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Abstract—This paper deals with the modeling of parallelepipedic
magnets of various polarization directions. For this purpose, we use the
coulombian model of a magnet for calculating the magnetic potential
in all points in space. Then, we determine the three components of the
magnetic field created by a parallepiped magnet of various polarization
direction. These three components and the scalar magnetic potential
are also expressed in terms of fully analytical terms. It is to be noted
that the formulas determined in this paper are more general that the
ones established in the literature and can be used for optimization
purposes. Moreover, our study is carried out without using any
simplifying assumptions. Consequently, these expressions are accurate
whatever the magnet dimensions. This analytical formulation is
suitable for the design of unconventional magnetic couplings, electric
machines and wigglers.

1. INTRODUCTION

Permanent magnets are widely used in many engineering and industrial
applications. Their utilization requires calculation methods based on
the fundamental laws of the magnetostatics [1, 2]. Two great kinds
of applications can be identified. The first ones use parallelepipedic
permanent magnets while the second ones use arc-shaped permanent
magnets. This paper deals only with parallelepipedic permanent
magnets. However, this study can also be extended to the case of
cylindrical permanent magnet topologies.

The first analytical studies dealing with the modeling of
parallelepiped magnets were studied by Akoun [3] and Yonnet [4].
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Then, several analytical studies were carried out by using the
coulombian model of a magnet [5, 6]. The interest of using fully
analytical approaches lies in the fact that they have generally a lower
computational cost than finite element methods [7–10]. Moreover,
analytical approaches are suitable for parametric optimizations using
permanent magnets [10], or coils carrying producing magnetic
fields [14, 15]. The magnetic field created by parallelepipedic magnets
can be expressed in fully analytical parts whereas the magnetic field
produced by arc-shaped permanent magnets is generally based on
special functions [16–25].

This paper presents 3D analytical expressions of the magnetic
field created by a parallelepipedic permanent magnet of various
polarization direction. Indeed, its polarization can be along the x,
y and z direction, in the (x-y), (x-z) and (y-z) planes but also
in any direction in the coordinate system. Such a study is clearly
justified by the progress in manufacturing permanent magnets with
more complicated magnetizations. Moreover, permanent magnets with
various polarization directions allow us to confine the magnetic flux in
ironless structures [26, 27] and to optimize the magnetic field shape in
electric machines [28].

We present first the 3D analytical expression of the magnetic scalar
potential created by a paralellepipedic magnet of various polarization
direction: Such an expression is useful for the study of ferrofluids used
with permanent magnets [29, 30]. Indeed, the magnetic pressure of
the ferrofluid seal requires the accurate knowledge of the magnetic
potential in all points in space.

The second part of this paper presents the analytical expressions of
the three components of the magnetic field created by a parallelepipedic
magnet of various polarization direction.

2. ANALYTICAL EXPRESSION OF THE MAGNETIC
POTENTIAL PRODUCED BY A PARALLELEPIPED
MAGNET WITH A UNIFORM AND ARBITRARY
POLARIZATION

2.1. Notation and Geometry

We present in this section the 3D analytical expression of the magnetic
potential created by a parallelepiped magnet of various polarization
direction. To do so, let us first consider the representation shown in
Fig. 1.

Its dimensions are given by (x2 − x1), (y2 − y1), (z2 − z1) and its
polarization is denoted ~J . By using the notations shown in Fig. 1, this
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Figure 1. Representation of a parallelepiped magnet of various
polarization direction.

polarization vector is expressed as follows:

~J = J cos(θ) sin(φ)~ux + J sin(θ) sin(φ)~uy + J cos(φ)~uz (1)

We define the permanent magnet surface as follows:

~dS1 = +dydz~ux

~dS2 = −dxdz~uy

~dS3 = −dydz~ux

~dS4 = +dxdz~uy

~dS5 = −dxdy~uz

~dS6 = +dxdy~uz

(2)

2.2. Analytical Formulation

In the coulombian approach, the magnetic potential created by the
parallelepipedic magnet is given by:

Φ(x, y, z) =
6∑

i=1

(
1

4πµ0

∫∫

Si

~J · ~dSi

|~r − ~ri|

)
(3)
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For the rest of this paper, we adopt the following notation:

ϑ(ijk) {•} =
2∑

i=1

2∑

j=1

2∑

k=1

(−1)i+j+k (•) (4)

By using the egality ξijk =
√

(x− xi)2 + (y − yj)2 + (z − zk)2, the
magnetic potential created by a parallelepiped magnet of various
polarization direction is expressed as follows:

Φ(x, y, z)=
J

4πµ0
ϑ(ijk) {(sin(φ) cos(θ)Φ1 + sin(φ) sin(θ)Φ2 + cos(φ)Φ3}

(5)
with

Φ1 =zk + (x− xi) arctan
[
z − zk

x− xi

]
+ (y − yj) log [z − zk + ξijk]

−(x−xi) arctan
[
(y−yj)(z−zk)
(x−xi)ξi,j,k

]
+(z−zk) log [y−yj+ξijk]

Φ2 =zk + (y − yj) arctan
[
z − zk

y − yj

]
+ (x− xi) log [z − zk + ξijk]

− (y−yj) arctan
[
(x−xi)(z−zk)

(y− yj)ξijk

]
+(z−zk) log [x−xi+ξijk]

Φ3 =yj + (z − zk) arctan
[
y − yj

z − zk

]
+ (x− xi) log [y − yj + ξijk]

−(z−zk) arctan
[
(x−xi)(y−yj)

(z−zk)ξijk

]
+(y−yj) log [x−xi+ξijk]

(6)

As stated previously, the magnetic scalar potential Φ(x, y, z) is fully
analytical and does not require any numerical treatment for its
determination. Its expression is suitable for representing its iso-
potentials inside the magnet as well as outside it.

2.3. Representation of the Magnetic Scalar Potential

We illustrate our previous analytical expression with two configura-
tions. The first one allows us to verify the accuracy of our expression
and allows us to compare it with the ones published in the literature.
The second configuration is less usual as the first one: It is an academic
illustration of the usefulness of our 3D analytical expression.
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2.3.1. Case of a Parallelepipedic Magnet Whose Polarization Is
Directed along the z Direction

The first configuration is well known and corresponds to the case when
the polarization is directed along the z-direction. We take the following
dimensions: x2 − x1 = 0.005m, y2 − y1 = 0.01m, z2 − z1 = 0.02m,
J = 1 T. We represent in Fig. 2 three 2D cross-sections of the iso-
potentials created by the parallelepipedic magnet whose polarization
is directed along the z direction.

Figures 2 show that the iso-potentials are circles in the (x-
y) plane, which is consistent with the polarization direction of
the parallelepipedic permanent magnet. Moreover, we see the iso-
potentials in the (x-y) and (y-z) planes are the same: It is still
consistent with the polarization direction of the parallelepipedic
permanent magnet.
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Figure 2. 2D representation of the iso-potentials created by a
parallelepiped magnet whose polarization is directed along the z
direction; (x-y)-plane: z = 15 mm, (x-z)-plane: y = 5 mm, (y-z)-plane:
x = 5 mm.
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2.3.2. Case of a Parallelepipedic Magnet of Various Polarization
Direction

The second configuration we consider is a parallelepipedic permanent
magnet with the polarization shown in Fig. 3: This polarization is
expressed as follows:

~J =
J√
2
~uy +

J√
2
~uz (7)

We take the following dimensions: x2−x1 = 0.005m, y2−y1 = 0.01m,
z2 − z1 = 0.02 m, J = 1 T. We represent in Fig. 4 three 2D cross-
sections of the iso-potentials created by the parallelepiped magnet with
the polarization ~J = J√

2
~uy + J√

2
~uz. In this configuration, we take

θ = π
2 rad and φ = π

4 rad.
The computational cost is 1 s for representing the magnetic

potential in the three previous illustrations.
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Figure 3. Representation of a parallelepiped magnet with the
following polarization vector: ~J = J√

2
~uy + J√

2
~uz.
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Figure 4. 2D representation of the iso-potentials created by a
parallelepiped magnet whose polarization is ~J = J√

2
~uy + J√

2
~uz; (x-

y)-plane: z = 19mm, (x-z)-plane: y = 10mm, (y-z)-plane: x = 5mm.

3. ANALYTICAL EXPRESSION OF THE MAGNETIC
FIELD PRODUCED BY A PARALLELEPIPED MAGNET
WITH A UNIFORM AND ARBITRARY POLARIZATION

The three components of the magnetic field created by one
parallelepipedic magnet of various polarization direction can be
determined by using the following expression:

Hx(x, y, z) = −~∇ (φ(x, y, z)) · ~ux

Hy(x, y, z) = −~∇ (φ(x, y, z)) · ~uy

Hz(x, y, z) = −~∇ (φ(x, y, z)) · ~uz

(8)

After mathematical manipulations, we obtain the three compo-
nents Hx(x, y, z), Hy(x, y, z) and Hz(x, y, z) that are expressed as fol-
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lows:

Hx(x, y, z) =
J sin(φ) cos(θ)

4πµ0
ϑ(ijk)

{
arctan

[
(y − yj)(z − zk)

(x− xi)ξijk

]}

+
J sin(φ) sin(θ)

4πµ0
ϑ(ijk) {− log [z − zk + ξijk]}

+
J cos(φ)

4πµ0
ϑ(ijk) {− log [y − yj + ξijk]}

Hy(x, y, z) =
J sin(φ) cos(θ)

4πµ0
ϑ(ijk) {− log [z − zk + ξijk]}

+
J sin(φ) sin(θ)

4πµ0
ϑ(ijk)

{
arctan

[
(x− xi)(z − zk)

(y − yj)ξijk

]}

+
J cos(φ)

4πµ0
ϑ(ijk) {− log [x− xi + ξijk]}

Hz(x, y, z) =
J sin(φ) cos(θ)

4πµ0
ϑ(ijk) {− log [y − yj + ξijk]}

+
J sin(φ) sin(θ)

4πµ0
ϑ(ijk) {− log [x− xi + ξijk]}

+
J cos(φ)

4πµ0
ϑ(ijk)

{
arctan

[
(x− xi)(y − yj)

(z − zk)ξijk

]}

(9)

If we take θ = 0 and φ = 0, we obtain the same expression as
Bancel [5].

3.1. Representation of the Magnetic Field

We illustrate now the use of our three-dimensional analytical
expression by calculating the magnetic field modulus H. Then, we
represent the iso-lines in two configurations corresponding to the
previous ones.

3.1.1. Case of a Parallelepipedic Magnet Whose Polarization Is
Directed along the z Direction

We take the following dimensions: x2−x1 = 0.005m, y2−y1 = 0.01m,
z2 − z1 = 0.02 m, J = 1 T. We represent in Fig. 5 three 2D cross-
sections of the iso-lines created by the parallelepiped magnet whose
polarization is directed along the axial direction. In this configuration,
we take θ = 0 rad and 0 rad.

The computational cost for representing the iso-lines is lower than
1 s: This shows the interest of using a fully analytical approach for
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calculating the magnetic field produced by a parallelepipedic magnet
of various and uniform polarization.

3.1.2. Case of a Parallelepipedic Magnet of Various Polarization
Direction

We take the following dimensions: x2−x1 = 0.005m, y2−y1 = 0.01m,
z2 − z1 = 0.02 m, J = 1 T. We represent in Fig. 6 three 2D cross-
sections of the iso-lines created by the parallelepiped magnet with the
polarization ~J = J√

2
~uy+ J√

2
~uz. In this configuration, we take θ = π

2 rad
and φ = π

4 rad.
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Figure 5. 2D representation of the iso-lines created by a parallelepiped
magnet whose polarization is directed along the z direction; (x-y)-
plane: z = 19.9mm, (x-z)-plane: y = 5 mm, (y-z)-plane: x = 4.5mm.
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Figure 6. 2D representation of the iso-potentials created by a
parallelepiped magnet whose polarization is ~J = J√

2
~uy + J√

2
~uz; (x-y)-

plane: z = 19 mm, (x-z)-plane: y = 5 mm, (y-z)-plane: x = 4.5mm.

4. CONCLUSION

This paper has presented three-dimensional analytical expressions
for calculating the magnetic scalar potential and the magnetic field
produced by a parallelepiped magnet of various polarization direction.
In particular, the polarizations considered are entirely uniform, as it
is generally the case in practice. By using the coulombian model of a
magnet, we have expressed the the three components of the magnetic
field in terms of fully analytical parts whose computational cost is
very low. Such expressions have been compared to the ones published
in the literature when the magnet polarization is directed along the
axial direction. From an academic point of view, these expressions are
an extension to the case of parallelepiped permanent magnet whose
polarizations are directed along the x, y or z directions.
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