N
N

N

HAL

open science

Reduction theorems for characteristic functors on finite
p-groups and applications to p-nilpotence criteria

Paul Lescot

» To cite this version:

Paul Lescot. Reduction theorems for characteristic functors on finite p-groups and applications to
p-nilpotence criteria. Osaka Journal of Mathematics, 2008, 45 45 (4), pp.1043-1056. hal-00430937

HAL Id: hal-00430937
https://hal.science/hal-00430937
Submitted on 10 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00430937
https://hal.archives-ouvertes.fr

Lescot, P.
Osaka J. Math.
45 (2008), 1043-1056

REDUCTION THEOREMS
FOR CHARACTERISTIC FUNCTORS ON FINITE p-GROUPS
AND APPLICATIONS TO p-NILPOTENCE CRITERIA

PauL LESCOT

(Received December 22, 2006, revised October 12, 2007)

Abstract
We formalize various properties of characteristic fungtam p-groups, and
discuss relationships between them. Applications to thenigson subgroup and
certain of its analogues are then given.

1. Introduction

In a now classical paper ([8]), John Thompson introduced, @ prime number
and S a p-group, the subgrougdg(S) (there denoted byl(S)) generated by the abelian
subgroups ofS of maximal rank:

(1.1) IS zdef_<A e ab(s) | m(A) = max m(B)>,

whereah(S) denotes the set of all abelian subgroupsSpfand, forC an abelian group,
m(C) denotes the minimal cardinality of a generating systen€ of
Later on, in [2], Glauberman modified that definition to:

(1.2) J(S) =der. <A e ab(9) | |Al = ng(é)l BI>-

Thompson had formulated p-nilpotence criterion usinglg; this work was later
built upon by Glauberman ([2]) with hiZJ-theorem, and by Thompson himself ([9]).
For the primep = 2, it is often more convenient to work with the subgrodgs),
defined usingelementaryabelian subgroups instead of abelian ones:

a3) 3(S) =as (A< ab(S) | 1A= max iBi)

where ab,(S) denotes the set aflementaryabelian subgroups o8.

2000 Mathematics Subject Classification. Primary 20D20p8éary 20E25.
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The functorsle, Jg andJ areexcellently abelian generated characteristic p-functors
in the sense of3 below. In§4, we shall establish various reduction results concern-
ing such objects; most notably, in certain cases, the nasmaf W(S) in G (for
S e Syl,(G) and W a characteristicp-functor) can be inferred from the (apparently
much weaker) property ofontrol of p-nilpotenceby W (see Theorem 4.1 (2)). In the
fifth paragraph, we shall specialize our results to the pripre2 and the functorsle
and J (for the definition of the last one of which see [3]), and shehceforth refine,
in a very particular case, Thompson’s factorization theof§9], Theorem 1 (c)), thus
recovering the results of [6].

In the course of the proof some reduction lemmas of indepenohterest, con-
cerning normality ofp-subgroups and control gb-nilpotence, will be established.

Our notations are standard: f@ a (finite) group andp a prime number,0,(G)
will denote the largest normg-subgroup ofG, Oy (G) the largest normal subgroup of
G with order prime top, and Z(G) the center of G. We seto(G) = |G|,
ro(G) =m(G) if G is an elementary abeliap-group for some primep, andre(G) =0
else; for &, y) € G2

y* = x7lyx,
and, forAC G andx € G:
A ={y*|ye Al

As usual, by a slight abuse of languagg, will be said to havep-length one
if G = Op,p,p(G). By a classof groups, we shall mean a family of groups con-
taining every subgroup and every homomorphic image of edcliscelements. .Ab
will denote the class of finite abelian groupSolv the class of finite solvable groups,
and, for p a prime, Ab, the class of finite abeliap-groups. ForH a finite group,
C’(H) will denote the class of finite groups, no section of whichsismorphic toH.
For p a prime andn € N, Cg will denote the class of finite groups, one (i.e. all) of
whose Sylow p-subgroups has (resp. have) nilpotency class at mosfs usual, p
still denoting a prime number, a finite group will be termed p-closedif it has a
normal Sylow p-subgroup (equivalently, a unique Sylogtsubgroup), i.e. ifG/Op(G)
is a p’-group, andG will be termed p-constrained if, settingﬁ: G/Op(G), one has
Cg(Op(é)) c Op(G_). A solvable groupG is p-constrained for all prime.

By ab(G) we shall denote the set of abelian subgroups of a g@ug-inally, X,
will denote the symmetric group of degree

| am deeply grateful to the organizers of the conference it&iGroups 2003”
(Gainesville, March 6th—13th, 2003) for giving me the oppoity to present for the
first time the main results of this paper. A preliminary versiappeared in 2006 as
I.H.E.S. preprint M/06/55; | am deeply indebted to Cécile ikbtieoukh for her help in
that occasion.
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2. A preliminary lemma

The following result was first stated by Hayashi ([5], Lemm8,3.101), though
with an incomplete proof; our own attempt at a proof ([6], Lrag) was not conclusive
either (the sentence@, agissant sans point fixe sur le 2-groupe abélien élémentair
X, est donc cyclique” is ambiguous, as in order to thus esfalihie cyclicity of Q,
we need to know thakach nonidentity element of @cts onX without fixed point,
which is not obvious). Here, we shall take the opportunityckarify the matter once
and for all; during the course of the proof, we shall feel fteeuse some ideas from
[5] and [6].

Lemma 2.1. Let G be a(solvablg {2, 3}-group then the following statements
are equivalent
(1) G is X4-freg and
(2) G=03.236).

REMARK 2.2. According to Burnside’g?qP-theorem, the solvability hypothesis
is redundant.

Proof. The implication (2)= (1) is obvious, as the conditio® = O3, yG) is
inherited by all sections of5, and £, 7 O3 2 o(X4).

Let G denote a minimal counterexample to the statement that(1R); it is clear
that O3(G) = 1, thatG possesses a unique minimal non-trivial normal subgrdyphat
X is a 2-group, and thaly = O, 3(G) C G is the uniqgue maximal normal subgroup of
G. It follows (as O3(G/No) = 1) that G/Ny has order 2; therefore one h&(G) ¢
Ng, whenceG = 03%(G), thus

3 G _ 03(G)X _ G
O(‘)‘ TX

X

whence

G G
2 =055(~>).
% =0ue( )

Take nowQ € Syl;(G); we have just established th@X < G, and the Frattini argu-
ment yields:

G = XNg(Q).
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Let L =qer. Ng(Q); thenL # G and G =L X. Let us assumé& C H C G; then

H=HNG
=HNLX
=L(H N X);
but HN X < (H, X) =G, whenceH N X =1 or HnN X = X. In the second case,

H = LX = G, a contradiction; therefored N X =1, andH =L(HN X)=L: L is a
maximal subgroup ofs. Taking nowH =L in the above argument yields:

LN X=1.

LetC=C_(X); thenC < LX =G, andX Z C (else one would hav& =LX =L,
a contradiction), therefor€ = 1. As X <1 G, X C 0,(G), whenceX <1 Oy(G) and
Y = XNZ(0x(G)) #1; butY <« G, thereforeY = X, i.e. X € Z(0,(G)). It follows that

02(G) < Cs(X)
=Cs(X)N XL
= XCL(X)
= X.

_ ThereforeX = Ox(G). Let us setG = G/X; then 02(5) =0,(G)/X =1, and (as
G is solvable)

(+) C5(03(G)) < O3(G).

Let nowt =tX denote an element of order 2 (ﬁ_: G/X; according to %), t does not
centralize O3(G), therefore somey e O3(G) is not centralized byt, thus
Z:def. [t1 ﬂ ? 11 ZE 03(6)1 and

Let (@) = 3" (m > 1), and v =g 22 ; then w(v) = 3 and o = o1, whence
t,v) ~ i Set now V = X(t, t’); then V/X = (t,v) ~ X3 and
03(V) € Cs(02(V)) € Cs(X) € X, whenceO3(V) =1. If V #G, then (by induction)

V=0324V), whenceV =0, 3(V), te O,(V), (t, t’) S Oy(V), V is a 2-group, and hence
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also is\7, a contradiction. Therefor¥ =G andL ~G/X = V ~ ¥3. It follows that
G=LX=LxX, X (as a minimal normal subgroup &) being a nontrivial irreducible
F,L ~ F,X3-module. But thenX has to be isomorphic to the canonical modH@for
Y3 ~ SLy(F»), and one obtain& ~ X3 x F2 ~ %,, a contradiction. ]

3. Characteristic p-functors: generalities

For p a prime numberG, will denote the category of finitg-groups (morphisms
in Gp being the group isomorphisms in the usual sense).

DerINITION 3.1 ([2], p.1116). By a characteristgfunctor we shall mean a func-
tor K: Gp — G, such that, for eaclP € Gy, K(P) € P andK(P) #1 if P # 1.

Clearly, wheneveK; andK, are characteristip-functors, K; o K, (simply denoted
by K1K3), defined by:

(K1 0 K2)(P) =der. K1(K2(P))

is one. Examples of characterisgiefunctors includelg, J, J, Je, Z, and€2, (n € N),
the last one defined by:

(P) =der. (x € P | X" = 1).
A general class of characteristis-functors is obtainedia:

DEFINITION 3.2. Lety denote a mapping fromib, to N = {0, 1,...}, invariant
under isomorphisms, and such that

AZl = o(A) =1,

then, for P a p-group, let

K, (P) Edef,<A abelian subgroup oP | p(A) = 5 max §0(B)>-

C A; B abelian

It is easily seen thaK, is a characteristicp-functor; such characteristip-functors
will be termedexcellently abelian generatecClearly, J, Jgr and Je are such; in fact,
J =Ko, Jr=Km and J. = K;,.

DErINITION 3.3. The characteristip-functor W is termed excellent if, when-
ever G is a finite group, P € Syl (G), x € G, and W(P) € Q < P*, then
W(P) = W(Q) = W(P*) (= W(P)*). In particular, W(P) is weakly closed inP, and
characteristic in anyp-subgroup ofG that contains it.
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Lemma 3.4. Any excellently abelian generated characteristic p-foncis ex-
cellent

Proof. ForS a p-group, let
ro(S) =ger. Anax o(A).
Let us assume tha,(P) € Q € P*, and let Ag € ab(P) such that
¢(Ao) = max ¢(A) =ry(P).

Obviously,

r,(Q) < rgo(Px)

max A
Acab(P¥) o(A)

max ¢(C*
Ceab(P) (C")

= max ¢(C) (asg is invariant under isomorphisms)
Ceab(P)

=1,(P)
= ¢(Ao)
<r,(Q) (as Ay S K,(P) € Q).

Thereforer,(P) =r,(Q), whence

Ke(Q) = (A€ ab(Q) | p(A) =1,(Q))
=(Aeab(Q) | ¢(A) =r,(P))
= (A ab(P) | ¢(A) =r,(P))
= K,(P)

(becauseA € ab(P) and ¢(A) =r1,(P) yield A € K,(P) € Q).

Incidentally we have shown that,(Q) = r,(P*), whenceK,(Q) € K,(P*) and
Ky(P) = Ky (Q) € K, (P¥) = (Ky(P))*, and equality all along follows. ]

4. A reduction theorem

Let p, W and C denote respectively a prime number, a characterigtfanctor,
and a class of groups; the following properties of the tri& C, p) will be considered
(S denoting a Sylowp-subgroup of the grou®s):
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(P1) For eachG € C, one has
G = No(W(9)0p(G).
(P2) For eachp-solvableG € C, one has
G = No(W(S)) 0y (G).
(P3) For each solvabl& € C, one has
G = No(W(9) Oy (G).

(P4) For each solvabl& < C, all of whose Sylowqg-subgroups for all primes| # p
are abelian, one has

G = Na(W(S)Op(G).

(P5) W controls p-lengthl in C, i.e. for eachp-solvable Ge C, if Ng(W(S)) has
p-length one therG has p-length one.

(P6) W controls p-nilpotence i, i.e. for eachG € C, if Ng(W(S)) is p-nilpotent
then G is p-nilpotent.

Stellmacher’s result ([7]) asserts the existence of a @plicit) characteristic
2-functor W such that (P1) (and hence (P2)—(P6)) hold @f, C'(24), 2), where, ac-
cording to the notations described abo?4X4) denotes the class &4-free groups. In
fact, Stellmacher establishes (P1) faW (D, 2), whereD denotes the class df,-free
groups all of whose non-abelian simple sections are isohiomggther to a Suzuki group
or to PSLy(3™) for some odd integem; but a theorem of Glauberman ([3]), the proof of
which can be much simplified using Stellmacher’s result|dgghat in factD = C'(Z4).

Theorem 4.1. (1) One has(Pl) = (P2) = (P3) = (P4) = (P6), and (P3) =
(P5) = (P6).
(2) If p=2, W(S) € Q1(S) for all S, and either
(i) C < Cy» (the class of2-groups with nilpotency class at mog) and W is
excellent
or
(i) W is excellently abelian generated
then (P6) = (P2), and hence propertiefP2)—(P6)are equivalent

Proof. (1) The implications (P1} (P2) = (P3) = (P4) are trivial.
In order to establish that (P3) (P5), let us assume (P3), |& denote a counter-
example to (P5) with minimal order. We shall use argumentsilai to Bauman’s in
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[1], pp.388-389. IfOy(G) # 1, let G =ger. G/0Op(G); then one has:

ey - W(SO0p(G)
Ns(W(9) = NG(W)
Op(G)
N Ng(W(S))
~ Ng(W(S) N Oy(G)

(by the Frattini argument)

ThereforeNG—(W(S_)) has p-length one, whence, by induction (ée C andG is
p—solvable),(g has p-length one, hence so h&, a contradiction. Thu(G) =1,
whence (ass is p-solvable)Cg(O,(G)) € Oy(G); in particular, Op(G) # {1}. Let now
G = G/Op(G), and let H = Ng(W(9); if H = G, then W(S) < G, thus
W(S) € 0p(G) =1, W(S) =1, S=1, S= 0,(G), W(S = W(0,(G)) <« G, and
G = Ng(W(9)) has p-length one, a contradiction. Therefoke C G; as Ny (W(9)) C
Ng(W(S)) has p-length one, so habl by induction, hence so had, hence so ha6,
again by induction @ and H both belonging taC). Let K = Oy(G); it appears that
SK <1 G, henceSK <1 G; if SK # G, one finds by induction tha8K has p-length 1;
but SK < G, whenceOy(SK) <« G and Oy (SK) € Oy(G) = 1. ThereforeS <1 SK,
whenceS = O,(SK) < G, and againW(S) < G and G = Ng(W(S)), a contradiction.
ThereforeG = SK, and G = SK.

For q € 7(K), let Q denote a Sylowg-subgroup ofK; the total number of Sylow
g-subgroups ofK is |K : NK—((§)| # 0[p], therefore one of themK_q, is Sinvariant.
If, for eachq € n(K_), one hasSK; # G, then, by induction,SK; has p-length one;
but Oy (SKq) S Ce(Op(SKy)) S Cs(Op(G)) S Op(G), thus Op(SKy) = 1 and
S < SKy, thus Ky € Ng(S), hence

K = (Kq |qen(K)) < N(d

and S <« SK =G, a contradiction. Thus for some pringeone hasG = SK;, and it
appears thaG is solvable (in fact, a solvablép, q}-group for some primey). But
now (P3) yields thailG = Ng(W(S)), whenceG has p-length one, a contradiction (in
this proof, due to the hypotheses @n all the groups that appedrelong toC; such
will be the case in all subsequent similar reasonings).

Assuming (P4), letG denote a counterexample to (P6), with minimal order; then
Thompson's arguments ([8], pp.43—44) yield tf@§(G) =1, Op(G) 71 andG is a
{p, q}-group with (elementary) abelian Sylow subgroups for somm@q # p. But
then (P4) yields thaG = Ng(W(S)), whenceG is p-nilpotent, a contradiction. There-
fore (P4)= (P6) is established.

In order to establish that (P53} (P6), the same argument works; here, we only
need Thompson’s reduction up to an earlier poing, Oy(G) =1 andG p-solvable.

(2) Let us assume all the conditions in (2), and@tlenote a minimum counter-
example to (P6)= (P2); it is clear, as usual, th&@,(G) = 1, and then (by the same



CHARACTERISTIC FUNCTORS ONFINITE p-GROUPS 1051

reasoning as in (1)) thad,(H) = 1 for any subgrougH of G containingS, and there-
fore that M := Ng(W(9)) is the unique maximal subgroup @ containingS. Let
G = G/0y(G); then G is 2-solvable, andV is the unique maximal subgroup @
containingS. By induction, one has

G = Ng(W(S))02(G)
= Ng(W(S))(SQ(G));

the two factors on the right-hand side of this equality cint®, whence at least one
is not contained inM, i.e. eitherNg(W(S)) =G or G = SQy(G). The first possibility
leads to a contradiction as in the proof that (R3)(P5); thereforeG = SO, (G), i.e.G
has 2-length one. o _

As S is contained into a unique maximal subgroup ®f(M), O2(G) possesses
a unique maximalS-invariant proper subgroupOy(G) N M. It follows, firstly, that
O2(G) is a g-group for some primeg # 2: O2(G) = Q (Q € Syl4(G)), and there-
fore thatG = SQ s a solvable{2, g}-group, and secondly tha® acts irreducibly on
Q/®(Q); in particular, Z(S) is cyclic.

Let N =ger (W(S)®) <1 G; then Ox(N) =1, andSN N € Syl,(N). If N < G, the
minimality of G yields:

N = Nn(W(SN N))O2(N)
= Nn(W(SN N)).
But W(S) € SN N € S, whenceW(S) = W(SN N), asW is excellent (in case (i) by
assumption, and in case (ii) by Lemma 3.4). The Frattini mugnt now yields that:
G =NNg(SNN)
N Ng(W(SN N))
< Ng(W(SN N))
g Gl

N

N

whence G = Ng(W(S N N)) = Ng(W(S)) is 2-nilpotent, a contradiction. Therefore
N =G, i.e.G = (W(S)®); thence

and S= SNW(S)Q = W(S)(SN Q) = W(S), i.e. S= W(S)0x(G).
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In case (i), let W = K,; then W(S) ¢ O,(G) (else one would have
S = W(902(G) = Ox(G) <« G), whence there is an abelian subgrodpof S with
@(A) =r1,(P) and A € Ox(G). Let N = (A®) < G; if N #G, then, by induction, it
follows as above thatW(SN N) <« N whenceW(SN N) € O,(N) € Ox(G). But

9(A) =1,(SNN) =1,(S) = ¢(A)

whenceg(A) =1,(SN N) and A € K,(SN N) = W(SN N) € Ox(N) € 0x(G), a
contradiction. Thereforé& = (A®), whence
G = (AC)
= (A%
=(ASQ (asQ < G);
therefore
S=SnG
= SN (A5Q
= (A%(SN Q)
= (AS).
By a well-known property ofp-groups, it follows thatS = A; in particular, S is
abelian.
In case (i),C € Ca,, i.e.cl(S) < 2, whence
[S S < Z(9
C Cs(02(G))
C 02(G)
(by the solvability of G and the Hall-Higman lemma), whence, agafﬁ,is abelian.
Therefore, S is abelian in both cases, (i) and (ii). Now, from the fact tHLS) is
cyclic, follows thatS itself is. But S=W(S) € Q1(S) < Q1(S) (by the hypothesis),
thereforeS has order 2. _ _
Now, asS acts irreducibly on théq-module M = Q/®(Q), the nontrivial element

t of S either centralizes each_ elerrlent df, or inverts each element_dﬂ; now, irrg-
ducibility forces|M| =q, i.e. Q/®(Q) = M is cyclic; but then so ar€®, and Q >~ Q.
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Let now H = 8_49(6); thenH < G (in fact, |G: H| =q), and S< H. Therefore
H is contained inM = Ng(W(S)), whence
[S, 2(Q)] = [W(S), ®(Q)]
< [W(S), HIN®(Q)

[W(S), M] N &(Q)
W(S N &(Q)

Iﬂ N

1
=

i.e. S centralizesd(Q). If |Q| > g2, then1(Q) € ®(Q), whenceS centralizes2,(Q),
and thereforeS centralizesQ, a contradiction. Thu$Q| =g, andG = SQ is dihedral
of order 2y; it follows that Sis a maximal subgroup dB, i.e.Sis a maximal subgroup
of G. ThereforeS= M = Ng(W(S)), and Ng(W(9)) is 2-nilpotent; but now (P6) yields
that G itself is 2-nilpotent, a contradiction. ]

5 OfJeandJ

By a well-known variation ([4], Proposition 4.162, p.253) 8hompson’s factoriza-
tion ([9], Theorem 1 (c)), any solvablEs-free finite groupG with Sylow 2-subgroup
S satisfies:

(6.1) G = Ng(J(9))Cs(2(9)02(G).

In [3] Glauberman introduced a new characteristic funclohaving the property
that, for each 2-groufs, one has:

(5.2) k(ci9cs

For this functor he was able to prove ([3], Theorem 7.4, pth8&), for each 2-constrained
34-free finite groupG and eaclt € Syl,(G), one had:

(5.3) G = Na(J(9)Cs(Z(9)02(G).
By (5.2) one findsJe(S) = Je(J(S)) charJ(S) whence
Ne(J(S)) € Ng(J(9);

(5.3) is therefore stronger than (5.1).
In the particular case the® has nilpotence class at most two, we can state

Theorem 5.1. Let G be a&-constrained X4-free finite group with Sylo®-subgroup
S of nilpotence class at most twben one has

G = Ne(J(9)02(G).
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By the above remark follows
Corollary 5.2. In the situation of the theorem
G = Ng(Je(5)O2(G).
Thus one can assert

Corollary 5.3. Let G be a finite solvablé,-free group with Sylow2-subgroup
S of class at most twahen

G = Ng(Je(95) O2(G).
In other words (Je, C'(24) N Solv, 2) satisfies(P1), and hence(P2)—(P6).
This Corollary was first proved by the author in [6].

Proof of Theorem 5.1. LeG be a counterexample of minimal order.
(1) Ox(G)=1 |Ifnot, G=G/0Ox(G) is of smaller order tharG and satisfies

the hypothesis, whence
G = N5(J(9)02(G) = Ns(J(9).

But the canonical mapS — S(G)/02(G) = S is an isomorphism, whence
J(S) = J(§02(G)/02(G) and

Ne(J(902(G)) _ Ne(3(9)02(G)
02(G) 02(G)

N(J(9) =

by the Frattini argument. Thus we gét= Ng(J(S))O2(G), a contradiction.
(2) Cgs(02(G)) € 0x(G). Obvious, becaus& is 2-constrained an®y(G) = 1.
(3) M =Ng(J(9) is the unique maximal subgroup ofG that contains S. By
hypothesisM C G. Let H be a proper subgroup ofs containing S; one has
0O,(G) € SC H, whence (as in the proof of Theorem 4.1 (1))

02(G) € Oz(H)

and:

Ch(O2(H)) = H N Cs(O2(H))

H N Cs(02(G))

H N Ox(G) (by (2)
O2(H).

N 1N N
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ThereforeO,(H) =1 andH is 2-constrained with Sylow 2-subgrou the minimality
of G now yields:

H = N1 (3(8)0z(H) = Nu(3(9)
< No(3(9) = M.

Thus M is a proper subgroup dB that contains any proper subgroup @fcontaining
S, the result follows.
(4) Z(9 € Z(G). By (5.3) one has

G = No(J(9)Cas(Z(5)02(G) = MCa(Z(9));

thus SC Cg(Z(9) € M, whenceCg(Z(9) =G by (3).
(5) G centralizes O,(G)/Z(G). Let C =Cg(02(G)/Z(G)) <« G; then

[S OAG)] €[S, 9§ < Z(9 < Z(G)
(by (4) and the hypothesis 08). It follows that S C C, whence
G =CNg(9),

again by the Frattini argument. € were different fromG, one would haveC € M
(because of (3)) and

G =CNg(S) € MNg(S) € M.M = M,

a contradiction. Thu€ = G.
(6) The End. By (5) one has G, 0x(G)] € Z(G), i.e.

[G, 02(G), G] =[02(G), G, G] = 1.
Philip Hall's three subgroups lemma now yields
[G, G, 0(G)] =1,
that is:
G’ € Cs(02(G)),
whence G’ € Oy(G) by (2). ThereforeH = G/0O(G) is an abelian group with

O,(H) =1, i.e. an abelian'Zgroup; it appears thad = 0,(G) « G, whencej(S) <G,
thus G = M and again a contradiction ensues. This concludes the proof. ]
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P. LEscoT

REMARK 5.4. It seems difficult to generalize directly Corollary 5.2nd even

Corollary 5.3, as the counter-examples to #ietheorem forp = 2 given by Glauberman
in the last paragraph of [2] show. Such a counterexan@lis solvable, with Sylow
2-subgroupsS of nilpotence class 3 (this is not difficult to see), adgossesses a unique
abelian subgroup of maximal ordek, that is elementary abelian. Therefodg(S),
Jr(9), J(S) andZJ(S) all coincide with A, and neither is normal iG.

(1]
(2]

(3]
(4]
[5]
(6]
[7]

El
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