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Adaptive Spatial System Emergence
from Community Swarm Optimization

Rawan Ghnemat and Cyrille Bertelle and Gérard H.E. Duchamp !

Abstract. This paper proposes a bottom-up approach to model spasimulation and Forrester claims the benefit of computer kitiaun

tial systems for urban dynamic and territorial managentéath ap-
proaches called micro-modelling have started with the @iseltular
automata where local rules are defined and allow to implesane
simulations, describing mainly dynamical diffusion preses over
spatial grids. Our purpose is to deal with the detection ofesemer-
gent organizations during the simulation, using an impkointrol,
based on the use of genetic automata population. This ataqop-
ulation evolves by a swarm co-evolution, optimizing a fiséasc-

to understand the city evolution and how we can predict itdLegion
by the maodification of guiding policies within the system.

The stocks and flows models continue to be improved and to
proposed more and more details, including transportatibsystem
or land market, for example. One of the most complete, called
Integrated Urban Model (IUM) was proposed by Bertuglia et al
[5]. The computational complexity increase with the accityaof

tion which leads to an automatic emergence of dynamic conmymun the description and finally avoid to obtain reasonable exts of

ties.

1 SPATIAL SYSTEM EMERGENCE
MODELLING

1.1 From Top-down to Bottom-up approches

Spatial systems modelling for urban dynamic or territorizn-
agement has been developped since few decades and can
classify in two main categories [2]. The first one is based aeno
modelling corresponding to a top-down approach and theskaoe
is based on micro-modelling corresponding to a bottom-ygpaach.

the parameters. These models are more representatiotglthan
simulation tools [2].

To buid efficient simulation models, the idea was to simplify
the description, using a more global one facilitating thelyical
description. From the inspiration of dynamics of populatibeory,
some researchers proposed to build urban dynamic modeais fro
ecological modeling. The paradigm of prey-predators systés
then used to give efficient simulation tools to investigdte main
feature allowing to understand the global dynamics. Fongpta,
Dendrinos and Mulally [10] use a prey-predator model, assgm
that the increase of city population make decrease the etiono
status. The predators represent the urban population anpréys,

The first approach category concerns mainly “stocks and flows the per capita income.

descriptions of socio-economic indicators. Ones of thennfist
contributors generally mentionned, are I.S.Lowry [22] dhen to
J.W. Forrester [12]. Lowry’s model of urban system, appledhe
city of Pittsburg, proposed some “integrated” model, definilow
chart between the three main indicator classes: (i) theclsesitor
of industrial and business activities, (ii) the househplslector and
(i) the retail sector concerning the local population.idTtilow
chart model already deals with a mile-square decompossiioiiar
to spatial decomposition used later as an adaptation ofilaell
automata grid to geographical real space. The final outpuhef
modeling process leads to a kind of socio-economic eqiuitibr
state. This approach finds its limit because of its staticriigtson
and dynamical models are essantial to understand the @tyten.
Forrester proposed a dynamical modeling based on the afiphicof
industrial dynamics on urban dynamics. His model is basedamn
spatial stocks and flows models. Stocks are exchanged veitthiree
income levels decomposition over housing, jobs and pojoulat
This model based on simple urban description was aimed tergen
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All the previous described models are based on top-down ap-
proachs to model the system dynamics. We first consider tludewh
phenomenon and we propose a way to split it in many sub-prable
and then in stocks and flows or in different terms contitutihg
equational system. Another class of modeling is based omomic
modeling and bottom-up representation of the city as a ciidie
of individual-based descriptions, behavioral rules-badescription
and interaction systems. From this constructive approaehwant
to obtain an emergent description of the whole system or wfeso
sub-systems included in a hierarchical process. Two camgaary
methodologies can be used for that and we detail them in the
following paragraphs.

The first methodology consists to generate a simulation evhakr
the components, behaviors and rules, interact over a emagat,
perceiving and acting on it. The environment evolving is the
support of emergent properties. The cellular automata fimgde
deals with this kind of simulations. The basic definition eflalar
automata for urban or regional modeling, for exemple, &igsin
the decomposition of the city, region or any geographicahan a
lattice of cells. Each cell is in some state which belongs fimite
set S. At each time step, the cells change its own state dangaal



some transition rules based on its previous state and ithber
cells. Many works based on cellular automata, have beerafged
for geographical systems and urban dynamics [1, 11]. Exiess
on environmental problems like water streaming are usirggeh
medels as efficient tools [20]. Cellular automata can be seanly
as distributed tools to model diffusive penomena using-balsed
systems. One of the first researchers in human sciences pogeo
models based on diffusive rule-based systems is T. Hagarkin
very early period, during 50’ [18] but his work itself stad be
diffused over the science community more than 15 years latean
the computer development become able to implement its nmiadel
realistic studies. One of the most famous cellular-basedeifor
social modeling is du to T. Schelling [24], describing thgregation
process. But with the implementation of this model, we fazan
important extension to cellular automata where we needpesent
moving individuals from a simple deliberative process. Tiging
of spatial data and cellular automata with autonomousiestitike
agents, is here needed [8].

advantage of these automata is to be associated with algepera-
tors leading to automatic computation. With these opesat@e can
define behavioral distances for the entities modelled widsé au-
tomata. The behavioral distance is one of the major keysi®htaw

method. Section 2 presents a review of swarm optimizatiotihoas

to introduce the original one we propose in this paper. 8e@ide-
scribes the algebraic basis for the automata managemenhtruges

method. In section 4, we describe the proposed method aedtios

5, we discuss some applications which can be efficiently exdiby

this method, according to their own complexity.

2 SWARM OPTIMIZATION METHODS

Decentralized algorithms have been implemented for mamysye
for various purposes. In this algorithm category, multeiaigsys-
tems can be considered as generic methods [30]. Agent-based
programming deals with two main categories of agent comscept
cognitive agents and reactive agents. The first categorgecnn
sophisticated entities able to integrate, for example,wkedge

The second methodology to deal with emergent description,agis or communications systems. Generally, efficient coatipns,

in micro-modelling, consists to complete the previous apph
based on simulation, by introducing some computationatgsses
which are able to detect emergent systems or organizatimes.
final goal of this method is then to be able to re-introducesghe
emergent systems or organizations inside the simulatidnreanage
their evolutions and their interactions with the compogeott the
system. The re-integration of the emergent systems, dutieg
simulation, can be explicitely expressed like in the matis fluid
flow simulation proposed by P. Tranouez [29] or it can be igifh)i
expressed using a self-controled process as we will desarithe
following, using genetic algorithms.

based on these cognitive architectures, implement few tagen
The second category of agents, based on reactive archéedsu
expected to be used inside numerous entity-based systemes. T
goals of programs using such architectures, is to deal witkrgent
organizations using specific algorithms called emergentpeding
algorithms. Swarm Intelligence is the terminology useddmpout
such reactive agent-based methods where each entity tswitkil
the same basis of behavior, but reacts in autonoumous warnsw
Optimization methods concern the problems of optimizatidrere
the computation of a function extramum is based on the cdrafep
swarm intelligence.

The method proposed in this paper, called community swarmm op  apt Colony Optimization (ACO) methods [6] is a bio-inpirete

timisation, is based on a swarm intelligence process whigkenco-
evolve a population of genetic automata, using a globalrobof the
system, implemented by a fitness function leading to the genee
of communities, as defined in the next section.

1.2 A Specific Spatial System Context: the
Community

method family where the basic entities are virtual ants thic
cooperate to find the solution of graph-based problems nigte/ork
routing problems, for example. Using indirect communimag;,
based on pheromon deposites over the environment (hergh)gra
the virtual ants react in elementary way by a probabilisticice of
path weighted with two coefficients, one comes from the mnabl
heuristic and the other represent the pheromon rate depoait the
ants until now. The feed-back process of the whole systemtbee

We define here, the context of the community used in the swarmiies is modelled by the pheromon action on the ants taies.

intelligence process proposed in the following.

Definition 1.1 (Community operational definition)

A community is a system or an organization which is charazter
by a spatial property, a behavior property and the interantibe-
tween both.

Example 1.2 In ecology, a community is a group of plants or ani-
mals living in a specific region and interacting with one areat

Particule Swarm Optimization (PSO) is a metaheuristic weth
initially proposed by J. Kennedy and R. Ebenhart [19].Thethmnod
is initialized with a virtual particle set which can move owhe
space of the solutions corresponding to a specific optimoizat
problem. The method can be considered like an extension ofla b
flocking model, like the BOIDS simulation from C.W. Reynolds
[23]. In PSO algorithm, each virtual particle moves accagdio
its current velocity, its best previous position and thet lpesition

Example 1.3 The spatial patterns generated by Schelling’s segrega-Obtained from the particles of its neighborhood. The feackb

tion models [24] are some examples of communities and thgse s
tial patterns are linked with some elementary behaviordésum-
plemented for each grid case. These rules describe, forgaghthe
movement of each individual according to its neighborhood.

process of the whole system over the entities is modelledhby t
storage of this two best positions as the result of commtipitsa
between the system entities.

Other swarm optimization methods have been developped like

In the Community Swarm Optimization(SCO) method which we Artificial Immune Systems [9] which is based on the metapHor o

propose and describe in the following, we need to represeeffa
cient way to describe the behavior of each entity and we uge al
braic structures called automata with multiplicities [25he main

immune system as a collective intelligence process. F. Sicher
proposes also a generic method based on distributed agsirig,
approaches of statistical many-particle physics [26].
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Figure 1. Support and feed-back comparison from Ant Colony Optil@a{ACO), Particule Swarm Optimization (PSO) and CommuBivarm
Optimization (CSO)

e The set elements or entities are in interactive dependdrite.
alteration of only one entity or one interaction reverbesain the
whole system.

e A global organization emerges from interacting constititle-
ments. This organization can be identified and carries its aw
tonomous behavior while it is in relation and dependancé itst
environment. The emergent organization possesses neerfiesp
that its own constitutive entities do not have.

e The global organization retro-acts over its constitutieenpo-
nents.

The Communities Swarm Optimization method proposed in this
paper, consists in the co-evolving of both the spatial coatds and
the behavior of each individual of a virtual population of@uata.
The feed-back process of the whole system over the entitiemd-
elled by a genetic algorithm based on this co-evolving. Tuteraata
behaviors allow to define for each individual, a set of adnitrcom-
plex transition rules. We develop the formalism needed sxiee
this method and the associated algorithm in the two nexiosect

3 AUTOMATA-BASED AGENT MODELING
AND COMPLEX SYSTEMS

The interacting entities network as described in part (djigtire
3.1 Complex Systems Concepts 2 leads each entity to perceive informations or actions faiher
entities or from the whole system and to act itself.
In this section, we give the basis of the conceptual toolslvhilow
to extend the reactive and diffusive grid cases behaviordeenso- A well-adapted modeling consists of using an agent-basaere
phisticated entities, using agent-based models. We pedjposiodel  sentation which is composed of the entity called agent amtty e
the agent behavior with automata with multiplicities whare pow-  which perceives and acts on an environment, using an autmmm

erful algebraic stuctures. behaviour as described in part (c) of Figure 2.
According to General System Theory [21], a complex system is
composed of entities in mutual interaction and interactinigp the To compute a simulation composed of such entities, we need to

outside environment. A system has some characteristicepiep  describe the behaviour of each agent. This one can be sabelyat
which confer its structural aspects, as schematicallyrde=tin part ~ described using internal states and transition processesebn
(a) of Figure 2: these states, as described in part (d) of Figure 2. So an atdom
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with multiplicities as described in the following sectios well-
adapted for the agent behavior modelling.

3.2 Automata-based Modeling for Agent Behavior

An automaton with multiplicities is based on the fact that dutput
data of the automata with output belongs to a specific algebra
structure, a semiring, including real, complex, probabi non
commutative semantic outputs (transducers) [16, 27]. &t thay,
we will be able to build effective operations on such aut@nat
using the power of the algebraic structures of the outpud.dae
are also able to describe automata by means of a matrix esyiees
tion with all the power of the new (i.e. with semirings) limedgebra.

Definition 3.1 (Automaton with multiplicities)
An automaton with multiplicities over an alphabhétand a semiring
K isthe 5-uple(A, Q, I, T, F) where

e Q ={51,52---S,} is the finite set of state;

e [ : @ — K is a function over the set of states, which associates
to each initial state a value of K, called entry cost, and tmno
initial state a zero value ;

e F: @ — K is a function over the set states, which associates
to each final state a value of K, called final cost, and to noatfin
state a zero value;

e T'is the transition function, that i¥' : Q x A x Q — K which
to a stateS;, a lettera and a stateS; associates a value of K
(the cost of the transition) if it exist a transition labedlevith
from the stateS; to the stateS; and and zero otherwise.

Remark 3.2 We have not yet, on purpose, defined what a semiring
is. Roughly it is the least structure which allows the matdalcu-
lus” with unit (one can think of a ring without the "minus” ope-

tion). The previous automata with multiplicities can bejieglently,

expressed by a matrix representation which is a triplet

e ) € K9 which is a row-vector which coefficients alg =
1(S:),

e v € K9*!isacolumn-vector which coefficients are= F (),

e i A" — K%*? s a morphism of monoids (indegd?*® is
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Figure 3. Chromosome first component building from the matrix rowsheflinear representation of an automaton over the alpHabé}

endowed with the product of matrices) such that the coefficie
the g;th row andg;th column ofu(a) is T'(g:, a, ;)

Definition 3.3 (Automata-Based Agent Behavior)
We represent the agent behavior by automata with multtii
(A,Q,I,T, F) over asemiringk:

e The agent behavior is composed of a states(getnd of rule-
based transitions between them. These transitions aresepted
by T; I and F represent the initial and final transitions;

e AlphabetA corresponds to the agent perceptions set;

e The semiringK is the set of agent actions, eventually associated
to a probabilistic value which is the action realization pebility
(as defined in [13]).

3.3 Agent Behavior Metric Space

4 COMMUNITY SWARM OPTIMIZATION
ALGORITHM

4.1 Spatial Automata-based Agent

Definition 4.1 (Spatial Automata-Based Agent)
A spatial automata-based agent is defined by its struct@pilasen-
tation:

e An automaton with multiplicities corresponding to its beioa as
a whole processus managing its perceptions and its actives o
its environment. They include its communication capaésiand
so its social behavior;

e A spatial location defined on some specific metric space.

4.2 Genetic Operators on Automata Population

efficient operators. We deal is this paragraph with an intieva
way to define behavioral semi-distance as the essential kegli
organization processus proposed later.

Definition 3.4 (Evaluation function for automata-based belav-
ior)
Letz an agent whom behavior is defined Hy an automaton with
multiplicities over the semiring<, we define the evaluation function
e(x) by:

e(z) =V(4)
whereV (A) stands for the vector of all coefficients (Of, ., ), the
linear representation ofl, defined in remark 3.2.

Definition 3.5 (Behavioral semi-distance)

Letz andy two agents an@(z) and e(y) their respective evalua-
tions as described in the previous definition 3.4. We definey) a
semi-distance or pseudometricbetween the two agenisandy as

d(z,y) = |le(z) — e(y)]|
a vector norm of the difference of their evaluations.

Remark 3.6 In this paper, we propose a simple computation for the
behavioral semi-distance. It is possible to define otherakighal
semi-distances who can allow to introduce specific sintision
specific path inside the automata and not the complete geguniof
the automata as used here. This process consists in defipauifis
initial and final states and compute all the successfull pdtbtween
them [25] . We will not develop this extension in this paper.

2see[7]chIX

agents, each of them is represented by a chromosome, fotide
genetic algorithm basis. We define the chromosome for eaatasp
automata-based agent as a couple of two sequences:

e the sequence of all the rows of the matrices of the linearerepr
sentation of the automata. The matrices, associated toletieh
from the alphabet of the agent perceptions, are linearlgrediby
this alphabet and we order all the rows following these roagi
order [4]. The figure 3 describes how this sequence is créated

a linear representation of two matrices;

e the sequence of all its spatial coordinates.

In the following, genetic algorithms are going to generagavn
automata containing possibly new transitions from the ameladed
in the initial automata.

The genetic algorithm over the population of automata withtim
plicities follows a reproduction iteration broken up in teteps [17]:

e Reproduction (Duplication and Crossing-overhis operator is a
combination of the standard duplication and crossing-geeetic
operators. For each couple of spatial automata (calledairents),
we generate two new spatial automata (called the childrethe
result of the chromosome crossings and we keep, withoutgehan
the parent spatial automata. To operate for the crossieg-ay
eration, we have to compute the automata of the behaviofseof t
two children. For this purpose, we consider a sequence & fokw
each matrix of the linear representation of one of the tweipiar
and we make a permutation on these chosen sequences of rows
between the analogue matrix rows of the other parent.
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Figure 4. Fitness evaluation for community detection

e Mutationt This operator deals only with the linear representation On the figure 4, we represent an automata population whete eac

of the spatial automata-based agent. With a low probapdigh
matrix row from this linear representation is randomly @mand

automata is a colored chain representing its chromosonomaia
with similar colored chain must ne understanding as sintiédrav-

a sequence of new values is given for this row (respectingesomioral automata. In the left part of the figure, we focuss on bigé

constraints if exist, like probabilistic values [4]).

fitness individual after computing its spatial neighbourth@nd ob-
serving the behavioral similarity of all the automata imfgd in this

Remark 4.2 The fitness is not defined at this level of abstract for- neighbourhood. In the right part of the figure, composed efsdéime

mulation, but it is defined corresponding to the context fhiclv the
automaton is a model, as we will do in the next section.

4.3 Adaptive Processus to Implement Community
Detection

The community detection is based on a genetic algorithm aver
population of spatial automata-based agents. The formatiadhe
community is the result of the population evolution crogsby a
selection process computed with the fitness function defimede
following.

For this computation, we deal with two distances defined @mag
set. The first is the spatial distance associated to the apatial
location and the second is the behavioral semi-distanceetkin
the definition 3.5.

Definition 4.3 Community clustering and detection fithess
LetV, a neighbourhood of the agent relatively to its spatial loca-
tion. We defing’(z) the agent fitness of the agents :

__card(Va) it > d(z,y:)* #0
E d(z,y:)* Yi€Ve
f(z) = '
Y€V
00 otherwise

population, we focuss on a low fitness individual, having siat-
ilar behavior with the other automata belonging to its nbigirhood.

The genetic evolution of the spatial automata-based atgsads to
a self-organization which creates a clustering of the agseitin such
way that each cluster contains agents of similar behavianing the
evaluation process, genetic algorithms can be turned $athndi-
vidualsoutside communitieBe attracted to them. The center of the
clusters, the size of the clusters and the behavior of thetagethe
center of each cluster are the result of the overall geneticgssus
which generates self-organization communities.

4.4 General Community Swarm Optimization
Algorithm

Community Swarm Optimization (CSO) algorithm needs a ahiti
step description which is the major issue of the modellinocpess.
The way of going from the problem formulation to the initigas
tial automata-based agents must be realized with accyrabie for-
mal description of the methodology to use, for this initigds is
described in Algorithm 1.

The core of the CSO algorithm is described by the iterative
scheme defined in the Algorithm 2.

5 Conclusion and Perspective

where d(z,y) is the behavioral semi-distance between the twoln this paper, we describe Community Swarm Optimization@ES

agentsr andy.

method which can be described as a swarm intelligence moces
With the comparison of other methods from its category (Ant



Algorithm 1: Methodology to model the initial step of CSO

1. Problem formulation by the definition of a set of transitio
rules ;

2. Building of the behavioral automata based on the prevsetis
of transition rules, describing the sequences and the xioote
their applications ;

3. Discretization of the spatial domain, according to its
topological properties (Cellular automaton, network Gy,
Geographical Information System) with the spatial locatd
the initial virtual population of spatial automata-basegérits;

Algorithm 2: Iteratice scheme of CSO

Building the initial virtual population of the spatial
automata-based agents (following the methodology of
Algorithm (1)) ;

repeat

for Each couple of individuals in the populaticio

Reproduction step generating 2 new children as

described in the section (4.2) ;

Mutation step as described in the section (4.2) ;
Selection of the half population of the individuals
corresponding to the highest values of the agent fitness
described in section (4.3) ;
until (the sum of the fitness values of the whole population
reachs a threshold)r (the maximum iteration number is
reached),

Colony Optimization and Particule Swarm Optimization), @CS
differs mainly on the modelling purpose. CSO deals with siton
rules included in data structures (automata with multifiéis) for
which algebraic operators allow to implement automatic jgota-
tion for self-organizational phenomena.

This method is expected to be used for adaptive spatial ayste
emergence modelling. The swarm intelligence method pexpbsre
manage artificial population leading to the emergent foionabf
communities. The genetic automata which compose this catifi
population, allow the emergent communities to be self1oded us-
ing the fitness of the genetic process. This fithess expressbalg
control over the community, using similarity evaluation gpatial
neighborhood. This process mix individual representadiot com-
munity system emergence: it is the formalization of a msitle
description where the micro-macro interactions are initpdiepress
by the genetic control of the emergent communities. Theiegubn
expected to be model by this process, concern for exempéanudy-
namic where quarters or city centers can emerge or evolve the
citizen behavior like in the gentrification problem.
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