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A multimode optical fiber with a D-shaped cross section is an experimental

paradigm of a wave system with chaotic rays’ dynamics. We show that seldom

but usable modes, called scar modes, localized along some particular direction

of the geometrical trajectories can be selectively excited. We report numerical

simulations that demonstrate the importance of the so-called self focal point

in the scar modes selection process. We use a localized illumination in a

passive fiber, or, a localized gain in an Ytterbium-doped fiber, located in the

vicinity of this special point to control the scar modes selection. c© 2009

Optical Society of America

OCIS codes: 350.5500, 060.2320.

1. Introduction

The behavior of waves in a 2-dimensional bounded domain (billiard) is determined by the

nature of the rays’ dynamics in the geometrical limit. For simple shapes as the circle or the

square, the rays’ dynamics is regular but tends to be complex as the shape becomes more

complicated. When the rays’ dynamics presents the property of high sensitivity to initial

conditions, the dynamics is chaotic. The influence of the chaotic nature of the dynamics

on the properties of waves constitutes the active field of investigations of Wave Chaos [1].

From vibrating plates [2], to microwave cavities [3, 4] or optical fiber [5], all these various

systems present generic features well-described by theoretical predictions that demonstrate

the universality of Wave Chaos.
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Investigating how the chaotic geometrical limit influences the wave properties is not only

a fundamental issue but reveals also applications in various domains ranging from room

acoustics to reverberant electromagnetic cavities. Optics in particular is getting advantages

of wave chaos. Chaotic fibers [6] are used to optimize the pump power absorption in double

clad fiber amplifier and chaotic shapes provide improved features to microlasers [7–9].

As mentionned above, a multimode optical fiber with a truncated (D-shaped) cross sec-

tion (see fig. 1) and large dimensions compared to the wavelength has been proved to be an

efficient experimental tool to investigate the spatial properties of waves that propagate in a

chaotic system [5]. Indeed, as the optical fiber is invariant along the direction of propagation

z, the projection of the z-evolution of a ray over its transverse cross section can be seen as

the time-evolution of a ray in the D-shaped billiard (see fig. 1(b)). The chaotic nature of the

rays’ dynamics in the D-shaped billiard controls the properties of the propagating modes in

the wave-analogous system.

Generic modes of chaotic systems are ergodic modes: their intensity is statistically uniformly

distributed all over the cross section (fig. 1(c)). This behavior is the result of multiple inter-

ferences encountered by the waves that reflect on the chaotic boundary [10]. Nevertheless,

some surprising modes may appear: they present strong localization of intensity along the di-

rection of some periodic trajectories of the associated billiard. For these non-ergodic modes,

called scars [11], the spreading of intensity is “frozen” by constructive interferences along

a periodic orbit. The intensity of the field of different scar modes along the short 2-bounce

periodic orbit (p.o.) is presented in fig. 2. These singular modes have been the object of nu-

merous theoretical investigations [12–14] and, recently, have been used in the field of applied

optics. Their localized enhancement of intensity offers interesting properties: scar modes are

currently employed in microlaser cavities to increase the directivity of laser emission and

decrease the laser threshold [7–9].

These scar modes reveal some signatures of the underlying geometrical limit. They mark

some periodic trajectory and concentrate their intensity over a specific point. In this paper,

we utilize this “geometrical point” to excite selectively the scar modes which are difficult

to exhibit in a multimode fiber. We show that in a passive multimode fiber, a localized

excitation can select some scar modes. In order to be less dependent on the illumination

condition, we propose, in a second part, to perform a “scar mode amplifier” by introducing

a localized gain to control wave chaos. The conclusive part of the present paper is dedicated

to the description of experimental feasibility of the scar modes amplifier.

2. Scar selection by localized excitation

The system we use is a silica fibre with ncore=1.451 surrounded by a low refractive index

silicone cladding with ncladding=1.41. The fibre is truncated at half its radius R=60µm. Scar
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modes can exist along a periodic orbit if µL << 2π where µ is the Lyapunov coefficient

(i.e. the rate of divergence of two close initial conditions measured in the phase space) and

L the length of the orbit. When this condition is fulfilled, constructive interferences along

the periodic orbit freeze the development of the chaotic dynamics leading to localized scar

modes. We consider the 2-bounce p.o. which is the shortest periodic orbit of the D-shaped

billiard, with L = 3R and µ = 0.4/R, so that scar modes along the 2-bounce p.o. can exist.

The condition of constructive interferences along the 2-bounce p.o. defines the transverse

wavenumber κp associated to a scar mode of order p (fig. 2(a)-(f)):

κpL − ∆ϕ−
π

2
= 2πp (1)

∆ϕ is the phaseshift induced by the reflection at the core/cladding interface that depends

on κp, ncore and ncladding and p is an integer. The additional π/2 phaseshift is due to the

unique self-focal point [15] on the 2-bounce p.o. A pencil of rays emitted from a self-focal

point will focus on this same point after one period. Moreover, we note that the D-shaped

cross section mimicks an unstable Fabry-Perot resonator: the self-focal point is close to the

focal point of the curved dielectric mirror.

This special point concentrates rays and also corresponds to a maximum of intensity for the

scars that can be exploited for selective excitation. As seen in fig. 2, most of the scar modes

along the 2-bounce p.o. exhibit a maximum of intensity in the vicinity of the self-focal point.

This distinctive feature gives rise to the technique that we propose for achieving a selective

excitation of scar modes: use an initial illumination with a Gaussian shape centered on this

intensity spot. At the input of the fiber, the field of the Gaussian beam is decomposed over

a finite number of guided modes whose weights are given by their spatial overlap with the

incoming light. In order to preferentially excite the scar modes, the width of the Gaussian

is set to the mean diameter of the bright spot which characterizes these modes, in practice

σ = 5.64µm. To describe the spectral contents of the field evolving along the fiber, we

introduce the κ − z-spectrum C(κ, z) defined as the Fourier transform of the correlation

function of the field ψ(~r) with its initial condition [16, 17]:

C(κ, z) =
∫ z+(Lz/2)

z−(Lz/2)
dz′

∫ ∫
d~rψ∗(~r, 0)ψ(~r, z′)e−iβ(κ)z′ (2)

where β is the longitudinal wavenumber and Lz a propagation length. We use an algorithm

implementing the Beam Propagation Method to simulate the propagation of the initial field

along the fiber [5,18]. The figure 3(a) shows the κ−z-spectrum calculated after a propagation

length that ensures that all the modes are well established. This figure has to be compared to

the calculated spatial overlap between the initial Gaussian beam and the scar modes shown

in fig. 3(b).

We note that only a few modes dominate the spectrum: the scar modes from order 1 to 5. The
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excited modes correspond to the one having a maximal spatial overlap with the Gaussian

input field. Thus, as the Gaussian beam is launched on the high intensity area of the scar

modes, its spatial overlap is larger for scar modes than for the generic speckle modes.

In a “passive” multimode chaotic fiber, we use the complex spatial structure of the modes

to select some of them. One stigma of the geometrical dynamics, the self-focal point, arises

in the spatial distribution of intensity of the scar modes and can be exploited to control the

selection of scar modes. A perfect localization of excitation on the self-focal point can act

as a scar modes selector but this method relies on a perfect command on the location and

characteristic of the initial beam.

3. Scar selection using gain

The challenge is to overcome the intrinsic limitation of a passive system by introducing an

active medium inside the fiber. The main question is: how to determine the optimized dis-

tribution of the gain ? A hint to answer may be found in a closely related domain. Indeed,

some recent investigations in disordered media with gain have shown that a given localized

mode can be selectively excited through a pumping confined to its spatial extension [19].

In our case, due to technical constraints, there is no hope that the active medium precisely

match the spatial pattern of a given scar mode. But here again the high intensity area close to

the self-focal point will be helpful: we consider an Ytterbium-doped multimode fiber with the

gain region localized on the position of the bright spot. To prevent light from being guided in

the doped area, we consider a small but realistic refractive index difference between the silica

core and the doped area of 5.10−4. To pump the system, a laser at 980 nm is focused in the

large chaotic truncated core. The large number of ergodic modes excited ensures an uniform

absorption of the pump along the propagation [20,21]. The field of the pump is absorbed by

the active ions and acts as a power reservoir for the signal. In order to evaluate the efficiency

of the modes selection by the localized gain, a spatially incoherent signal (speckle field) at

1064 nm is coupled into the D-shaped core. The initial coupled energy is therefore spread

over a great number of modes.

In figure 4(a), we report the far-field intensity of the signal at the input of the fiber inte-

grated over the radial coordinate φκ, Ĩ(φκ). The inset presents the initial far-field intensity

Ĩ(rκ, φκ). All the wavenumber directions are explored. We let the field evolve along the fiber:

amplification occurs and after 40 m of propagation along the exotic fiber amplifier, the max-

imum amplification factor is achieved. We note zmax this length of maximum amplification.

We plot the same quantities as (fig. 4(a)) in (fig. 4(b)) for z = zmax. We can observe that

a strong transverse wavenumber filtering process occurs during the propagation. The inte-

grated far-field intensity tends to concentrate over two privileged angles that correspond to

values of φκ equal to π/2 and 3π/2. These angles are associated to the direction of the trans-
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verse wavenumber of the waves that bounces back along the direction of the 2-bounce p.o.

In the far-field pattern, we can also notice that some peaks concentrate the intensity along

the 2-bounce p.o. exhibiting a selection on the transverse wavenumber not only on direction

but also on the modulus. With the aim to get more informations on the mode selection

process induced by the gain, we analyze the transverse wavenumber spectrum calculated for

the length zmax. We notice that few selected modes appear in the wavenumber spectrum:

only some modes get amplified along the propagation.

In table 6, the theoretical values of the scar mode wavenumbers deduced from Eq. (1)

are compared to the wavenumbers corresponding to the peaks in the numerical spectrum.

The comparison clearly establishes that each amplified wavenumber is associated to a scar

mode wavenumber. This result and the particular structure of the far-field pattern shown

in fig. 4(b) conspire to demonstrate that the amplification mechanism applies only to the

scar modes. From the spatial overlap of a given scar mode with the doped region, one can

even obtain its amplification rate thus accounting for the relative amplitudes of the different

amplified scar modes. The diamonds in fig. 5 show the values taken by these overlaps. They

are compared to the amplification rates directly deduced from the evolutions of the scar

mode powers. The typical evolution of the power along the fiber is exemplified in fig. 6

for the scar mode of order p = 4. In a semi-logarithmic scale, the power exhibits a linear

growth before reaching a plateau which corresponds to the saturation of the amplification

mechanism. The amplification rate is then obtained through a linear fitting procedure by

assuming a uniform amplification process of the form:

Pp(z) = Pp(0)exp(αpz), (3)

The constant slope of the curve gives the amplification rate αp. The crosses in fig. 5 represent

the values of αp for the different scar mode orders. The good agreement between the two

quantities emphasizes the importance of the overlap of the field with the doped area on

the differential modes amplification process. The location of the gain controls the scar mode

amplification: to get an efficient amplification, the doped area should have a good interaction

with the scar modes.

4. First step to experimental realization

The experimental investigation of the selective amplification process put numerically into

evidence requires the realization of a non-conventional fiber amplifier. This has been achieved

and the experiments is under progress. In a first step, we performed a silica preform doped

with 1250 ppm of Ytterbium ions by means of a standard MCVD (Modified Chemical Vapor

Deposition) method. Ytterbium ions are incorporated without other ions as Aluminium

usually used to ensure a good incorporation of rare-earth ions in the silica matrix. The index
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profile measured on the preform confirms the presence of Ytterbium ions by the way of

a refractive index increase of 5.10−4. Due to this small refractive index difference between

the doped area and the core, the fundamental mode of the weakly guiding doped area is

spatially extended and suffers from important losses. As a consequence, this mode is not

supported along the propagation. The MCVD method imposes the active ions to be located

in the center of the preform. In order to localize the doped area in the vicinity of the

self-focal point and also to get a D-shaped silica core, the circular preform is machined:

a smaller preform with an off-centered doped area is cut into the preform [22]. Then, the

preform is pulled by controlling the temperature and the drawing velocity to get the fiber

with a well-preserved D-shaped geometry and diameter over hundred of meters. We use a

low refractive index polymer (Luvantix UVF PV-409R04AP) as the optical cladding. The

figure 7 is the absorption spectrum of the Ytterbium-doped fiber measured experimentally.

The general behavior corresponds to the generic absorption spectrum of Ytterbium in silica

matrix. From this measure, we can deduce an estimation of the absorption coefficient at the

pump wavelength, ap = 6.2dB/m.

To perform the scar mode amplifier, we realize the following experimental setup. A pump

laser diode at 978 nm is focused at the fiber input. The signal from a Yag laser at 1064 nm is

collimated and launched at the fiber input. A dichroic mirror is used to couple both the signal

and the pump at the fiber input. For the signal illumination, we can either used a focused

beam or a diffuse beam (for a noisy field illumination). We depict in the figure 8 the evolution

of the gain curve along the propagation. The gain is obtained from the measured signal at

the fiber output in presence of the pump over the measured signal without pump. The curve

increases up to a critical length zmax ≃ 15m associated to the saturation length of the signal.

We note that the value of the gain is small compared to usual optical amplifier. Indeed,

this amplifier is unusual from different aspects: as instance, the quantity of incorporated

Ytterbium is small (and without aluminium co-doping) and the signal propagates in a large

D-shaped core reducing the interaction with the doped area is reduced. Nevertheless, the

gain curve clearly shows that an amplification process occurs along the propagation: optical

amplification is achieved with this exotic active fiber. The next step is to control the initial

illumination so that the amplification occurs on the scar modes. This step is under process

and will constitute the purpose of a forthcoming publication.

5. Conclusion

In systems that exhibiting deterministic chaotic in the geometrical limit, some modes show

surprising enhancement of intensity along geometrical periodic orbit of the corresponding

billiard. These modes are of particular interest because they freeze the chaotic nature of

the system and tend to concentrate intensity in finite regions of the system. Nevertheless,
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they are isolated and sparse modes. We demonstrate that the self-focal point proper to the

2-bounce periodic orbit can be used to select the scar modes in a billard-analogous wave

system: a D-shaped optical fiber. Intensity of the scar modes is concentrated on the self-

focal point: we prove that using a localized excitation in a passive fiber, or introducing a

localized gain on this specific point, we can excite selectively the scar modes. Thus, a pure

geometrical quantity, the self-focal point, may play a crucial role on the wave properties.

These numerical investigations have been done using realistic datas from measurements and

the experiment of scar amplifier is currently in progress.
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Table caption

Tab1 The table reports the theoretical value of the transverse wavenumber for each scar

mode of order p along the 2-bounce p.o. compared to the measured value of the transverse

wavenumber associated to the peak (amplified modes) on the spectrum.tab1.ps
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Figure Captions

Fig1 Transverse cross section of the D-shaped multimode fiber (a), typical rays’ trajectory

in the associated D-shaped billiard (b) and generic speckle mode of a D-shaped chaotic

optical fiber (c).fig1.eps

Fig2 Scar modes along the 2-bounce periodic orbit. The integer p labels the order of the

scar mode. fig2.eps

Fig3 Transverse wavenumber spectrum (a) for a gaussian beam excitation. Spatial overlap

between the gaussian beam and the modes(b). In both figures, the number on each peak

labels the order of the scar mode. The first peak corresponds to the fundamental mode.

Spectrumgauss3.eps,Recouvgauss3.eps

Fig4 Radial integrated far-field at the fiber input(a) and the maximum amplification

length(b). The inset shows the whole far-field pattern.fig4.eps

Fig5 Overlap of the field of each scar mode with the doped area (square) compared to the

amplification coefficient (cross).fig5.eps

Fig6 Exponential evolution of the power associated to the scar of order 4.fig6.eps

Fig7 Absorption spectrum measured in the fiber.fig7.eps

Fig8 Experimental measure of the gain in the Ytterbium doped D-shaped fiber with an

off-centered core.fig8.eps
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TABLE 1

p κp from eq.1 measured κp

1 4.69 4.70

2 6.78 7.06

3 8.86 9.05

4 10.95 10.99

5 13.03 13.10

6 15.12 15.29

7 17.20 17.23

8 19.29 19.59

9 21.37 21.53

10 23.46 23.68

11 25.02 25.80

12 27.10 27.93

13 29.19 29.80
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FIGURE 3
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FIGURE 7
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FIGURE 8

19


