrically given by

TV aRκ(X2;S) =
1

1− κ

[
(1 + θ)ξ (V aRκ(S);λ2;λ1)− θξ (V aRκ(S); 2λ2;λ1)

−θξ (V aRκ(S);λ2; 2λ1) + θξ (V aRκ(S); 2λ2; 2λ1)

]
,

where

ξ (x; γ2; γ1) =
γ1e

−γ2x(x+ 1
γ2
)

γ1 − γ2
− γ1e

−γ2x − γ2e
−γ1x

(γ1 − γ2)2
.
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Remark 3 It can be verified that the TVaR of S is the sum of the risk contributions

TV aRκ(S) =

2∑
i=1

TV aRκ(Xi;S).

Explicit expressions for the TVaR and the one risk TVaR-based contribution cannot only be
obtained in the bivariate case but even for an undefined number of risks.

3.2 The multivariate case

Suppose now that there are n different exponential risks joined by a multivariate FGM copula
characterized by

C (u1, u2, ..., un) = u1u2...un

1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jkuj1uj2 ...ujk

 ,

where u(.) = 1 − u(.) (see Nelsen (2006) p.108). We have here 2n − n − 1 copula parameters to
describe the dependence between each pair or group of risks.
Its density can be written as

c (u1, u2, ..., un) = 1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk(2uj1 − 1)(2uj2 − 1)...(2ujk − 1).

As in the bivariate case, we suppose that the parameters of the n exponential risks satisfy the
conditions below

λi ̸= λj and λi ̸= 2λj for i ̸= j. (7)

Then, the following proposition holds.

Proposition 4 Let Sn = X1+X2+...+Xn be the sum of n dependent exponential random variables
with joint cdf defined by a multivariate FGM copula as follows

FX1,...,Xn(x1, ..., xn) = CFGM
θ (FX1(x1), ..., FXn(xn))

with θ ∈ [−1, 1]. Then, the TVaR of Sn at level κ, 0 < κ < 1, is

TV aRκ(Sn) =
1

1− κ
×

[
1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk × k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)l ζ
(
V aRκ(Sn); 2

i1λ1, ..., 2
ikλk, λik+1

, ...λin

)], (8)
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where ζ(x; γ1, ..., γn) =
∑n

i=1

(∏n
j=1,j ̸=i

γj
γj−γi

)
e−γix

(
x+ 1

γi

)
, ik+1, ..., in are the missing indexes

of j1, ..., jk to complete 1, ..., n and Al,k are the sets of k-tuples composed of l zeros and (k− l) ones,
for l = 0, 1, ..., k and k = 2, ..., n.

In fact, the Al,k are defined by A0,k =
{
(1, 1, ..., 1)1×k

}
, A1,k =

{
(1, 1, ..., 0)1×k , ..., (0, 1, ..., 1)1×k

}
,

A2,k =
{
(1, 1, ..., 0, 0)1×k , ..., (0, 0, ..., 1)1×k

}
, ... , Ak,k =

{
(0, 0, ..., 0)1×k

}
.

Proof. The joint pdf of (X1, X2, ..., Xn) is

fX1,X2,...,Xn(x1, x2, ..., xn) = c(FX1(x1), FX2(x2), ..., FXn(xn))fX1(x1)fX2(x2)...fXn(xn)

= fX1(x1)fX2(x2)...fXn(xn)

×
[
1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk(1− FXj1
(xj1))(1− FXj2

(xj2))...(1− FXjk
(xjk))

]
.

As the n risk random variables are exponentially distributed with parameters λi, i = 1, ..., n with
constraint (7), we have

fX1,X2,...,Xn(x1, x2, ..., xn) = λ1e
−λ1x1λ2e

−λ2x2 ...λne
−λnxn

×
[
1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk(2e
−λj1

xj1 − 1)(2e−λj2
xj2 − 1)...(2e−λjnxjn − 1)

]
= ν(x1, x2, ..., xn;λ1, λ2, ..., λn) +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk

×
[ k∑

l=0

∑
(a1,...,ak)∈Al,k

(−1)l ν(xj1 , xj2 , ..., xjk , xik+1
, ..., xin ; 2

a1λj1 , 2
a2λj2 , ..., 2

akλjk , λik+1
, ..., λin)

]
, (9)

where ik+1, ..., in and Al,k are defined as in the proposition and

ν(x1, ..., xn; γ1, ..., γn) = γ1e
−γ1x1 × γ2e

−γ2x2 × ...× γne
−γnxn .

Given that

fSn(s) =

∫ s

0

∫ s−x1

0
...

∫ s−x1−...−xn−1

0
fX1,X2,...,Xn−1,Xn(x1, x2, ..., xn−1, s− x1 − x2 − ...− xn−1)dx1dx2...dxn−1

=

∫ s

0

∫ s−x1

0
...

∫ s−x1−...−xn−2

0
fX1,X2,...,Xn−2,Xn−1+Xn(x1, x2, ..., xn−2, s− x1 − x2 − ...− xn−2)dx1dx2...dxn−2

= ...

=

∫ s

0
fX1,X2+...+Xn(x1, s− x1)dx1

11



and that∫ s

0

∫ s−x1

0
...

∫ s−x1−...−xn−1

0
ν(x1, x2, ..., xn; γ1, γ2, ..., γn)dx1dx2...dxn−1 =

n∑
i=1

 n∏
j=1,j ̸=i

γj
γj − γi

 γie
−γis

= h(s; γ1, γ2, ...γn),

one can write

fSn (s) = h (s;λ1, ..., λn)

+

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk

 k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)l h
(
s; 2a1λj1 , 2

a2λj2 , ..., 2
akλjk , λik+1

, ...λin

) .

Then, the TVaR of Sn for n ≥ 2 and 0 < κ < 1 is

TV aRκ(Sn) = E[Sn | Sn > V aRκ(Sn)]

=

∫ ∞

V aRκ

s
fSn(s)

Pr(Sn > V aRκ(Sn))
ds

=
1

1− κ

∫ ∞

V aRκ(Sn)
sfSn(s)ds

=
1

1− κ
×

[
1 +

n∑
k=2

∑
1≤j1<...<jk≤n

θj1j2...jk × k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)l ζ
(
V aRκ(Sn); 2

i1λ1, ..., 2
ikλk, λik+1

, ...λin

)],
where

ζ(x; γ1, ..., γn) =

n∑
i=1

 n∏
j=1,j ̸=i

γj
γj − γi

 e−γix

(
x+

1

γi

)
.

As in the bivariate case, the capital allocation for risk i can also be explicitly given. In order to
find that expression, we first need to introduce the nth order divided difference of a function f as
in Chiragiev and Landsman (2007). Consider x1, x2, ..., xn, xn+1 arbitrary points such that xi ̸= xj
for i ̸= j. The nth order divided difference of f on x1, x2, ..., xn, xn+1 is defined by

f(x1, x2, ..., xn, xn+1) =

n+1∑
i=1

f(xi)∏
j ̸=i(xi − xj)

.

The following proposition gives the expression of the TVaR-based allocation.
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Proposition 5 Let X1, ..., Xn be n exponentially distributed random variables with joint cdf defined
by a multivariate FGM copula. Then, the TVaR-based contribution of risk i, i = 1, ..., n, to the
sum Sn = X1 + ...+Xn at level κ, 0 < κ < 1, is

TV aRκ(Xi;Sn) =
(−1)n−1Λ

1− κ

[
H i(V aRκ(Sn);λ1; ...;λn) +

n∑
k=2

∑
1≤j1<...<jk≤n

∩
i∈{j1,...,jk}

θj1...jk ×(
k−1∑
l=0

∑
(a1,...,ak)−i∈Al,k−1

{
(−1)l+12k−1−lH i(V aRκ(Sn); 2

a1λj1 ; ...; 2
akλjk ;λik+1

; ...λin)

+(−1)l2k−1−lGi(V aRκ(Sn); 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

})

+

n−1∑
k=2

∑
1≤j1<...<jk≤n

∩
i/∈{j1,...,jk}

θj1...jk ×(
k∑

l=0

∑
(a1,...,ak)∈Al,k

(−1)l2k−lH i(V aRκ(Sn); 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

)]
, (10)

where H i(x; γ1, ..., γi−1, γi+1, ..., γn) and Gi(x; γ1, ..., γi−1, γi+1, ..., γn) are the (n − 2)-th order di-

vided differences of respectively H i(x; γ) = xe−γix

γi(γi−γ) + e−γix

γ2
i (γi−γ)

+ γe−γix−γie
−γx

γγi(γi−γ)2
and Gi(x; γ) =

2
(

xe−2γix

2γi(2γi−γ) +
e−2γix

(2γi)2(2γi−γ)
+ γe−2γix−2γie

−γx

γ2γi(2γi−γ)2

)
, Λ = λ1 × ... × λn is the product of the parameters

of exponential distributions, ik+1, ..., in are the missing indexes of j1, ..., jk to complete 1, ..., n and
Al,k are the sets of k-tuples composed of l zeros and (k − l) ones, for l = 0, 1, ..., k and k = 2, ..., n.

Proof. The capital attributed to the continuous distributed risk i can be expressed as

TV aRκ(Xi;Sn) = CTEκ(Xi|Sn)

=
1

FSn(V aRκ(Sn))

∫ ∞

V aRκ(Sn)

∫ s

0
xifXi,Sn(xi, s)dxds. (11)

A recursive formula for fXi,Sn(xi, s) = fXi,Sn−Xi(xi, s − xi) is needed to evaluate this expres-
sion. Given that the risk random variables here are not independent, we cannot directly separate
fXi,Sn−Xi(xi, s− xi) into the product of fXi(xi) and fSn−1(s− xi).

First, we have

fXi,Sn−Xi(xi, s− xi) = fXi,X1+X2+...+Xi−1+Xi+1+...+Xn(xi, s− xi)

=

∫ s−xi

0

∫ s−xi−x1

0

∫ s−xi−x1−x2

0
...

∫ s−x1−...−xn−1

0
fX1,X2,...,Xn−1,Xn(x1, x2, ..., xn−1, s− x1 − ...− xn−1)

× dx1dx2...dxi−1dxi+1...dxn−1
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with fX1,X2,...,Xn(x1, x2, ..., xn) defined as in (9) and which can be extended to

fX1,X2,...,Xn(x1, x2, ..., xn) = fXi(xi)

(
ν−i(x1;x2; ...;xn;λ1;λ2; ...;λn)

+

n∑
k=2

∑
1≤j1<...<jk≤n

∩
i∈{j1,...,jk}

θj1j2...jk(1− 2FXi(xi))

×
[ k∑

l=0

∑
(a1,...,ak)−i∈Al,k−1

(−1)l ν−i(xj1 ;xj2 ; ...;xjk ;xik+1
; ...;xin ; 2

a1λj1 ; 2
a2λj2 ; ...; 2

akλjk ;λik+1
; ...;λin)

]

+
n∑

k=2

∑
1≤j1<...<jk≤n

∩
i/∈{j1,...,jk}

θj1j2...jk

×
[ k∑

l=0

∑
(a1,...,ak)−i∈Al,k−1

(−1)l ν−i(xj1 , xj2 ; ...;xjk ;xik+1
; ...;xin ; 2

a1λj1 ; 2
a2λj2 ; ...; 2

akλjk ;λik+1
; ...;λin)

]
,

where ik+1, ..., in are the missing indexes of j1, ..., jk to complete 1, ..., n, A0,k =
{
(1, 1, .., 1)1×k

}
,

A1,k =
{
(1, 1, .., 0)1×k , ..., (0, 1, .., 1)1×k

}
, A2,k =

{
(1, 1, .., 0, 0)1×k , ..., (0, 0, .., 1)1×k

}
, ... , Ak,k ={

(0, 0, .., 0)1×k

}
and

ν−i(x1;x2; ...;xn; γ1; γ2; ...; γn) = γ1e
−γ1x1×γ2e

−γ2x2×...×γi−1e
−γi−1xi−1×γi+1e

−γi+1xi+1×...×γne
−γnxn .

As in the proof of the Proposition 4, we use the fact that∫ s−xi

0

∫ s−xi−x1

0

∫ s−xi−x1−x2

0
...

∫ s−x1−...−xn−1

0
ν−i(x1;x2; ...;xn; γ1; γ2; ...; γn)dx1dx2...dxi−1dxi+1...dxn−1

=

n∑
j=1
j ̸=i

 n∏
k=1,k ̸=j

k ̸=i

γk
γk − γj

 γje
−γj(s−xi)

= h−i(s− xi; γ1, γ2, ...γn),

and we obtain
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fXi,Sn−Xi(xi, s− xi) = fXi(xi)

[
h−i(s− xi;λ1, ..., λi−1, λi+1, ..., λn)

+
n∑

k=2

∑
1≤j1<...<jk≤n

∩
i∈{j1,...,jk}

θj1j2...jk(1− 2FXi(x))

×

 k∑
l=0

∑
(a1,...,ak)−i∈Al,k−1

(−1)lh−i(s− xi; 2
a1λj1 , ..., 2

akλjk , λik+1
, ...λin)


+

n∑
k=2

∑
1≤j1<...<jk≤n

∩
i/∈{j1,...,jk}

θj1j2...jk

×

 k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)lh−i(s− xi; 2
a1λj1 , ..., 2

akλjk , λik+1
, ...λin)

]. (12)

Using the divided difference as in Chiragiev and Landsman (2007), notice that

h−i(x; γ1, ..., γi−1, γi+1, ..., γn) = (−1)n−2 × γ1 × ...× γi−1 × γi+1 × ...γn × F (x; γ1; ...; γi−1; γi+1; ...; γn),

where F (x; γ1; ...; γi−1; γi+1; ...; γn) is the (n− 2)-th order divided difference of F (x; γ) = e−γx.

Then, we have∫ s

0
xifXi(xi)h−i(s− xi;λ1, ..., λi−1, λi+1, ..., λn)dxi =

∫ s

0
xifXi(xi)(−1)n−2Λ−iF (xi;λ1; ...;λi−1;λi+1; ...;λn)dxi

= (−1)n−1ΛHi(s;λ1; ...;λi−1;λi+1; ...;λn),
(13)

where Λ−i = λ1 × ...× λi−1 × λi+1 × ...× λn, Λ = λ1 × λ2 × ...× λn and

Hi(s;λ) = −
∫ s

0
xie

−λixiF (s− xi;λ)dxi.

Let also

Gi(s;λ) = −
∫ s

0
2xie

−2λixiF (s− xi;λ)dxi.

Given that the risks here are exponentially distributed, Hi and Gi take the form

Hi(s;λ) = −
∫ s

0
xie

−λixiF (s− xi;λ)dxi

= −e−λs

∫ s

0
xie

−(λi−λ)xids

=
se−λis

λi − λ
+

e−λis

(λi − λ)2
− e−λs

(λi − λ)2
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and

Gi(s;λ) = −
∫ s

0
2xie

−2λixiF (s− xi;λ)dxi

= −2e−λs

∫ s

0
xie

−(2λi−λ)xids

= 2

(
se−2λis

2λi − λ
+

e−2λis

(2λi − λ)2
− e−λs

(2λi − λ)2

)
.

Using (13), we can express
∫ s
0 xifXi,Sn(xi, s)dxi as∫ s

0
xfXi,Sn(x, s)dx = (−1)n−1Λ

[
Hi(s;λ1; ...;λn) +

n∑
k=2

∑
1≤j1<...<jk≤n

∩
i∈{j1,...,jk}

θj1...jk ×

{ k−1∑
l=0

∑
(a1,...,ak)−i∈Al,k−1

(
(−1)l+12k−1−lHi(s; 2

a1λj1 ; ...; 2
akλjk ;λik+1

; ...λin)

+(−1)l2k−1−lGi(s; 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

)}
+

n−1∑
k=2

∑
1≤j1<...<jk≤n

∩
i/∈{j1,...,jk}

θj1...jk ×

{ k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)l2k−lHi(s; 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

}]
. (14)

To calculate the risk contribution as in (11), theHi(s) andGi(s) terms in (14) must be integrated
on s as follows

H i(V ;λ) =

∫ ∞

V
Hi(s;λ)ds

=

∫ ∞

V

(
se−λis

λi − λ
+

e−λis

(λi − λ)2
− e−λs

(λi − λ)2

)
ds

=
V e−λiV

λi(λi − λ)
+

e−λiV

λ2
i (λi − λ)

+
λe−λiV − λie

−λV

λλi(λi − λ)2

and

Gi(V ;λ) =

∫ ∞

V
Gi(s;λ)ds

=

∫ ∞

V
2

(
se−2λis

2λi − λ
+

e−2λis

(2λi − λ)2
− e−λs

(2λi − λ)2

)
ds

= 2

(
V e−2λiV

2λi(2λi − λ)
+

e−2λiV

(2λi)2(2λi − λ)
+

λe−2λiV − 2λie
−λV

λ2λi(2λi − λ)2

)
.
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Finally, expression (11) for TV aRκ(Xi;Sn) is obtained

TV aRκ(Xi;Sn) =
(−1)n−1Λ

1− κ

[
H i(V aRκ(Sn);λ1; ...;λn) +

n∑
k=2

∑
1≤j1<...<jk≤n

∩
i∈{j1,...,jk}

θj1...jk ×

( k−1∑
l=0

∑
(a1,...,ak)−i∈Al,k−1

{
(−1)l+12k−1−lH i(V aRκ(Sn); 2

a1λj1 ; ...; 2
akλjk ;λik+1

; ...λin)

+(−1)l2k−1−lGi(V aRκ(Sn); 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

})
+

n−1∑
k=2

∑
1≤j1<...<jk≤n

∩
i/∈{j1,...,jk}

θj1...jk ×

( k∑
l=0

∑
(a1,...,ak)∈Al,k

(−1)l2k−lH i(V aRκ(Sn); 2
a1λj1 ; ...; 2

akλjk ;λik+1
; ...λin)

)]
.

Remark 6 To obtain the TVaR-based contribution (6) in the bivariate case from (10), we just
have to use the equalities

H1(x;λ2) = − 1

λ1λ2
ξ(x;λ1;λ2),

H1(x; 2λ2) = − 1

λ12λ2
ξ(x;λ1; 2λ2),

G1(x;λ2) = −2
1

2λ1λ2
ξ(x; 2λ1;λ2),

G1(x; 2λ2) = −2
1

2λ12λ2
ξ(x; 2λ1; 2λ2).

3.3 Numerical application

We illustrate here our results with a numerical example for the bivariate exponential case. Suppose
that the parameters of the distributions of X1 and X2 are respectively λ1 = 1/2 and λ2 = 1/3. Let
us calculate the VaR, TVaR and TVaR-based allocations for X1 and X2 for different risk levels κ
and different FGM copula parameters θ. We write bellow the cumulative distribution function of
S which can be expressed in the current case as a combination of generalized Erlang cdf’s

FS(s) = (1 + θ)H(s;λ1;λ2)− θH(s; 2λ1;λ2)− θH(s;λ1; 2λ2) + θH(s; 2λ1; 2λ2),

where H(s;λ1;λ2) = λ2
λ2−λ1

(
1− e−λ1s

)
+ λ1

λ1−λ2

(
1− e−λ2s

)
is the cdf of a 2-generalized Erlang

distribution with parameters (λ1, λ2). The numerical results for the VaR, TVaR and TVaR-based
allocations are displayed in Tables 1, 2 and 3.
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θ = −1 κ = 0.5 κ = 0.75 κ = 0.95 κ = 0.99 κ = 0.995

V aRκ(S) 4.3188 6.5053 11.0436 15.5235 17.4860

TV aRκ(S) 7.3270 9.3394 13.8369 18.3810 20.3716

TV aRκ(X1;S) 2.7244 3.1489 3.5085 3.2649 3.0613

TV aRκ(X2;S) 4.6026 6.1905 10.3283 15.1161 17.3103

Table 1: Bivariate exponential example with θ = −1.

θ = 0 κ = 0.5 κ = 0.75 κ = 0.95 κ = 0.99 κ = 0.995

V aRκ(S) 4.1589 6.7187 11.9994 16.9914 19.1073

TV aRκ(S) 7.6589 9.9967 15.0984 20.0310 22.1324

TV aRκ(X1;S) 2.9206 3.5756 4.6115 5.2234 5.4002

TV aRκ(X2;S) 4.7383 6.4211 10.4869 14.8075 16.7323

Table 2: Bivariate exponential example with θ = 0.

θ = 1 κ = 0.5 κ = 0.75 κ = 0.95 κ = 0.99 κ = 0.995

V aRκ(S) 3.9328 6.9975 12.8673 18.0635 20.2236

TV aRκ(S) 7.9817 10.6369 16.0906 21.1529 23.2818

TV aRκ(X1;S) 3.1066 3.9947 5.4022 6.2662 6.5272

TV aRκ(X2;S) 4.8750 6.6422 10.6883 14.8867 16.7546

Table 3: Bivariate exponential example with θ = 1.
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4 TVaR and the TVaR-based allocation with mixtures of expo-
nential marginals and the FGM copula

Let us consider now that we have two risks X1 and X2 which are distributed as a mixture of
exponentials. Their cdf’s and pdf’s can be written as

FX1(x) = α11(1− e−λ11x) + α12(1− e−λ12x)

FX2(x) = α21(1− e−λ21x) + α22(1− e−λ22x)

fX1(x) = α11λ11e
−λ11x + α12λ12e

−λ12x

fX2(x) = α21λ21e
−λ21x + α22λ22e

−λ22x,

where we restrict our model to λ1i ̸= λ2j , λ1i ̸= 2λ2j , λ11 + λ12 ̸= λ2j , λ11 + λ12 ̸= 2λ2j and
λ11+λ12 ̸= λ21+λ22. As for the exponential distribution case, the calculations can be done without
these constraints but the results are not presented here. Mixtures of exponential distributions, also
called hyper-exponential distributions, belong to the phase-type distribution family, see Neuts
(1981) and Asmussen (2000). They can be used to approximate light- or heavy-tailed distributions
with completely monotone pdf’s and decreasing failure rates as shown in Feldmann and Whitt
(1998), Keatinge (1999) and Khayari et al. (2003). The practical form of the mixture of exponential
distributions also permits explicit results.

The following two propositions can be proven similarly as Proposition 1 and Proposition 2 in
the previous section given that a mixture of exponentials is just an extension of the exponential
distribution.

Proposition 7 Let X1 and X2 be two random variables with mixture of exponential distributions
and a joint cdf defined by a bivariate FGM copula as follows

FX1,X2(x1, x2) = CFGM
θ (FX1(x1), FX2(x2))

with θ ∈ [−1, 1]. Then, the TVaR of the aggregate risk S = X1 +X2 at level κ, 0 < κ < 1, is

TV aRκ(S) = (I + J +K)× 1

1− κ
,

where

I =
2∑

i=1

2∑
j=1

{[
α1iα2j + θ

(
α1iα2j − 2α2

1iα2j − 2α11α12α2j − 2α1iα
2
2j − 2α1iα21α22

+4α2
1iα

2
2j + 4α2

1iα21α22 + 4α11α12α
2
2j + 4α11α12α21α22

)]
ζ(V aRκ(S);λ1i;λ2j)

}
,
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J = θ
2∑

i=1

2∑
j=1

{[
α2
1iα2j − 2α2

1iα
2
2j − 2α2

1iα21α22

]
ζ(V aRκ(S); 2λ1i;λ2j)

+
[
2α11α12α2j − 4α11α12α

2
2j − 4α11α12α21α22

] λ1i

λ11 + λ12
ζ(V aRκ(S);λ11 + λ12;λ2j)

}

and

K = θ
2∑

i=1

2∑
j=1

{[
α1iα

2
2j − 2α2

1iα
2
2j − 2α11α12α

2
2j

]
ζ(V aRκ(S);λ1i; 2λ2j)

+α2
1iα

2
2jζ(V aRκ(S); 2λ1i; 2λ2j)

+
[
2α1iα21α22 − 4α2

1iα21α22 − 4α11α12α21α22

] λ2j

λ21 + λ22
ζ(V aRκ(S);λ1i;λ21 + λ22)

+2α2
1iα21α22

λ2j

λ21 + λ22
ζ(V aRκ(S); 2λ11;λ21 + λ22) + 2α11α12α

2
2j

λ1i

λ11 + λ12
ζ(V aRκ(S);λ11 + λ12; +2λ2j)

+4α11α12α21α22
λ1iλ2j

(λ11 + λ12)(λ21 + λ22)
ζ(V aRκ(S);λ11 + λ12;λ21 + λ22)

}
.

Proposition 8 Let X1 and X2 be two mixture of exponentials distributed random variables with
joint cdf defined by a bivariate FGM copula. Then, the TVaR-based contribution of risk i, i = 1, 2,
to the aggregate risk S = X1 +X2 at level κ, 0 < κ < 1, is

TV aRκ(Xi;S) = (L+M +N)× 1

1− κ
,

where

L =
2∑

i=1

2∑
j=1

{[
α1iα2j + θ(α1iα2j − 2α2

1iα2j − 2α11α12α2j − 2α1iα
2
2j − 2α1iα21α22

+4α2
1iα

2
2j + 4α2

1iα21α22 + 4α11α12α
2
2j + 4α11α12α21α22)

]
ξ(V aRκ(S);λ1i;λ2j)

}
,

M = θ

2∑
i=1

2∑
j=1

{[
α2
1iα2j − 2α2

1iα
2
2j − 2α2

1iα21α22

]
ζ(V aRκ(S); 2λ1i;λ2j)

+
[
2α11α12α2j − 4α11α12α

2
2j − 4α11α12α21α22

] λ1i

λ11 + λ12
ζ(V aRκ(S);λ11 + λ12;λ2j)

}
,
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N = θ
2∑

i=1

2∑
j=1

{[
α1iα

2
2j − 2α2

1iα
2
2j − 2α11α12α

2
2j

]
ξ(V aRκ(S);λ1i; 2λ2j)

+α2
1iα

2
2jξ(V aRκ(S); 2λ1i; 2λ2j)

+
[
2α1iα21α22 − 4α2

1iα21α22 − 4α11α12α21α22

] λ2j

λ21 + λ22
ξ(V aRκ(S);λ1i;λ21 + λ22)

+2α2
1iα21α22

λ2j

λ21 + λ22
ξ(s; 2λ1i;λ21 + λ22) + 2α11α12α

2
2j

λ1i

λ11 + λ12
ξ(V aRκ(S);λ11 + λ12; +2λ2j)

+4α11α12α21α22
λ1iλ2j

(λ11 + λ12)(λ21 + λ22)
ξ(V aRκ(S);λ11 + λ12;λ21 + λ22)

}
.

5 Approximation methods for TVaR-based allocation

We have seen in the previous sections that it is possible to have an exact expression for the TVaR of
a sum of several dependent random variables and the contribution of each random variable to the
aggregate TVaR for some specific situations, in particular when using the FGM copula. For most
copulas, it is more complicated to directly calculate this risk measure. Embrechts and Puccetti
(2007) proposed an algorithm to compute numerically the cdf of the sum of two random variables
joined by a copula. They used an approximation of the set {(x1, x2) ∈ [0,+∞)2 : x1 + x2 ≤ s}
by a countable union of disjoint rectangles to obtain an evaluation of FS(s) with S = X1 + X2.
In the present paper, we expose a simple alternative to approximate this cumulative distribution
function with the use of common discretization methods that can be found in Klugman et al.
(2008). Then we evaluate the TVaR and its contributions when the random variables are linked by
any copula. The method is here exposed for two random variables but can be expanded to more
random variables as shown in the numerical applications.

5.1 Discretization methods

We use three discretization methods in our study that are defined just below. For these three
methods, we suppose that X is a continuous random variable with cdf FX and that h is the
discretization span.

Definition 9 (Lower method) The lower method provides a probability mass function of the
discretized random variable X̃ given by{

fX̃(0) = 0

fX̃(jh) = FX(jh)− FX((j − 1)h), for j = 1, 2, ... .

Definition 10 (Upper method) The upper method provides a probability mass function of the
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discretized random variable X̃ given by{
fX̃(0) = FX(h)

fX̃(jh) = FX((j + 1)h)− FX(jh), for j = 1, 2, ... .

Definition 11 (Mean preserving method) The mean preserving method provides a probability
mass function of the discretized random variable X̃ given by{

fX̃(0) = 1− E[X∧h]
h

fX̃(jh) = 2E[X∧jh]−E[X∧(j−1)h]−E[X∧(j+1)h]
h , for j = 1, 2, ... .

This method ensures that the mean of the discretized distribution is the same as the original distri-
bution.

Remark 12 It is shown e.g. in Müller and Stoyan (2002) and Denuit et al. (2005) that X ≤sd

X̃ under the lower method, X̃ ≤sd X under the upper method, and X ≤icx X̃ under the mean
preserving method, where ≤sd and ≤icx designate the stochastic dominance order and the increasing
convex order respectively (see the same references for the definitions).

5.2 The bivariate case

Suppose that we have two continuous distributed risks X1 and X2. The joint cdf FX1,X2 is defined
by a fixed copula C which introduces a dependence structure between the risks. We discretize X1

and X2 with one of the three methods described before. We denote by X̃1, X̃2 the discretized
random variables obtained and keep the same dependence relation between these two new random
variables with the copula C. Then, we define S̃ = X̃1+X̃2 that we use two approximate S = X1+X2.

For a constant discretization span h, the cdf of (X̃1, X̃2) for k ≥ 0 and l ≥ 0 is

FX̃1,X̃2
(kh, lh) =

k∑
i=0

l∑
j=0

Pr(X̃1 = ih, X̃2 = jh).

The cdf of S̃ for j ≥ 0 is given by

FS̃(jh) =

j∑
i=0

Pr(S̃ = ih),

where the probability mass function (pmf) of S̃ is

Pr(S̃ = 0) = Pr(X̃1 = 0; X̃2 = 0), and

Pr(S̃ = jh) =

j∑
i=0

Pr(X̃1 = ih; X̃2 = (j − i)h), for j = 1, 2, ... .
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The joint pmf of (X̃1, X̃2) is obtained with the copula as follows

Pr(X̃1 = 0, X̃2 = 0) = C
(
FX̃1

(0), FX̃2
(0)
)
,

P r(X̃1 = 0, X̃2 = jh) = C
(
FX̃1

(0), FX̃2
(jh)

)
− C

(
FX̃1

(0), FX̃2
((j − 1)h)

)
,

P r(X̃1 = ih, X̃2 = 0) = C
(
FX̃1

(ih), FX̃2
(0)
)
− C

(
FX̃1

((i− 1)h), FX̃2
(0)
)
,

P r(X̃1 = ih, X̃2 = jh) = C
(
FX̃1

(ih), FX̃2
(jh)

)
− C

(
FX̃1

((i− 1)h), FX̃2
(jh)

)
−C
(
FX̃1

(ih), FX̃2
((j − 1)h)

)
+ C

(
FX̃1

((i− 1)h), FX̃2
((j − 1)h)

)
.

Then, the TVaR of S can be approximated by the TVaR of S̃ which is given by

TV aRκ(S̃) =
E[S̃ × 1{S̃>V aRκ(S̃)}] + V aRκ(S̃)

(
Pr(S̃ ≤ V aRκ(S̃))− κ

)
1− κ

=
E[S̃ × 1{S̃>k0h}] + k0h

(
Pr(S̃ ≤ k0h)− κ

)
1− κ

,

where V aRκ(S̃) = k0h.

The TVaR-based allocation of risk Xi over the global risk S can be approximated by the TVaR-
based allocation of risk X̃i over the global discretized risk S̃ where

TV aRκ(X̃i; S̃) =
E
[
X̃i × 1{S̃>V aRκ(S̃)}

]
+ βS̃E

[
X̃i × 1{S̃=V aRκ(S̃)}

]
1− κ

=
E
[
X̃i × 1{S̃>k0h}

]
+ βS̃E

[
X̃i × 1{S̃=k0h}

]
1− κ

,

where βS̃ =

{
Pr(S̃≤k0h)−κ

Pr(S̃=k0h)
, if Pr

(
S̃ = k0h

)
> 0,

0, otherwise.

Remark 13 In corollary 4.6 of Müller and Scarsini (2001), it is shown that if (X1, X2) and(
X̃1, X̃2

)
are random vectors with a common conditionally increasing copula and if Xi ≤cx X̃i

for i = 1, 2, then for all non-negative scalars a1 and a2 we have

a1X1 + a2X2 ≤cx a1X̃1 + a2X̃2.

This result also holds for the increasing convex order since it is implied by the convex order. From
Bäuerle and Müller (2006), it follows that

TV aRκ (a1X1 + a2X2) ≤ TV aRκ

(
a1X̃1 + a2X̃2

)
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for κ ∈ (0, 1) .

5.3 Numerical applications

5.3.1 Bivariate case

Suppose that X1 and X2 are exponentially distributed with parameters λ1 = 1/2 and λ2 = 1/3
respectively. The dependence between these two risks is defined by the bivariate FGM copula with
parameter θFGM = 0.8. This value of θFGM implicates a correlation of 0.2 between X1 and X2.
Figure 1 in the appendix illustrates the accuracy of the approximations of the cdf of S2 when using
the three discretization methods. Indeed, the decrease of the discretization span h implicates a
convergence of the discretized cdf to the real one.

The discretization methods allow an approximation of the cdf of S2 with any copula. We
illustrate the use of the FGM, the Clayton, the Frank and the Gumbel copula. The copulas’
parameters are chosen such that we have the same coefficient of correlation between X1 and X2.
Figure 2 in the appendix shows the impact of the copulas on the cdf of S2 which is discretized with
the mean preserving method when the correlation coefficient is fixed at 0.2. The first graph displays
the drawing of the approximated cdf’s of S2. We then do the difference between a dependent cdf and
the independent cdf and trace this difference for the FGM, the Frank, the Clayton and the Gumbel
copula in the second graph of Figure 2. These two graphs highlight the fact that the Clayton
copula introduces dependence in lower values and that the Gumbel copula permits dependence in
the upper queue.

In Figure 3 in the appendix, we trace the differences between the TVaR of S2 using dependent
risks with one of the copulas discussed before and the TVaR of S2 using the independent copula
against the risk level κ. This is done for three increasing values of correlation between X1 and X2.
Given that the FGM copula only allows weak dependence it just appears on the first graph. The
graphs confirm the fact that the Gumbel copula introduces dependence in high values.

Tables 4 and 5 expose the numerical results for the TVaR and the TVaR-based allocation for
X1 and X2 with the four copulas discussed above and confidence levels equal to 0.99 and 0.995.
The calculations are done with the mean preserving discretization method with span h = 0.05 for
the four copulas and also with the exact expression for the FGM copula. The tables attest the
good precision of the approximation method and confirm the high dependence values inserted by
the Gumbel copula.

5.3.2 Trivariate case

We illustrate here the difference between the exact and the approximated methods with three
risk variables dependent through a trivariate FGM copula. Suppose that X1, X2 and X3 are
exponentially distributed with parameters λ1 = 1/2, λ2 = 1/3 and λ3 = 1/5 respectively. The
copula parameters θFGM

i , θFGM
ij and θFGM

ijk , for i = 1, 2, 3, j = 1, 2, 3, k = 1, 2, 3, j ̸= i, k ̸= i
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Copula TV aR0.99(S2) TV aR0.99(X1;S2) % of TV aR0.99(S2) TV aR0.99(X2;S2) % of TV aR0.99(S2)

FGM exact 20.9561 6.0998 29.1% 14.8563 70.9%
FGM M.P. 20.9574 6.1003 29.1% 14.8571 70.9%
Clayton M.P. 20.7918 5.9419 28.6% 14.8499 71.4%
Frank M.P. 21.0612 6.2158 29.5% 14.8454 70.5%
Gumbel M.P. 22.9669 7.7988 34.0% 15.1682 66%

Table 4: TVaR and TVaR-based allocation for S2 with κ = 0.99.

Copula TV aR0.995(S2) TV aR0.995(X1;S2) % of TV aR0.995(S2) TV aR0.995(X2;S2) % of TV aR0.995(S2)

FGM exact 23.0839 6.3523 27.5% 16.7316 72.5%
FGM M.P. 23.0859 6.3530 27.5% 16.7329 72.5%
Clayton M.P. 22.9135 6.1776 27.0% 16.7359 73.0%
Frank M.P. 23.2014 6.4953 28.0% 16.7061 72.0%
Gumbel M.P. 26.0088 8.9850 34.5% 17.0237 65.5%

Table 5: TVaR and TVaR-based allocation for S2 with κ = 0.995.

and k ̸= j are all fixed to 1. As for the bivariate case, we show in Figure 4 of the appendix
the convergence to the real cdf of S3 of the discretized cdf’s when using the three discretization
methods.

Tables 6 and 7 compare the numerical results for the TVaR and the TVaR-based allocation
for the three risks with confidence levels equal to 0.99 and 0.995 between exact expressions and
approximated results using the mean preserving discretization method with span h = 0.3. As for
the bivariate case, they show a satisfying accuracy of the approximation method.

Method TV aR0.99(S3) TV aR0.99(X1;S3) TV aR0.99(X2;S3) TV aR0.99(X3;S3)

Exact 37.5988 4.1726 8.4033 25.0230
Mean P. 37.6062 4.1760 8.4060 25.0243

Table 6: TVaR and TVaR-based allocation for S3 with κ = 0.99.

6 Conclusion

This paper introduces the use of copulas in TVaR-based capital allocation. We obtain explicit
expressions for the TVaR and TVaR-based allocation for risks that have exponential and mixture of
exponentials distributions linked by a FGM copula. The handy form of this copula permits a direct
calculation of the coherent risk measure and its decomposition when we suppose only two different
risks. In the multivariate situation, we use divided differences as in Chiragiev and Landsman
(2007). For other copulas, we present approximations for the TVaR and the TVaR-based allocation
using three discretization methods for continuous distributions.
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Method TV aR0.995(S3) TV aR0.995(X1;S3) TV aR0.995(X2;S3) TV aR0.995(X3;S3)

Exact 41.1177 4.2044 8.6536 28.2597
Mean P. 41.1262 4.2080 8.6567 28.2616

Table 7: TVaR and TVaR-based allocation for S3 with κ = 0.995.
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Figure 1: Discretized cdf’s vs exact cdf for 2 risks
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Figure 3: TVaR of S with different copulas and correlation coefficients
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