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Résumé — Contribution des concepts de la physique des solides et de la spectroscopie d'absorption
des rayons X à la compréhension du processus de catalyse DeNOx — Partant des considérations 
théoriques, l’évaluation de la variation des propriétés d’agrégats métalliques en fonction de leur taille et
leur composition mène à une prédiction du mode d’adsorption du NO sur ces nanoentités. En nous
appuyant sur les résultats expérimentaux obtenus surtout par la spectroscopie d’absorption de rayons X,
nous proposons de lier le mode d’adsorption de la molécule au comportement de l’agrégat métallique
suite à l’adsorption. Une hypothèse simple nous mène à envisager une interprétation de l’activité 
catalytique d’agrégats métalliques nanométriques lors de l’adsorption du NO. 

Abstract — Combining Solid State Physics Concepts and X-Ray Absorption Spectroscopy 
to Understand DeNOx Catalysis — Considering the NO adsorption process, starting from theoretical
considerations, evaluation of the variation of the properties of metallic clusters versus their size and 
composition leads to a prediction of the NO adsorption mode on these nanoentities. Then, based on
experimental results obtained mostly through X-ray absorption spectroscopy, we have connected the
adsorption mode of the molecule to the behaviour of the metallic cluster following the adsorption
process. A simple hypothesis leads us to discuss the catalytic activity of nanometer scale metallic clusters
following NO adsorption.
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INTRODUCTION

Nanomaterials [1] occupy a key position in the physical 
sciences [2, 3] in particular due to their specific surface [4, 5]
and chemical [6, 7] properties. One example is supported
metal catalysts [8, 9] consisting of a porous oxide such as
alumina with a large specific area (> 200 m2/g) on which
metal nanoparticles are dispersed. This family of materials is
used in several major industrial or environmental applica-
tions [10] among which are the reduction of nitrogen oxides
emitted from car exhaust systems [11, 12] and the Fischer-
Tropsch synthesis [13, 14]. In order to increase the perfor-
mance of these industrial processes, it is necessary to investi-
gate the chemical reaction at the atomic level i.e. to
understand the adsorption phenomena of small molecules on
such nanoentities.

The aim of this paper is to made a bridge between solid
state physics and heterogeneous catalysis, the ultimate goal
being to use recent theoretical methods in solid state physics
to predict the catalytic activity. The starting point is given by
a brief description of the theoretical formalism developed for
metallic clusters containing a small number of atoms, intro-
ducing different significant parameters such the size and the
morphology as well as the possibility of relaxation of the

interatomic distances. In the following sections, we show that
these structural parameters can be obtained by X-ray absorp-
tion spectroscopy (XAS) and can be affected by the prepara-
tion procedure. Then, in order to illustrate the possibilities
offered by solid state physics in describing molecular adsorp-
tion processes, the adsorption of a simple molecule, NO, on
nanometer-scale metallic aggregates is discussed [15-17].
More precisely, we propose that a link exists between the
adsorption mode of the NO molecule and the behaviour of
the metallic cluster following the NO adsorption, this behav-
iour being obtained from X-ray absorption studies. For tran-
sition metals which lead to dissociative adsorption, metal
oxide clusters are formed. This means that the catalytic activ-
ity through the formation of nitrogen and oxygen from NO
decreases significantly for these metals. On the contrary,
when non dissociative adsorption is observed, a high temper-
ature regime leads to growth of the metallic cluster. In the
later case, a decrease in the catalytic activity is not observed.
Thus, combining solid state physics and X-ray absorption
spectroscopy seems to offer the opportunity to predict 
catalytic activity. Significant progress has also been achieved
describing bimetallic clusters. Thus, a same approach to 
the prediction of catalytic activity is proposed for bimetallic
systems.
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Figure 1

Cuboctahedron and icosahedron clusters containing 13, 55, 147 and 309 atoms.
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1 MONOMETALLIC NANOPARTICLES

Nanometer-scale metallic clusters can first be described in
terms of their geometrical properties. As underlined by 
several studies [18, 19], a wide range of morphologies exist.
In Figure 1, clusters (icosahedron with fivefold symmetry
and cuboctahedron with fcc symmetry respectively) contain-
ing a few hundred atoms are presented. In this section, we
introduce some basic elements regarding the theoretical for-
malism associated with the calculation of the electronic struc-
ture of such entities.

1.1 Brief Description of the Theoretical Formalism

Electronic structure methods extend from ab initio calculations
to semi-empirical models such as pseudo-potential theory for
transition metals or the tight-binding approximation for transi-
tion metals. The tight-binding method starts from isolated
atoms with discrete levels, which form energy bands when the
atomic wave functions overlap. It assumes that any electronic
state ψ(r) delocalised throughout the solid, can be written as a
linear combination of atomic orbitals (LCAO): φλ(r – n) = | n, 
λ 〉, where λ denotes the orbital at site n: this approximation
becomes more accurate as the overlapping among the orbitals
weakens (d states of transition metals).

(1)

An essential advantage of this formalism is to give a 
simple access to the local density of states (LDOS) at a given
site n0 from the Green function G.

(2)

This concept of LDOS is particularly important for 
clusters since many non-equivalent sites exist at the surface
(vertices, edges, facets) with various co-ordinations and
atomic environments, which then define different LDOS.
Note that at the end of the transition metal series, the s and p
valence electrons and their hybridisation with d-orbitals have
to be taken into account and that one has to be careful with
charge self-consistency rules. In Figure 2 this is illustrated for
Pd, for which such hybridisation is required in order to obtain
a density of states in good agreement with that derived from
ab initio calculations. 

This approach also gives clear evidence that the local den-
sities are significantly modified near the Fermi level, the
amplitude of the modification depending on the site. In
Figure 3, a significant size effect is observed for the Pd clus-
ter with average density of states characteristic of a cubocta-
hedron (note that similar results have obtained regarding
icosahedron clusters).

In parallel with the size dependence of the electronic
structure, one observes inhomogeneous contractions of the
cluster as well as a curvature of the facets. It is possible to
obtain the equilibrium atomic configuration of the cluster at 
0 K by performing a Quenched Molecular Dynamics (QMD)
study in the second moment of interatomic potential. This
results in the relaxation profiles shown in Figure 4 for icosa-
hedron Pd clusters with sizes between 13 and 4000 atoms:

(3)

(> 0: means contraction of p shell)

where R(p) is the radius of the p-th shell from the center
(R0(p) is the value before relaxation).
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Pd bulk density of states, with and without sp-d hybridiza-
tion, calculated in the tight-binding framework.

Figure 3

Size effect on the Pd cuboctahedron cluster average density
of states calculated in the tight-binding formalism.
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Figure 4 

Radial relaxation profiles in Pd clusters, for icosahedron
shapes. 

Here, where R(p) is the radius of the p-th

shell from the centre and R0(p) is the value before relaxation.

Surprisingly, the icosahedron presents an “accordeon-
like” profile with a contraction both at the surface and in the
core, leading to a large distribution of distances around the
bulk value.

1.2 Applications to Metallic Systems

The specific properties of metal nanoparticles, such as their
activity/selectivity in catalysing chemical reactions [20-22],
have motivated several fundamental studies. A large number
of metallic systems such as V [23], Cr [24], Fe [25], Co [26],
Ni [27], Cu [28], Y [29], Rh [30], Ru [31], Pd [32] and Pt
[33] have been investigated, leading to a generalised under-
standing of the electronic structure of different metals.
Modern approaches simultaneously handle atomic and elec-
tronic structures in a consistent way by performing a relax-
ation process using molecular dynamics based, for example,
on the method of Car and Parrinello [34].

Although in nanoparticles the electronic structure and
morphology largely depend on the nature of the metal, some
preferential geometries exist. For instance, in metallic Ag
clusters [35], different structures coexist between 2 and 4 nm,
while for Au clusters [36], only a truncated octahedron mor-
phology has been observed. The co-existence of clusters with
different geometries implies that these different species 
display different electronic structures (and thus different
activity/selectivity properties). 

Relaxation of interatomic distances with decreasing 
cluster size has been predicted from theoretical calculations  

and confirmed by several experiments (see for example 
references 37 and 38). The relaxation process, however, is
constrained by symmetry requirements, thus it is not 
homogeneous throughout the particle.

On the other hand, recent results obtained on Pd nano-
particles show a modification of the structure and morphol-
ogy induced by the substrate [39, 40]. We have thus to
emphasize that we are now in the position to take into
account the interaction between the metallic cluster and the
support (or absorbed molecules). Lodziana and Nørskov [41]
have shown that steps on the α-Al2O3 (0001) surface are
enriched in oxygen, binding to Pd atoms and small clusters
much more strongly than do the terraces. Microkinetic mod-
eling of the NO + CO reaction on Pd particles supported on
MgO [42] clearly demonstrates that the rate limiting step is,
at low temperature, NO decomposition and, at high tempera-
ture, CO adsorption.

1.3 Advantages and Limitations of the X-Ray
Absorption Spectroscopy

Among the different synchrotron techniques, X-ray absorp-
tion spectroscopy (XAS) [43] has several specific advantages
for the study of nanomaterials. 

Derived from X-ray absorption near edge spectroscopy
(XANES), the electronic state of the absorbing atoms has
been qualitatively linked to the density of final states to
which the transitions are made. However, at least two physi-
cal phenomena affect the intensity of the “white line”:  the
size of the cluster, which is considered as an intrinsic effect
(density of states in the platinum nanoparticles is signifi-
cantly different from that of bulk Pt), and a possible charge
transfer between the cluster and the support, which is consid-
ered as an extrinsic effect [44]. Thus, special attention has to
be paid if a simulation of the XANES spectra is performed
with a linear combination of the XANES spectra of well-
crystallised reference compounds [45].

For metal nanoparticles [46] the knowledge of the different
structural parameters (i.e. co-ordination numbers and inter-
atomic distances) allows us to determine cluster size [47-49],
morphology [50] and the degree of relaxation [51]. As an
analysis tool, XAS [52, 53] is best suited to very small clusters
[54]. The numbers of nearest neighbours vary rapidly with the
diameter of the particle for such materials. For larger particles,
coordination numbers are similar to those in the bulk metal.
One major limitation is related to the possible existance of a
distribution of sizes. It is easy to show that one set of coordina-
tion numbers may correspond to different size distributions. 

Nevertheless, it should be emphasised that a unique
advantage of the XAS technique is to give a precise measure-
ment of the electronic state of the metal and to give direct
structural evidence of heterometallic bonds (in the case of
multimetallic systems) under in situ conditions, i.e. while the
chemical reaction occurs [55, 56].
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1.4 The Structural Properties of Metallic Clusters

The properties of catalysts depend on their electronic and
structural characteristics, which ultimately are a function of
the preparation procedure [57], the metal/support interaction,
the stability of small metal nanoparticles and, last but not
least, surface restructuring during the catalytic process itself.

A crucial first point is the nature of the interaction between
the precursor and the support during the preparation proce-
dure [58, 59]. For example, in manufacturing monolithic auto-
motive catalysts, using adsorption on a washcoat of Pt nitrate,
rapid adsorption occurs due to a strong interaction, leading to
low dispersion, in contrast to the highly dispersed Pt obtained
when H2PtCl6 precursor is used in reforming [60]. Note that
an elegant method to point out the influence of the support on
catalytic properties, based on variation of the organometallic
precursor, has been proposed by Dal Santo et al. [61].

A large variety of metal oxides [62] have been used to 
stabilise and modify the electronic and structural properties
of metallic clusters. Yoshitake and Iwasawa [63] have stud-
ied a range systems such as Pt/Y2O3, Pt/ZrO2, Pt/V2O5 and
Pt/TiO2. They noticed that the modification of the density of
the unoccupied 5d states of Pt strongly depends on the nature
of the support. 

The metal/support interaction has a strong influence on the
morphology of the cluster and also on the metal-metal dis-
tance. Epitaxy between particles and the support has been
observed by XAS [64]. Asakura et al. [65] found that plat-
inum was stabilised in the form of raft-like nanoparticles
when deposited on α-Al2O3(0001), as a result of direct 
Pt-O-Al bonding.

Recent theoretical studies have taken this interaction into
account. Yamauchi et al. [66] evaluated the structural and elec-
tronic characteristics of Pd3 clusters on the MgO (100) surface
from quantum chemical calculations based on density func-
tional theory (DFT). A disruption of the Pd3 cluster may occur
depending on the nature of the cluster/support interaction.
More recently, Lopez et al. [67] performed an ab-initio study
of metal deposition on SiO2. The authors considered the inter-
action of Cun clusters (n = 1-5) with a non-bridging oxygen,
constituting a paramagnetic point defect of silica, by DFT cal-
culations. They predicted that the partial charge transfer to the
oxide favours the formation of electrostatic interactions
between the metal cluster and the oxygen atoms. Kantorovich
et al. [68] characterised Mg clusters on MgO surfaces by 
ab-initio calculations. The calculations suggested that nucle-
ation starts at the extended defects, e.g. on surface steps. 

The fact that the metallic entities are generated by reduction
under hydrogen alters the contraction of the interatomic dis-
tances [69] and thus the geometrical properties as well as the
electronic structure of the particles. For example, Wang et al.
[70] observed that only a small truncation occurs in the tem-
perature range between 350°C and 450°C. Above 500°C

the particles are dramatically transformed into a spherical
shape. H2 adsorption can also modify the interaction between
the cluster and the support. Deutsch et al. [101] pointed out
that the interatomic distance between iridium and oxygen
increased after treatment of the sample in H2. Reifsnyder et
al. [102] produced Pt clusters by heating in vacuum at 300°C
and measured a contracted Pt-Pt distance (2.66 Å). When H2
is chemisorbed, the interatomic distance is relaxed to 2.76 Å.

Finally, we have to mention the effect of the reduction tem-
perature. Vaarkamp et al. [71] found by XAS that after low
temperature reduction (300°C), Pt particles were 3-dimen-
sional with a Pt-O interatomic distance of 2.7 Å. At higher
temperature (450°C), the morphology of the Pt particles
changed from 3-dimensional to rafts with a structure similar
to the Pt (100) surface. Comparison of XAS results of Pt/zeo-
lite samples prepared using different techniques [72] showed
that the average metal particle size roughly constant (in this
case 10 ± 2 Å) for reduction temperatures up to 360oC, and
above this a rapid growth of metal particles is seen.

1.5 NO Adsorption on Nanometer Scale Metallic
Clusters

Combining recent calculations of the electronic structure of
nanometer-scale metallic clusters with the suggestion of
Brown [73] relating melting point to the ability of metallic
surfaces to dissociate NO, we have proposed a relationship
between the adsorption mode (dissociative or molecular) of
NO at room temperature and the behaviour of nanometer-
scale metallic particles (sintering or disruption) in response to
this adsorption. Considering a range of elements, a straight
line (see Fig. 5) separates two possibilities: associative
adsorption of NO accompanied by sintering of the particles
and dissociative adsorption accompanied by particle frag-
mentation. This initial model was supported by experimental
data on platinum [74-76] and ruthenium [77]. More recent
data indicate that the behaviour of rhodium, iridium, palla-
dium as well as copper is in line with this simple model. 

A recent publication [78] described the interaction of NO
with Rh nanoparticles supported on γ-Al2O3. According to
X-ray absorption spectroscopy (XAS), the immediate 
neighbourhood of Rh atoms in the initial state is composed of
8 Rh atoms, with Rh-Rh bond length 2.68 Å. After exposure
to 4% NO/He at 313 K for 5 seconds, the number of Rh-Rh
bonds significantly decreased (from 8 to 2). Nitrogen atoms
(NRhN = 1, dRhN = 1.78 Å) and oxygen atoms (NRhO = 2, 
RRhO = 2.05 Å) were present in the first coordination sphere.
Comparable results were obtained previously on SiO2-
supported Rh clusters by Krause and Schmidt [79]. They
showed that NO alone disperses Rh over the support. The
behaviour of Rh seems to be independent of the nature of 
the support.

Iridium clusters have been investigated using X-ray 
diffraction as well as by thermal analysis. For a series of
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Ir–H–ZSM-5 systems, Wögerbauer et al. [80] observed three
different processes during interaction of NO and metallic Ir: 
– decomposition of NO with formation of N2; 
– decomposition of NO with formation of N2O;
– adsorption of NO on the Ir surface.

The dominating process depends on temperature.
Moreover, through a set of experiments performed at 500°C,
they showed that NO in contact with Ir0 was decomposed to
N2 with concurrent oxidation of Ir0 to IrO2. Their work
underlines the influence of another key parameter, the 
crystallite size.

In the case of a recent study on nanometer scale copper
clusters [81], the sample was prepared by a method different
from the classical impregnation technique. A 5 Å γ-Al2O3
film was created by exposing the clean surface of a stoichio-
metric NiAl{110} crystal to oxygen and heating to 1200 K,
produced a sharp LEED pattern characteristic of the Al2O3
structure. Copper was then evaporated from a bead source
made by melting high-purity Cu wire wrapped around a
tungsten filament. The adsorption and reaction of NO on the
Cu clusters was studied using infrared, molecular beam, and
scanning tunnelling spectroscopies over the temperature
range of 90-300 K. The adsorption mode of NO was studied
by IR spectroscopy. At low coverage two main bands were
observed, at 1586 and 1500 cm-1, associated respectively
with two distinct monomeric NO species, adsorbed in two-
fold bridge sites on (110) type facets and three-fold hollow
sites on facets which resemble (111) surfaces.

An interesting case is given by a metal of the second 
transition  group i.e. palladium. On a perfect Pd(111) surface,
NO adsorbs molecularly [82] while molecular adsorption and
dissociation strongly compete on Pd(100) [83] and Pd(110)
[84] surfaces. Finally, the stepped Pd(311) surface is active
for the thermal dissociation of NO [85]. Thus it seems that
the position of this metal close to the straight line in our inter-
pretation is coherent with the high structural sensitivity of the
ability of a Pd surface to dissociate NO. For nanometer scale
Pd particles, no overall morphological changes of the
nanocrystals were observed during NO gas exposure [86].
Thus it seems that the straight line can be considered as a
“structural stability” line.

As a preliminary conclusion, while this simple model was
first supported by a set of experimental data on Pt and Ru, it
seems that the behaviour of Rh, Ir, Cu and Pd clusters 
following the NO adsorption process is also in line with this
simple scheme. 

We would like now to address the effect of temperature on
NO adsorption and propose physicochemical mechanisms.
The starting point of this discussion is the work of Asakura et
al. [65] who used XAS to study the structural transformation
of Pt clusters on α-Al2O3 (0001) on NO adsorption. A
nondissociative adsorption of NO on Pt clusters is observed.
Moreover, the initial Pt raft is destroyed to form monomer
species by the interaction with NO. 

Figure 5

Diagram showing a suggested correlation [15] between the
adsorption mode and the behaviour of metallic clusters. The
thick straight line represents the frontier between dissociative
adsorption with fragmentation (above the line) and associa-
tive adsorption with sintering (below the line).

Here we wish to propose, even if there is so far no 
unambiguous structural evidence of this hypothesis, two 
different mechanisms which can explain the link between the
adsorption mode of the molecule and the structural behaviour
of the nanocluster.

When we consider metals below the straight line in
Figure 5, after the initial state given by nanometer scale
metallic cluster in presence of molecular NO, a non-dissocia-
tive adsorption mode occurs. If the temperature is low, then
we may observe a structural situation close to the one
observed by Asakura et al. [65] in the case of platinum i.e.
monomer species linked to several NO molecules. Then, with
increase of temperature, the mobility of the nitrosyl species
over the surface of the support leads to the formation of large
clusters. 

When we consider metals above the “stability” line, a 
dissociative adsorption mode occurs. According to the work
of Campbell et al. [78] the metallic atoms may have bonds
either to oxygen or nitrogen atoms. At high temperature, the
formation of a metallic oxide can be observed due to desorp-
tion of nitrogen species (as N2 molecules).

We would like now to discuss the validity of the 
“stability” line which separates the two regimes for the NO
adsorption. When a diatomic molecule such as NO
approaches a metal surface [3], it may encounter three kinds
of potential wells corresponding respectively to a physisorbed
state (far from the surface), a molecular chemisorbed state and 
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finally to a dissociative chemisorption state. Molecular
chemisorption is the most stable situation if:

|Eads(N)| + |Eads(O)| <  Edis(NO) + |Eads(NO)| (4)

where Eads(X) is the atomic adsorption energy (< 0) of atom
X while Edis(NO) and Eads(NO) are respectively the dissocia-
tion energy (> 0) of the free molecule and the molecular
chemisorption energy (< 0). The dissociation energy
Ediss(NO) is clearly independent of the nature of the metal.
As adsorption energies increase, the two atomic adsorption
terms on the left hand side of Equation 4 eventually come to
dominate the single molecular adsorption term on the left
hand side and dissociative chemisorption becomes more sta-
ble. Thus the variation of adsorption mode along a transition
series may be  rationalised  on the basis that the adsorption
energies are higher for metals which are at the middle of the
transition series, metals for which we observed here a disso-
ciative adsorption.

1.6 Relation Between the Purely Energetic Model
and Catalytic Activity

Is it possible to extract some information regarding the activ-
ity of the metallic clusters from this purely energetic
approach? For a first family of metals (above the stability
line), the final structural characteristic of the supported
phases is a metal oxide. Assuming that the metal oxide has
no catalytic activity, the rate of conversion of NO molecules
would tend to be quite low. Such a conclusion is in line with
the experimental results obtained by Campbell et al. [78].

On the contrary, in the case of the second family of metals
(below the line) large metallic clusters are finally generated.
Let’s suppose that the metallic part of the cluster consists of a
mixture of very small and large clusters. We may suppose
that the first participate in the growth process after the
adsorption of NO and thus do not contribute to catalytic
activity. With time, the small particles disappear to form
large ones. Following this hypothesis, the behaviour of the
activity versus time may pass throuogh a maximum as under-
lined by the work of Garcia-Cortès et al. [87].

2 BIMETALLIC CLUSTERS

As pointed out by Barbier et al. [88], from an experimental
point of view, the preparation procedure of bimetallic cata-
lysts influences the type of interaction between the two
metallic species. For example, electrochemical methods can
be used to bring the two metals into close contact [89]. 

Modelling of catalytic reactions for a bimetallic cluster
requires knowledge both of morphology, as is the case for
monometallic entities, and of local chemical ordering before
interaction with adsorbed molecules can be addressed [90].

It is firstly important to predict the equilibrium structure of
the particles, since breaking the bulk symmetry leads to both
atomic and chemical rearrangements. Unfortunately, it is not
easy to treat both on the same level.

2.1 Effect of Finite Size on Surface Segregation

Qualitatively, one expects that two effects play an important
role. Firstly, we have to consider the effect of a finite number
of atoms of each type. This is important for dilute systems
when the available quantity of the element tending to segre-
gate may be lower than the number of available surface sites.
In this case, even if all atoms of one component are segre-
gated to the surface, full coverage is not achieved. This may
be the case for small particle size leading to a high
surface/bulk ratio. Secondly, there is a geometrical effect due
to the coexistence of facets with different orientations. This
results in mixed concentration profiles which could be antag-
onistic, leading to anti-phases boundaries. 

2.2 Pt-4d-Metal Clusters

For Pt-4d metal binary systems, it is necessary to develop
another type of approximation, which will only be suited to
study the effect of chemical ordering on a rigid lattice.
Compared to monometallic systems, the total energy of the
alloy, for a given configuration, cannot be described by a
sum of pair interactions. Nevertheless, a (small) part of the
energy which depends explicitly on configuration (essential
due to ordering) can be described in an Ising-like form by
developing the energy with perturbation with respect to that
of the disordered state: as treated within the Coherent
Potential Approximation (CPA) 91. For bimetallic systems
A-B possessing non-equivalent sites, such as extended 
surfaces or clusters, one obtains:

(5)

in which a linear term and a quadratic one appear with
respects to occupation numbers P in which are equal to 1 if
site n is occupied by an atom of type i, and to zero if not.
Both terms are calculated from the electronic structure of the
disorder state described in the CPA approximation. Due to
broken bonds, the equilibrium concentration on the various
non-equivalent sites has no reason to be the same as in the
bulk either for a surface (phenomenon of surface segrega-
tion) or for vertex, edge, facet and core sites in clusters. In
that case, the segregation energy, i.e. the energy balance
involved when exchanging a core atom with one at a p-site
(p = vertices, edges, facets), only requires the knowledge of
two parameters. The first one, issued from the linear term, is
the variation of the site energy between the two pure 
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elements (surface energy in the case of surface segregation:
τA - τB). The second one, linked to the quadratic term, is
nothing but the linear combination: 

which can be used to calculate the mixing or ordering ener-
gies of the system under study, but not its cohesive energy.
Moreover, Vnm decreases rapidly with the distance (n-m) so
that its sign for first neighbour interactions (Vnm = V) indi-
cates the tendency to order (V > 0) or phase-separate (V <  0).

It is easy to extend the Tight Binding Ising Method
(TBIM) to this finite state by replacing layer concentrations
by shell concentrations in which the shell i has Ni sites. One
can divide the surface shell into four sub-shells corresponding
to vertices (p = 1), edges (p = 2), (100) and (111) facets 
(p = 3, 4). To simplify, let us first assume that the concentra-
tions are homogeneous and depend only on coordination: 
cp = cc (the concentration in the “core”) for p > 4 (sites other
than surface sites). The concentration profile is then given by:

(6)

The effect of finite matter appears on the matter conserva-
tion rule, since now there is no longer an infinite reservoir. If
dispersion is defined by:

this rule allows cc and then cp to be determined.

(7)

Moreover, there may exist a competition between ordering
and surface tension effects. This is illustrated in Figure 6
showing the results of Monte Carlo simulations in the TBIM
potential for Pt-Pd clusters [92] at sufficiently low tempera-
ture (T = 10 K). It is known that this system presents a ten-
dency to ordering and that Pd should segregate due to its
lower surface tension (τPd < τPt). For small clusters consisting
of 55 atoms and two concentrations (PtPd2 cuboctahedron,
Pt3Pd icosahedron) Pd is first segregated to the sites with low
coordination (vertices, edges, etc.). For larger clusters of 
923 atoms of concentration Pt6Pd4, Pd occupies successively
the vertices, the edges, then square facets, but it begins to
occupy bulk sites before the triangular sites are filled, which
allows the L10 ordered structure to be preserved. As a result,
one finds many non-equivalent surface sites, leading to some
local order specific to the size and concentration. 

In a recent paper [93], we limited ourselves to the 
treatment of Pt-M bimetallic systems where M is a 4d transi-
tion metal. The chosen sequence allows us to consider 

systems which present respectively a strong tendency to 
chemical ordering (M = Mo: V >> 0), a weaker one (M = Pd,
Rh: V > 0) and a tendency to phase separation (M = Ru, V < 0).

Recently published studies show that progress in
theoretical physics now allows the distribution of metals
inside bimetallic nanoparticles to be predicted, at least in
the case of compounds of elements chosen at the end of
transition metal series. Although we are concerned with a
description at thermodynamic equilibrium, the  predicted
distribution of the metals between the core and the surface
of the particles is in general consistent with experimental
data, despite the system being affected by preparation
parameters such as the nature of the precursor.

As a conclusion, this model can be used as a useful start-
ing point for the preparation of such objects, even though, up
to now, very few studies dedicated to bimetallic clusters have
undertaken on this type of theoretical basis.

Figure 6

Competition between segregation and ordering in PtPd clus-
ters (Pt atoms are white, Pd atoms are black): cuboctahedron
(left) and icosahedron (right).

2.3 Other Bimetallic Systems

Bimetallic clusters are increasingly the subject of experimen-
tal measurement [94-96]. Renouprez et al. [97] described the
catalytic activity of a series of silica-supported Pd-Ni cata-
lysts in the hydrogenation of 1,3-butadiene, for which pure
palladium is an order of magnitude more active than pure
nickel. The surface composition was measured by low

Cuboctahedron PtPd2 (55 atoms)

Icosahedron Pt3Pd (55 atoms)

684



D Bazin et al. / Combining Solid State Physics Concepts and X-Ray Absorption Spectroscopy to Understand DeNOx Catalysis

energy ion scattering (LEIS). The results were in agreement
with the theoretical predictions for bulk alloys based on ther-
modynamic calculations, once these are corrected for the
effect of particle size, and show the migration of palladium
from the bulk to the surface of the particles. Zhu et al. [98]
reported a study on the structure of bimetallic Pd0.5Cu0.5 clus-
ters, using X-ray diffraction and computer simulations. The
structures obtained in the simulations exhibit face-dependent
surface segregation, and alternating layers rich in one of the
metals. As an example regarding electronic structure, in the
bimetallic system Pt-Sn/SiO2, quantum chemical calculations
employing density functional theory (DFT) for Pt19 and
Pt16Sn3 clusters confirmed experimental evidence that Sn
donates electrons to the 6s, 6p and 5d orbitals of platinum
[99, 100]. It is important to underline that information
regarding the electronic transfer between a molecule and the
metal is also potentially available.

2.4 Advantages and Limitations of XAS Regarding
Bimetallic Systems

Several studies have been performed on bimetallic systems
using XAS because this is one of the few techniques capable
of revealing the distribution of the two metals inside a
nanometer scale cluster. In the case of a homogeneous sys-
tem for which the core of the cluster is composed of NA
atoms of type A and the surface consists of NB atoms of type
B, the total coordination (NAA + NAB for A atoms, NBA + NBB
for B atoms) is equal to 12 for A atoms, and less than 12 for
B atoms [45]. More specifically, in the case of bimetallic
clusters, the following relationships apply:

NAA + NAB = 12 > NBA + NBB, NA * NAB = NB * NBA (8)

Nevertheless, this property is no longer valid when
monometallic clusters coexist with bimetallic ones. We have
previously pointed out that the number of heterobonds
decreases significantly as the content of monometallic cluster
increases. If most of the atoms A are involved in monometal-
lic clusters, we have NAA + NAB < NBA + NBB and thus the
supposed distribution of the two metals inside the cluster,
derived from the different coordination values as if only
bimetallic cluster existed, is simply false. This point has
never been clearly addressed in various experimental studies
on bimetallic clusters.

2.5 The Catalytic Activity of Bimetallic Clusters

XAS experiments performed at the Pt LIII edge have been
carried out  recently on two catalysts: a monometallic 1 wt%
Pt and a bimetallic 1 wt% Pt-1 wt% Rh system. Under an
atmosphere of 1% NO in N2, strong sintering of Pt particles
was observed above 473 K, while for Pt-Rh particles this sin-

tering process was not observed [14]. At the start of the
process, the presence of Pt-Rh bonds is clearly shown by the
shape of the Fourier transform modulus (Fig. 7). Oxidation
of the bimetallic particles then takes place. It is thus clear that
the presence of Rh in the environment of Pt significantly
modifies the behaviour of the particles during the NO adsorp-
tion process.

The question now arises whether it is possible to explain
the behaviour of the bimetallic cluster using Figure 5. A pos-
sible approach is to consider a straight line between platinum
and rhodium on the diagram proposed for monometallic sys-
tems. In the Pt rich region, the behaviour of PtRh bimetallic
clusters will be similar to the Pt monometallic system
whereas, in the Rh rich region, their behaviour will be similar
to the Rh monometallic system. If we consider now the
experimental result obtained on the 1% Pt-1% Rh bimetallic
system, we see that this result is in line with the conclusion
obtained with this simple approach.

Figure 7

FT magnitude of the reduced PtRh catalyst at 25°C (a), under
NO+N2 at 100°C (b), 200°C (c) and 300°C (d). Thick solid
line: PtO2 reference, thick dashed line: Pt metal reference.

CONCLUSION

Recent theoretical calculations provide important information
on the electronic structure and morphology of metal nanopar-
ticles. The key goals are to understand the morphology of the
cluster, the distribution of the two metals inside bimetallic
clusters and the electronic transfer between two metals as
well as between adsorbed molecules and atoms at the cluster
surface. It is thus quite clear that the experimental data
obtained by X-ray absorption spectroscopy can help in an
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understanding at the atomic level. Analysis conditions enable
the preparation to be followed and mimicking different
chemical processes will give opportunities to optimise sev-
eral industrial processes.

Regarding the NO adsorption process, starting from sur-
face science considerations, the theoretical evaluation of the
variation of the cohesion energy of metallic clusters versus
their size allows us a knowledge of the NO adsorption mode
on these nanoentities. Then, based on experimental results
obtained mostly through X-ray absorption spectroscopy, we
have connected the adsorption mode of the molecule to the
behaviour of the metallic cluster following the adsorption
process. This simple hypothesis leads us to discuss the cat-
alytic activity of nanometer scale metallic cluster regarding
the NO adsorption process. Research work to confirm or
modify this simple model is in progress.
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