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Self-avoiding polymers in two-dimensional �d=2� melts are known to adopt compact configurations of
typical size R�N��N1/d, with N being the chain length. Using molecular-dynamics simulations we show that
the irregular shapes of these chains are characterized by a perimeter length L�N��R�N�dp of fractal dimension
dp=d−�2=5 /4, with �2=3 /4 being a well-known contact exponent. Due to the self-similar structure of the
chains, compactness and perimeter fractality repeat for subchains of all arclengths s down to a few monomers.
The Kratky representation of the intramolecular form factor F�q� reveals a strong nonmonotonous behavior
with q2F�q��1 / �qN1/d��2 in the intermediate regime of the wave vector q. Measuring the scattering of labeled
subchains the form factor may allow to test our predictions in real experiments.

DOI: 10.1103/PhysRevE.79.050802 PACS number�s�: 61.25.hk, 47.53.�n

I. INTRODUCTION

It is well known that linear polymers in two dimensions
adopt compact and segregated conformations at high densi-
ties �1–6�. This is expected to apply not only on the scale of
the total chain of N monomers but also to subchains com-
prising s monomers, at least as long as the segments are not
too small �1�s�N�. The typical size R�s� of a chain seg-
ment should thus scale as R�s��s� with an exponent �
=1 /d set by the spatial dimension d=2. Compactness does
obviously not imply Gaussian chain statistics �2,3� nor does
segregation of chains and chain segments impose disklike
shapes minimizing the average perimeter length L�s� of
chain segments. The boundaries of chains and of chain seg-
ments are in fact found to be highly irregular as revealed by
the snapshot presented in Fig. 1. Using scaling arguments
and molecular-dynamics �MD� simulations we show below
that these perimeters are fractal, scaling as

L�s� � R�s�dp � s1−��2, �1�

with dp=d−�2=5 /4�1 being the fractal line dimension.
Our work is based on the pioneering work by Duplantier
who predicted a contact exponent �2=3 /4 �2� characterizing
the intrachain segmental size distribution. In contrast to
many other possibilities to characterize numerically the com-
pact chain conformations the perimeter length can be related
to the intrachain form factor F�q� making it accessible ex-
perimentally, at least in principle, by means of small-angle
scattering experiments �7,8�.

We recall first the computational model used for this
Rapid Communication and then confirm numerically the
scalings of R�s� and L�s� suggested above. The analysis of
intrachain properties such as the segmental size distribution,
the bond-bond correlations, and the intrachain form factor
will allow us to demonstrate Eq. �1�. We conclude by dis-
cussing consequences for the dynamics of two-dimensional
�2D� melts.

II. COMPUTATIONAL ISSUES

Our numerical results are obtained by MD simulations
of monodisperse linear chains at high densities. Our coarse-

grained polymer model Hamiltonian is essentially identical
to the well-established Kremer-Grest �KG� bead-spring
model �9–11� where the excluded volume interaction among
monomers is mimicked by a purely repulsive Lennard-
Jones potential and the chain connectivity is assured by har-
monic springs calibrated to the “finite extendible nonlinear
elastic” �FENE� springs of the KG model. We focus in this
work on melts of density �=7 /8 at temperature kBT=1 with
chain lengths ranging up to N=2048 using a periodic simu-
lation box of linear length 335.2 containing 98 304 mono-
mers �12�.
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FIG. 1. �Color online� A snapshot of a melt configuration with
chain length N=1024 and monomer density �=7 /8 can be seen in
the left panel. Only the perimeter monomers interacting with other
chains are indicated. The numbers refer to an arbitrary chain index
used for computational purposes. The chains are compact, i.e., they
fill space densely, but compactness does not imply a disklike shape
�see, e.g., chains 3 and 8�. The main figure presents the end-to-end
distance R�s�= �r2�1/2, the radius of gyration Rg�s�, and the mean
perimeter length L�s� of segments containing s=m−n+1 monomers
as indicated by the sketch on the right. The full symbols refer to
overall chain properties �s=N�. The solid lines confirm the expo-
nent �=1 /2 for the segment size, the dashed line confirms the scal-
ing of L�s� suggested by Eq. �1�.
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III. MEAN SEGMENT SIZE AND PERIMETER LENGTH

The main part of Fig. 1 presents the typical size and pe-
rimeter length of a chain segment between the monomers n
and m=n+s−1 as indicated by the sketch. Following �13,14�
we average over all pairs �n ,m� possible in a chain of length
N. Averaging only over segments at the curvilinear chain
center slightly reduces chain end effects, however the differ-
ence is negligible for the larger chains, N�256, we will
focus on. Open symbols refer to segments of length s�N of
chains of length N=1024, full symbols to total chain proper-
ties �s=N�. The segment size may be characterized by either
the second moment R2�s�= �r2� of the end-to-end vector r of
the segment �squares� or by its radius of gyration Rg

2�s� �tri-
angles� �15�. In agreement with various numerical studies
�4–6� the presented data confirms that the chains are com-
pact, i.e., �=1 /2 �solid lines�, on all scales s �16�. A perim-
eter monomer of a chain segment is defined as a monomer
being within a distance of 1.2 to a monomer not belonging to
the same chain segment �17�. The mean number L�s� of these
perimeter monomers increases with a power-law exponent
1−��2=5 /8 �dashed line� which is in perfect agreement
with Eq. �1�, and this holds again on all scales for arbitrary
segment lengths provided that the segment is sufficiently
large �s�50�. We demonstrate in the following where the
suggested scaling stems from.

IV. SEGMENT SIZE DISTRIBUTIONS
AND CONTACT EXPONENTS

Obviously, the mere fact that the exponent � is the same
in two and three dimensions does not imply that 2D melts are
Gaussian �2�. This can be directly seen from the different
probability distributions of chain segment vectors r=rm−rn
presented in Fig. 2. To simplify the plot we focus on the two
longest chains simulated, N=1024 and N=2048. G0�r ,N�
characterizes the distribution of the total chain end-to-end
vector �n=1, m=N�, G1�r ,N� characterizes the distance be-
tween a chain end and the monomer in the middle of the
chain �n=1, m=N /2�, and G2�r ,N� characterizes the distri-
bution of an inner segment vector between the monomers
n=N /4 and m=3N /4. In addition, we indicate the segmental
size distribution G�r ,s� averaging over all pairs �n ,m� which
has been used recently to characterize deviations from ideal
chain behavior in three-dimensional �3D� melts �14�. All data
for different N and s collapse on three distinct master curves
if the axes are made dimensionless using the second moment
Ri

2 of the respective distribution as indicated in the figure.
The only relevant length scale is thus the typical size of the
segment itself. The distributions are not monotonous and are
thus qualitatively different from the Gaussian �thin lines� ex-
pected for random walks. In agreement with Duplantier �2�
we find

Ri
dGi�r,N� = x�i f i�x� , �2�

with x=r /Ri being the scaling variable and the contact expo-
nents �0=3 /8, �1=1 /2, and �2=3 /4 �dashed lines� de-
scribing the small-x limit where the universal functions f i�x�
become constant. Especially the largest of these exponents,

�2, is clearly visible. The contact probability for two mono-
mers of a chain in a 2D melt is thus strongly suppressed
compared to ideal chain statistics ��0=�1=�2=0�. As can
be seen, the rescaled distributions G�r ,s� and G2�r ,N� be-
come identical for intermediate segment length, 1�s�N.
�Obviously, G�r ,s��G0�r ,N� for very large segments
s→N.� It is for this reason that the exponent �2 is the most
important one for asymptotically long chains where chain
end effects can be neglected. The rescaled distributions show
exponential cutoffs for large distances. The Redner–des
Cloizeaux formula �18� is a useful interpolation formula
which supposes that f i�x�=Ci exp�−Kix

2� with constants Ci
and Ki=1+�i /2 imposed by the normalization and the sec-
ond moment of the distributions �19�. This formula is by no
means rigorous but yields reasonable parameter free fits as
shown for f2�x�.

V. BOND-BOND CORRELATIONS

The bond-bond correlation function P1�s�= �en ·em� �ei de-
noting the normalized bond vector connecting the monomers
i and i+1� has been shown to be of particular interest for
characterizing the deviations from random-walk statistics in
3D polymer melts �13,14�. The reason for this is that P1�s� is
proportional to the second derivative of the segment size
R�s�2 with respect to segment length s so that small devia-
tions from the asymptotic exponent 2�=1 are emphasized
�14�. As can be seen from the inset in Fig. 3 deviations of
this kind are small for large s and may be neglected for the
present Rapid Communication. The main effect visible is an
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FIG. 2. �Color online� Scaling plot of various distributions of
the end-to-end vector r=rm−rn of chain segments of chains of
length N=1024 �stars� and N=2048 �triangle�: G0�r ,N� for n=1
and m=N, G1�r ,N� for n=1 and m=N /2, G2�r ,N� for n=N /4 and
m=3N /4. G0�r ,N� and G1�r ,N� are shifted vertically for clarity.
The segmental size distribution G�r ,s� averaging over all pairs
�n ,m� given for N=1024 with s=256 �squares� and s=512
�spheres� scales as G2�r ,N�. The thin lines indicate the Gaussian
distribution y=exp�−x2� /� expected for ideal chains in two dimen-
sions. The power laws y�x�i �dashed lines� observed for x�1
have been predicted by Duplantier �2�. The Redner–des Cloizeaux
formula for G2�r ,N� is indicated by a solid line.
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anticorrelation at s�12 due to the backfolding of the chain
contour which can be directly seen from the snapshot. Con-
ceptually more important is the fact that the second Legendre
polynomial P2�s�= ��en ·em�2�−1 /2 reveals a clear power-law
behavior over 2 orders of magnitude in s �dashed line�. The
power law is due to the alignment of two bonds if they are
sufficiently close, i.e., the exponent measures the return
probability after s steps. It follows from Eq. �2� that for 1
�s�N this is given by limr→0 G�r ,s��1 /s1+��2 =s−11/8.
The agreement of the data with this exponent is excellent and
provides an independent confirmation of �2=3 /4.

VI. INTRACHAIN FORM FACTOR

Neither segmental size distributions nor bond-bond corre-
lation functions are readily accessible experimentally. It is
thus important that �2 should be measurable—at least in
principle—from an analysis of the intrachain form factor
F�q�= 1

N	n,m=1
N �exp�iq · �rn−rm���. The reason for this is that

the form factor can be expressed by the Fourier transform
G�q ,s�= �exp�iq · �rn−rm���nm of the segmental size
distribution G�r ,s�, with q being the wave vector: F�q�
= 2

N
0
Nds�N−s�G�q ,s�. Assuming G�r ,s��G2�r ,N� and us-

ing the Redner–des Cloizeaux approximation in Eq. �2� this
yields a lengthy analytic formula �not given� which is repre-
sented by the solid line in Fig. 4 �20�. For wave vectors
corresponding to the power-law regime of Eq. �2� this re-
duces to the simple power law,

F�q�/N � 1.98/�qRg�N��d+�2, �3�

indicated by the dashed line. Note that the above scaling is a
direct consequence of G�r ,s��r�2 and does not rely on the
Redner–des Cloizeaux approximation. We rescale the wave
vector with the measured radius of gyration Rg�N� �presented
in Fig. 1� to collapse all data in the Guinier regime for small

x=qRg�N��1 and use a Kratky representation for the verti-
cal axis y= �F�q� /N�x2. While y becomes constant and inde-
pendent of chain length for x	1 for Gaussian chains �as
shown by the Debye formula indicated� �1�, we observe over
a decade in x a striking nonmonotonous behavior. Our data
suggests that Eq. �3� is approached systematically with in-
creasing chain length—the central numerical result presented
in this Rapid Communication.

VII. IDENTIFICATION OF Θ2 AND
THE FRACTAL LINE DIMENSION

The preceding discussion focused exclusively on intrac-
hain properties. Since 2D chains are compact �Fig. 1� only
monomers on the chain perimeter interacting with monomers
from other chains can contribute to the scattering. Quite gen-
erally, the scattering intensity NF�q� of compact objects be-
comes proportional to the mean “surface” L�N��R�N�dp for
qR�N�	1 which implies the generalized Porod law �7,21,22�

NF�q� � N2/�qR�N��2d−dp. �4�

For a 2D object with smooth perimeter �dp=1� this corre-
sponds to the classical Porod scattering F�q��1 /q3 repre-
sented by the dash-dotted line in Fig. 4. Comparing Eq. �4�
with Eq. �3� shows that the 2D melts are characterized by a
fractal line dimension dp=d−�2 and demonstrates finally the
scaling of the perimeter length L�N� postulated in Sec. I and
verified numerically in Fig. 1. By labeling only the mono-
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FIG. 4. �Color online� Kratky representation of the intramolecu-
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lengths N using the same symbols as in Fig. 3. The Debye formula
�thin line� corresponds to a chain length independent plateau for
x	1. By contrast to this, a strong nonmonotonous behavior is re-
vealed by our data which approaches with increasing N a power-law
exponent −�2=−3 /4 �dashed line� corresponding to a compact ob-
ject of fractal line dimension dp=d−�2=5 /4. Also included is the
Porod scattering expected for a compact 2D object with smooth
perimeter �dash-dotted line� and the Fourier transform of the
Redner–des Cloizeaux approximation �solid line�. The increase in
the scattering for large q �Bragg peak� is due to the packing of the
beads on local scale. Only in this limit does F�q� become chain
length independent.
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mers of subchains �which corresponds to scattering ampli-
tude sF�q��L�s��R�s�dp� the above argument is readily
generalized to the perimeter length L�s� of arbitrary segment
length s�N �23�.

VIII. SUMMARY

Investigating various static properties of linear polymer
melts in two dimensions, we have demonstrated that the
compact chains and chain segments ��=1 /2� are character-
ized by a fractal perimeter L�s� of line dimension dp=d
−�2=5 /4. As may be seen from Fig. 4, computationally
very demanding systems with chain length N�103 are re-
quired and have thus been simulated to put the suggested
scaling behavior to the test. Our results may be verified ex-
perimentally from the scaling of the intrachain form factor
F�q� whose Kratky representation is predicted to reveal a
strong nonmonotonous behavior. This should also hold in
semidilute solutions provided that the chains are long enough
�12�. Interestingly, the fractality of the perimeter precludes a
finite line tension. Thus, shape fluctuations of the segments

are not suppressed exponentially �4� but may occur in an
“amoebalike” fashion by advancing and retracting “lobes.”
According to a recent suggestion �3� the relaxation time 
�s�
of a chain segment may, hence, scale as 
�s��L�s�3�s15/8

rather than as s2 as in the standard Rouse model �15�.
Clearly, as Gaussian chain statistics is inappropriate to de-
scribe conformational properties of 2D melts, there is no
reason why a model based on this statistics should allow to
describe, e.g., the perimeter length fluctuations. Since the
latter property is in principle accessible experimentally from
the dynamical intrachain structure factor F�q , t� �7,15� this is
an important issue we are currently investigating.
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