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Abstract
We formalize various properties of characteristic functors on p-groups, and

discuss relationships between them. Applications to the Thompson subgroup and
certain of its analogues are then given.

1. Introduction

In a now classical paper ([8]), John Thompson introduced, for p a prime number
and S a p-group, the subgroupJR(S) (there denoted byJ(S)) generated by the abelian
subgroups ofS of maximal rank:

(1.1) JR(S) �def.

�
A 2 ab(S) m(A) = max

B2ab(S)
m(B)

�
,

whereab(S) denotes the set of all abelian subgroups ofS, and, forC an abelian group,
m(C) denotes the minimal cardinality of a generating system ofC.

Later on, in [2], Glauberman modified that definition to:

(1.2) J(S) �def.

�
A 2 ab(S) jAj = max

B2ab(S)
jBj�.

Thompson had formulated ap-nilpotence criterion usingJR; this work was later
built upon by Glauberman ([2]) with hisZJ-theorem, and by Thompson himself ([9]).
For the prime p = 2, it is often more convenient to work with the subgroupJe(S),
defined usingelementaryabelian subgroups instead of abelian ones:

(1.3) Je(S) �def.

�
A 2 abe(S) jAj = max

B2abe(S)
jBj�

whereabe(S) denotes the set ofelementaryabelian subgroups ofS.
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The functorsJe, JR andJ areexcellently abelian generated characteristic p-functors
in the sense of§3 below. In §4, we shall establish various reduction results concern-
ing such objects; most notably, in certain cases, the normality of W(S) in G (for
S 2 Sylp(G) and W a characteristicp-functor) can be inferred from the (apparently
much weaker) property ofcontrol of p-nilpotenceby W (see Theorem 4.1 (2)). In the
fifth paragraph, we shall specialize our results to the primep = 2 and the functorsJe

and Ĵ (for the definition of the last one of which see [3]), and shallhenceforth refine,
in a very particular case, Thompson’s factorization theorem ([9], Theorem 1 (c)), thus
recovering the results of [6].

In the course of the proof some reduction lemmas of independent interest, con-
cerning normality ofp-subgroups and control ofp-nilpotence, will be established.

Our notations are standard: forG a (finite) group andp a prime number,Op(G)
will denote the largest normalp-subgroup ofG, Op0(G) the largest normal subgroup of
G with order prime to p, and Z(G) the center of G. We set o(G) = jGj,
re(G) = m(G) if G is an elementary abelianp-group for some primep, and re(G) = 0
else; for (x, y) 2 G2:

yx := x�1yx,

and, for A � G and x 2 G:

Ax := fyx j y 2 Ag.
As usual, by a slight abuse of language,G will be said to havep-length one

if G = Op0, p, p0(G). By a class of groups, we shall mean a family of groups con-
taining every subgroup and every homomorphic image of each of its elements. Ab
will denote the class of finite abelian groups,Solv the class of finite solvable groups,
and, for p a prime, Abp the class of finite abelianp-groups. ForH a finite group,
C0(H ) will denote the class of finite groups, no section of which isisomorphic toH .
For p a prime andn 2 N, Cn

p will denote the class of finite groups, one (i.e. all) of
whose Sylow p-subgroups has (resp. have) nilpotency class at mostn. As usual, p
still denoting a prime number, a finite groupG will be termed p-closed if it has a
normal Sylow p-subgroup (equivalently, a unique Sylowp-subgroup), i.e. ifG=Op(G)
is a p0-group, andG will be termed p-constrained if, settingḠ = G=Op0(G), one has
CḠ(Op(Ḡ)) � Op(Ḡ). A solvable groupG is p-constrained for all primesp.

By ab(G) we shall denote the set of abelian subgroups of a groupG. Finally, 6n

will denote the symmetric group of degreen.
I am deeply grateful to the organizers of the conference “Finite Groups 2003”

(Gainesville, March 6th–13th, 2003) for giving me the opportunity to present for the
first time the main results of this paper. A preliminary version appeared in 2006 as
I.H.E.S. preprint M/06/55; I am deeply indebted to Cécile Cheikchoukh for her help in
that occasion.
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2. A preliminary lemma

The following result was first stated by Hayashi ([5], Lemma 3.9, p.101), though
with an incomplete proof; our own attempt at a proof ([6], Lemme) was not conclusive
either (the sentence “Q, agissant sans point fixe sur le 2-groupe abélien élémentaire
X, est donc cyclique” is ambiguous, as in order to thus establish the cyclicity of Q,
we need to know thateach nonidentity element of Qacts onX without fixed point,
which is not obvious). Here, we shall take the opportunity toclarify the matter once
and for all; during the course of the proof, we shall feel freeto use some ideas from
[5] and [6].

Lemma 2.1. Let G be a(solvable) f2, 3g-group; then the following statements
are equivalent:
(1) G is 64-free, and:
(2) G = O3,2,3(G).

REMARK 2.2. According to Burnside’spaqb-theorem, the solvability hypothesis
is redundant.

Proof. The implication (2)) (1) is obvious, as the conditionG = O3,2,3(G) is
inherited by all sections ofG, and64 6= O3,2,3(64).

Let G denote a minimal counterexample to the statement that (1)) (2); it is clear
that O3(G) = 1, thatG possesses a unique minimal non-trivial normal subgroupX, that
X is a 2-group, and thatN0 = O2,3(G) � G is the unique maximal normal subgroup of
G. It follows (as O3(G=N0) = 1) that G=N0 has order 2; therefore one hasO3(G) 6�
N0, whenceG = O3(G), thus

O3

�
G

X

�
=

O3(G)X

X
=

G

X
.

But, by the minimality ofG, one may write

O3,2,3

�
G

X

�
=

G

X
,

whence

G

X
= O3,2

�
G

X

�
.

Take nowQ 2 Syl3(G); we have just established thatQX C G, and the Frattini argu-
ment yields:

G = X NG(Q).
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Let L =def. NG(Q); then L 6= G and G = L X. Let us assumeL � H � G; then

H = H \ G

= H \ L X

= L(H \ X);

but H \ X C hH , Xi = G, whenceH \ X = 1 or H \ X = X. In the second case,
H = L X = G, a contradiction; thereforeH \ X = 1, and H = L(H \ X) = L: L is a
maximal subgroup ofG. Taking now H = L in the above argument yields:

L \ X = 1.

Let C = CL (X); thenC C L X = G, and X 6� C (else one would haveG = L X = L,
a contradiction), thereforeC = 1. As X C G, X � O2(G), whenceX C O2(G) and
Y = X\Z(O2(G)) 6= 1; but Y C G, thereforeY = X, i.e. X � Z(O2(G)). It follows that

O2(G) � CG(X)

= CG(X) \ X L

= XCL (X)

= X.

ThereforeX = O2(G). Let us setḠ = G=X; then O2(Ḡ) = O2(G)=X = 1, and (as
Ḡ is solvable)

(�) CḠ(O3(Ḡ)) � O3(Ḡ).

Let now t̄ = t X denote an element of order 2 in̄G = G=X; according to (�), t̄ does not
centralize O3(Ḡ), therefore some ȳ 2 O3(Ḡ) is not centralized by t̄ , thus
z̄ =def. [ t̄ , ȳ] 6= 1, z̄ 2 O3(Ḡ), and

z̄t̄ = t̄�1z̄t̄

= t̄�1t̄�1ȳ�1t̄ ȳt̄

= ȳ�1t̄ ȳt̄

= (t̄�1ȳ�1t̄ ȳ)�1

= z̄�1.

Let !(z̄) = 3m (m � 1), and v̄ =def. z̄3m�1
; then !(v̄) = 3 and v̄ t̄ = v̄�1, whenceht̄ , v̄i ' 63. Set now V = Xht , tvi; then V=X = ht̄ , v̄i ' 63, and

O3(V) � CG(O2(V)) � CG(X) � X, whenceO3(V) = 1. If V 6= G, then (by induction)
V = O3,2,3(V), whenceV = O2,3(V), t 2O2(V), ht , tvi�O2(V), V is a 2-group, and hence
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also is V̄ , a contradiction. ThereforeV = G and L ' G=X = V̄ ' 63. It follows that
G = L X = LËX, X (as a minimal normal subgroup ofG) being a nontrivial irreducible
F2L ' F263-module. But thenX has to be isomorphic to the canonical moduleF2

2 for63 ' SL2(F2), and one obtainsG ' 63 Ë F2
2 ' 64, a contradiction.

3. Characteristic p-functors: generalities

For p a prime number,Gp will denote the category of finitep-groups (morphisms
in Gp being the group isomorphisms in the usual sense).

DEFINITION 3.1 ([2], p.1116). By a characteristicp-functor we shall mean a func-
tor K : Gp ! Gp such that, for eachP 2 Gp, K (P) � P and K (P) 6= 1 if P 6= 1.

Clearly, wheneverK1 andK2 are characteristicp-functors,K1 Æ K2 (simply denoted
by K1K2), defined by:

(K1 Æ K2)(P) �def. K1(K2(P))

is one. Examples of characteristicp-functors includeJR, J, Ĵ, Je, Z, and�n (n 2 N),
the last one defined by:

�n(P) �def. hx 2 P j xpn
= 1i.

A general class of characteristicp-functors is obtainedvia:

DEFINITION 3.2. Let' denote a mapping fromAbp to N = f0, 1,: : : g, invariant
under isomorphisms, and such that

A 6= 1 ) '(A) � 1;

then, for P a p-group, let

K'(P) �def.

�
A abelian subgroup ofP '(A) = max

B � A; B abelian
'(B)

�
.

It is easily seen thatK' is a characteristicp-functor; such characteristicp-functors
will be termedexcellently abelian generated. Clearly, J, JR and Je are such; in fact,
J = Ko, JR = Km and Je = Kre.

DEFINITION 3.3. The characteristicp-functor W is termed excellent if, when-
ever G is a finite group, P 2 Sylp(G), x 2 G, and W(P) � Q � Px, then
W(P) = W(Q) = W(Px) (= W(P)x). In particular, W(P) is weakly closed inP, and
characteristic in anyp-subgroup ofG that contains it.
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Lemma 3.4. Any excellently abelian generated characteristic p-functor is ex-
cellent.

Proof. For S a p-group, let

r'(S) =def. max
A2ab(S)

'(A).

Let us assume thatK'(P) � Q � Px, and let A0 2 ab(P) such that

'(A0) = max
A2ab(P)

'(A) = r'(P).

Obviously,

r'(Q) � r'(Px)

= max
A2ab(Px )

'(A)

= max
C2ab(P)

'(Cx)

= max
C2ab(P)

'(C) (as ' is invariant under isomorphisms)

= r'(P)

= '(A0)

� r'(Q) (as A0 � K'(P) � Q).

Thereforer'(P) = r'(Q), whence

K'(Q) = hA 2 ab(Q) j '(A) = r'(Q)i
= hA 2 ab(Q) j '(A) = r'(P)i
= hA 2 ab(P) j '(A) = r'(P)i
= K'(P)

(becauseA 2 ab(P) and '(A) = r'(P) yield A � K'(P) � Q).
Incidentally we have shown thatr'(Q) = r'(Px), whenceK'(Q) � K'(Px) and

K'(P) = K'(Q) � K'(Px) = (K'(P))x, and equality all along follows.

4. A reduction theorem

Let p, W and C denote respectively a prime number, a characteristicp-functor,
and a class of groups; the following properties of the triple(W,C, p) will be considered
(S denoting a Sylowp-subgroup of the groupG):



CHARACTERISTIC FUNCTORS ON FINITE p-GROUPS 1049

(P1) For eachG 2 C, one has

G = NG(W(S))Op0(G).

(P2) For eachp-solvableG 2 C, one has

G = NG(W(S))Op0(G).

(P3) For each solvableG 2 C, one has

G = NG(W(S))Op0(G).

(P4) For each solvableG 2 C, all of whose Sylowq-subgroups for all primesq 6= p
are abelian, one has

G = NG(W(S))Op0(G).

(P5) W controls p-length1 in C, i.e. for eachp-solvable G2 C, if NG(W(S)) has
p-length one thenG has p-length one.
(P6) W controls p-nilpotence inC, i.e. for eachG 2 C, if NG(W(S)) is p-nilpotent
then G is p-nilpotent.

Stellmacher’s result ([7]) asserts the existence of a (non-explicit) characteristic
2-functor W such that (P1) (and hence (P2)–(P6)) hold for (W, C0(64), 2), where, ac-
cording to the notations described above,C0(64) denotes the class of64-free groups. In
fact, Stellmacher establishes (P1) for (W, D, 2), whereD denotes the class of64-free
groups all of whose non-abelian simple sections are isomorphic either to a Suzuki group
or to PSL2(3m) for some odd integerm; but a theorem of Glauberman ([3]), the proof of
which can be much simplified using Stellmacher’s result, yields that in factD = C0(64).

Theorem 4.1. (1) One has(P1)) (P2)) (P3)) (P4)) (P6), and (P3))
(P5)) (P6).
(2) If p = 2, W(S) � �1(S) for all S, and either

(i) C � C2,2 (the class of2-groups with nilpotency class at most2) and W is
excellent,

or
(ii) W is excellently abelian generated,

then (P6)) (P2), and hence properties(P2)–(P6)are equivalent.

Proof. (1) The implications (P1)) (P2)) (P3)) (P4) are trivial.
In order to establish that (P3)) (P5), let us assume (P3), letG denote a counter-

example to (P5) with minimal order. We shall use arguments similar to Bauman’s in
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[1], pp.388–389. IfOp0(G) 6= 1, let Ḡ =def. G=Op0(G); then one has:

NḠ(W(S̄)) = NḠ

�
W(S)Op0 (G)

Op0(G)

�

=
NG(W(S))Op0 (G)

Op0(G)
(by the Frattini argument)

' NG(W(S))

NG(W(S)) \ Op0(G)
.

ThereforeNḠ(W(S̄)) has p-length one, whence, by induction (as̄G 2 C and Ḡ is
p-solvable), Ḡ has p-length one, hence so hasG, a contradiction. ThusOp0(G) = 1,
whence (asG is p-solvable)CG(Op(G))� Op(G); in particular, Op(G) 6= f1g. Let now
Ḡ = G=Op(G), and let H̄ = NḠ(W(S̄)); if H = G, then W(S̄) C Ḡ, thus
W(S̄) � Op(Ḡ) = 1, W(S̄) = 1, S̄ = 1, S = Op(G), W(S) = W(Op(G)) C G, and
G = NG(W(S)) has p-length one, a contradiction. ThereforeH � G; as NH (W(S)) �
NG(W(S)) has p-length one, so hasH by induction, hence so has̄H , hence so has̄G,
again by induction (̄G and H both belonging toC). Let K̄ = Op0 (Ḡ); it appears that
S̄K̄ C Ḡ, henceSKC G; if SK 6= G, one finds by induction thatSK has p-length 1;
but SKC G, whenceOp0(SK) C G and Op0(SK) � Op0(G) = 1. ThereforeSC SK,
whenceS = Op(SK) C G, and againW(S) C G and G = NG(W(S)), a contradiction.
ThereforeG = SK, and Ḡ = S̄K̄ .

For q 2 �(K̄ ), let Q̄ denote a Sylowq-subgroup ofK̄ ; the total number of Sylow
q-subgroups ofK̄ is jK̄ : NK̄ (Q̄)j 6� 0[p], therefore one of them,K̄ q, is S̄-invariant.
If, for each q 2 �(K̄ ), one hasSKq 6= G, then, by induction,SKq has p-length one;
but Op0(SKq) � CG(Op(SKq)) � CG(Op(G)) � Op(G), thus Op0(SKq) = 1 and
SC SKq, thus Kq � NG(S), hence

K̄ = hK̄q j q 2 �(K̄ )i � NG(S)

and SC SK = G, a contradiction. Thus for some primeq one hasG = SKq, and it
appears thatG is solvable (in fact, a solvablefp, qg-group for some primeq). But
now (P3) yields thatG = NG(W(S)), whenceG has p-length one, a contradiction (in
this proof, due to the hypotheses onC, all the groups that appearbelong toC; such
will be the case in all subsequent similar reasonings).

Assuming (P4), letG denote a counterexample to (P6), with minimal order; then
Thompson’s arguments ([8], pp. 43–44) yield thatOp0(G) = 1, Op(G) 6= 1 andG is afp, qg-group with (elementary) abelian Sylow subgroups for some prime q 6= p. But
then (P4) yields thatG = NG(W(S)), whenceG is p-nilpotent, a contradiction. There-
fore (P4)) (P6) is established.

In order to establish that (P5)) (P6), the same argument works; here, we only
need Thompson’s reduction up to an earlier point,viz. Op0(G) = 1 andG p-solvable.

(2) Let us assume all the conditions in (2), and letG denote a minimum counter-
example to (P6)) (P2); it is clear, as usual, thatO20 (G) = 1, and then (by the same
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reasoning as in (1)) thatO20 (H ) = 1 for any subgroupH of G containingS, and there-
fore that M :� NG(W(S)) is the unique maximal subgroup ofG containing S. Let
Ḡ = G=O2(G); then Ḡ is 2-solvable, andM̄ is the unique maximal subgroup of̄G
containing S̄. By induction, one has

Ḡ = NḠ(W(S̄))O20(Ḡ)

= NḠ(W(S̄))(S̄O20(Ḡ));

the two factors on the right-hand side of this equality contain S̄, whence at least one
is not contained inM̄ , i.e. eitherNḠ(W(S̄)) = Ḡ or Ḡ = S̄O20 (Ḡ). The first possibility
leads to a contradiction as in the proof that (P3)) (P5); thereforeḠ = S̄O20(Ḡ), i.e.G
has 2-length one.

As S̄ is contained into a unique maximal subgroup ofḠ (M̄), O20(Ḡ) possesses
a unique maximalS̄-invariant proper subgroup:O20(Ḡ) \ M̄ . It follows, firstly, that
O20(Ḡ) is a q-group for some primeq 6= 2: O20(Ḡ) = Q̄ (Q 2 Sylq(G)), and there-
fore that G = SQ is a solvablef2, qg-group, and secondly that̄S acts irreducibly on
Q̄=8(Q̄); in particular, Z(S̄) is cyclic.

Let N �def. hW(S)Gi C G; then O20(N) = 1, andS\ N 2 Syl2(N). If N < G, the
minimality of G yields:

N = NN(W(S\ N))O20 (N)

= NN(W(S\ N)).

But W(S) � S\ N � S, whenceW(S) = W(S\ N), as W is excellent (in case (i) by
assumption, and in case (ii) by Lemma 3.4). The Frattini argument now yields that:

G = N NG(S\ N)

� N NG(W(S\ N))

� NG(W(S\ N))

� G,

whence G = NG(W(S \ N)) = NG(W(S)) is 2-nilpotent, a contradiction. Therefore
N = G, i.e. G = hW(S)Gi; thence

Ḡ =


W(S)

Ḡ�
=


W(S)

S̄Q̄�
=


W(S)

Q̄�
� W(S)Q̄ (as Q̄ C Ḡ),

and S̄ = S̄\ W(S)Q̄ = W(S)(S̄\ Q̄) = W(S), i.e. S = W(S)O2(G).
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In case (ii), let W = K'; then W(S) * O2(G) (else one would have
S = W(S)O2(G) = O2(G) C G), whence there is an abelian subgroupA of S with'(A) = r'(P) and A * O2(G). Let N = hAGi C G; if N 6= G, then, by induction, it
follows as above thatW(S\ N) C N whenceW(S\ N) � O2(N) � O2(G). But

'(A) � r'(S\ N) � r'(S) = '(A)

whence'(A) = r'(S \ N) and A � K'(S \ N) = W(S \ N) � O2(N) � O2(G), a
contradiction. ThereforeG = hAGi, whence

Ḡ = hĀḠi
= hĀS̄Q̄i
= hĀS̄iQ̄ (as Q̄ C Ḡ);

therefore

S̄ = S̄\ Ḡ

= S̄\ hĀS̄iQ̄
= hĀS̄i(S̄\ Q̄)

= hĀS̄i.
By a well-known property ofp-groups, it follows thatS̄ = Ā; in particular, S̄ is

abelian.
In case (i),C � C2,2, i.e. cl(S) � 2, whence

[S, S] � Z(S)

� CG(O2(G))

� O2(G)

(by the solvability of G and the Hall-Higman lemma), whence, again,S̄ is abelian.
Therefore, S̄ is abelian in both cases, (i) and (ii). Now, from the fact thatZ(S̄) is
cyclic, follows that S̄ itself is. But S̄ = W(S) � �1(S) � �1(S̄) (by the hypothesis);
thereforeS̄ has order 2.

Now, asS̄ acts irreducibly on theFq-module M = Q̄=8(Q̄), the nontrivial element
t̄ of S̄ either centralizes each element ofM, or inverts each element ofM; now, irre-
ducibility forces jMj = q, i.e. Q̄=8(Q̄) = M is cyclic; but then so arēQ, and Q ' Q̄.
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Let now H̄ = S̄8(Q̄); then H < G (in fact, jG : H j = q), and S� H . Therefore
H is contained inM = NG(W(S)), whence

[ S̄, 8(Q̄)] = [W(S), 8(Q̄)]

� [W(S), H̄ ] \8(Q̄)

� [W(S), M̄ ] \8(Q̄)

� W(S) \8(Q̄)

= 1,

i.e. S̄ centralizes8(Q̄). If jQ̄j � q2, then�1(Q̄) �8(Q̄), whenceS̄ centralizes�1(Q̄),
and thereforeS̄ centralizesQ̄, a contradiction. ThusjQ̄j = q, and Ḡ = S̄Q̄ is dihedral
of order 2q; it follows that S̄ is a maximal subgroup of̄G, i.e.S is a maximal subgroup
of G. ThereforeS= M = NG(W(S)), and NG(W(S)) is 2-nilpotent; but now (P6) yields
that G itself is 2-nilpotent, a contradiction.

5. Of Je and Ĵ

By a well-known variation ([4], Proposition 4.162, p.253) on Thompson’s factoriza-
tion ([9], Theorem 1 (c)), any solvable63-free finite groupG with Sylow 2-subgroup
S satisfies:

(5.1) G = NG(Je(S))CG(Z(S))O20 (G).

In [3] Glauberman introduced a new characteristic functorĴ having the property
that, for each 2-groupS, one has:

(5.2) Je(S) � Ĵ(S) � S.

For this functor he was able to prove ([3], Theorem 7.4, p.48)that, for each 2-constrained64-free finite groupG and eachS2 Syl2(G), one had:

(5.3) G = NG( Ĵ(S))CG(Z(S))O20 (G).

By (5.2) one findsJe(S) = Je( Ĵ(S)) char Ĵ(S) whence

NG( Ĵ(S)) � NG(Je(S));

(5.3) is therefore stronger than (5.1).
In the particular case thatS has nilpotence class at most two, we can state

Theorem 5.1. Let G be a2-constrained, 64-free finite group with Sylow2-subgroup
S of nilpotence class at most two; then one has:

G = NG( Ĵ(S))O20(G).
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By the above remark follows

Corollary 5.2. In the situation of the theorem,

G = NG(Je(S))O20 (G).

Thus one can assert

Corollary 5.3. Let G be a finite solvable64-free group with Sylow2-subgroup
S of class at most two; then:

G = NG(Je(S))O20 (G).

In other words, (Je, C0(64) \ Solv, 2) satisfies(P1), and hence(P2)–(P6).

This Corollary was first proved by the author in [6].

Proof of Theorem 5.1. LetG be a counterexample of minimal order.
(1) O20 (G) = 1. If not, Ḡ = G=O20(G) is of smaller order thanG and satisfies

the hypothesis, whence

Ḡ = NḠ( Ĵ(S̄))O20 (Ḡ) = NḠ( Ĵ(S̄)).

But the canonical mapS ! SO20(G)=O20(G) = S̄ is an isomorphism, whence
Ĵ(S̄) = Ĵ(S)O20 (G)=O20(G) and

NḠ( Ĵ(S̄)) =
NG( Ĵ(S)O20(G))

O20(G)
=

NG( Ĵ(S))O20 (G)

O20(G)
,

by the Frattini argument. Thus we getG = NG( Ĵ(S))O20(G), a contradiction.
(2) CG(O2(G)) � O2(G). Obvious, becauseG is 2-constrained andO20(G) = 1.
(3) M = NG(Ĵ(S)) is the unique maximal subgroup ofG that contains S. By

hypothesis M � G. Let H be a proper subgroup ofG containing S; one has
O2(G) � S� H , whence (as in the proof of Theorem 4.1 (1))

O2(G) � O2(H )

and:

CH (O2(H )) = H \ CG(O2(H ))

� H \ CG(O2(G))

� H \ O2(G) (by (2))

� O2(H ).
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ThereforeO20(H ) = 1 andH is 2-constrained with Sylow 2-subgroupS; the minimality
of G now yields:

H = NH ( Ĵ(S))O20 (H ) = NH ( Ĵ(S))

� NG( Ĵ(S)) = M.

Thus M is a proper subgroup ofG that contains any proper subgroup ofG containing
S; the result follows.

(4) Z(S) � Z(G). By (5.3) one has

G = NG( Ĵ(S))CG(Z(S))O20 (G) = MCG(Z(S));

thus S� CG(Z(S)) * M, whenceCG(Z(S)) = G by (3).
(5) G centralizes O2(G)=Z(G). Let C = CG(O2(G)=Z(G)) ⊳ G; then

[S, O2(G)] � [S, S] � Z(S) � Z(G)

(by (4) and the hypothesis onS). It follows that S� C, whence

G = C NG(S),

again by the Frattini argument. IfC were different fromG, one would haveC � M
(because of (3)) and

G = C NG(S) � M NG(S) � M.M = M,

a contradiction. ThusC = G.
(6) The End. By (5) one has [G, O2(G)] � Z(G), i.e.

[G, O2(G), G] = [ O2(G), G, G] = 1.

Philip Hall’s three subgroups lemma now yields

[G, G, O2(G)] = 1,

that is:

G0 � CG(O2(G)),

whence G0 � O2(G) by (2). ThereforeH = G=O2(G) is an abelian group with
O2(H ) = 1, i.e. an abelian 20-group; it appears thatS = O2(G) ⊳ G, whence Ĵ(S) ⊳ G,
thus G = M and again a contradiction ensues. This concludes the proof.
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REMARK 5.4. It seems difficult to generalize directly Corollary 5.2, and even
Corollary 5.3, as the counter-examples to theZJ-theorem forp = 2 given by Glauberman
in the last paragraph of [2] show. Such a counterexampleG is solvable, with Sylow
2-subgroupS of nilpotence class 3 (this is not difficult to see), andS possesses a unique
abelian subgroup of maximal orderA, that is elementary abelian. ThereforeJe(S),
JR(S), J(S) and ZJ(S) all coincide with A, and neither is normal inG.
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