
HAL Id: hal-00430817
https://hal.science/hal-00430817

Submitted on 10 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-peer time-shifted streaming systems
Yaning Liu, Gwendal Simon

To cite this version:

Yaning Liu, Gwendal Simon. Peer-to-peer time-shifted streaming systems. 2009, pp.14. �hal-00430817�

https://hal.science/hal-00430817
https://hal.archives-ouvertes.fr

Peer-to-Peer Time-shifted Streaming Systems

Yaning Liu Gwendal Simon

Institut Telecom - Telecom Bretagne, France

November 6, 2009

Abstract

In live streaming systems (IPTV, life-stream services, etc.), an attrac-
tive service consists in allowing users to access past portions of the stream.
This is called a time-shifted streaming system. In our vision, a centralized
time-shifted streaming system face scalability and ethical issues, there-
fore, we address the problem of designing a peer-to-peer system where
peers store and deliver past chunks. We first attempt to identify the main
characteristics of time-shifted streaming system from well-known measure-
ments of VoD and IPTV systems. These overlays are the first structures
specifically designed for time-shifted streaming system. Although no eval-
uation is presented, these preliminary description aim to foster discussions
on a critical service.

1 Introduction

Context. The omnipresence of live streams (i.e., streams that are continuously
produced from fresh content) represents a challenging trend of the Internet. A
tremendous scientific literature deals with live video streaming systems in the
perspective that video streams will soon represent a large majority of the whole
Internet traffic [1]. Still, other forms of live streams are emerging, in particular
new forms of life-stream. The concept originally coined by Vannevar Bush [2]
is currently revisited by popular social network tools like twitter: every user
is a producer of a life-stream, a stream of personal data that is inherently
made public in order to be consumed by friends. Should life-streams joint with
multimedia data generated by passive life experience capturing systems [3], the
traffic related with these life-stream applications could become huge. In parallel,
the proliferation of sensors and the rise of the Internet of things are expected
to generate also a large amount of data streams [4]. Without loss of generality,
we assume in this paper live streams consisting of a continuous series of chunks
that are generated by a producer (or source).

Problem. In most cases, these live streams are immediately consumed by
some clients, the delivery at large scale being ensured by multicast protocols,
powerful data-center or peer-to-peer exchanges. A critical service consists, how-
ever, in allowing clients to access past portions of a live stream. In the context of

1

IPTV, this is called the time-shifted television: clients start watching a TV pro-
gram from the beginning although the live program has already started or been
finished. This feature is currently offered by several public TV broadcasters on a
part of their history, though these services will probably soon apply soon to the
whole history, especially for life-streams and sensor-generated streams. Please
note that the client may choose any past stream portion, the past portion is
not restricted to the stream that the client may have previously downloaded.

We distinguish the stream producer, which continuously generates the con-
tent, and the stream provider, the entity responsible both to continuously store
the whole stream in a persistent manner, and to serve clients issuing requests on
past stream portion. A stream producer can rarely be a stream provider, e.g.,
when the producer is a set of tiny sensors or a frequently disconnected individ-
ual. Besides, a stream provider based on a centralized architecture admits some
drawbacks. First, the upload bandwidth requirement is very high, because,
contrarily to live streaming systems, time-shifted streaming systems can not
directly use group communication techniques like multicast protocols or peer-
to-peer systems, for the reason that clients require here distinct portions of the
stream. Moreover, sensitive life-streams or personal sensor-generated streams
highlight the ethical limitations of private data-centers: lesser privacy protec-
tion, data lock-in or third-party control. Therefore, in this paper, we address
the design of a peer-to-peer provider for time-shifted streaming.

Related Works. The studies related to life-streams or sensor-generated
streams have mainly assumed that stream producer and provider are the same
entity. They focus on information retrieval techniques to improve search into
stream history [3, 5]. Time-shifted video streaming has only recently been ex-
plored. Enhancements to streaming servers are proposed in [6]. The scalability
issue of centralized architectures is temporarily tackled by the use of proxy
caches in [7]. Cache replication and placement schemes are extensively stud-
ied by the authors of [8]. Finally, when several clients share the same Internet
access, a patching technique described in [9] can be used to handle several
concurrent requests on the same stream. A couple of preliminary works have
sketched a peer-to-peer architecture for time-shifted TV systems. In [10], every
client stores all downloaded video chunks. A Distributed Hash Table (DHT) is
used to keep trace of the owner of every chunk, so that a peer able to upload
a past video chunk can be found upon a simple request to the DHT. Similarly,
a DHT is used to locate video chunks in [11]. Some additional proxies aim to
ensure the continuity of video that are locally downloaded. These works appear
to suffer from several crucial drawbacks. At first, the use of a DHT is actually
irrelevant in this context. Indeed, two peers that are responsible of two consec-
utive chunks are not linked anyhow. Therefore, downloading a long portion of
past video requires to send numerous consecutive requests to the peer-to-peer
structure. Moreover, for every received chunk, a peer should notify the DHT,
which is quite costly. Finally, the number of video replica is not guaranteed.

Contributions. This paper is made of two independent parts. First, we
describe the main characteristics of time-shifted streaming with a specific focus
on time-shifted IPTV systems. Unfortunately, no measurement on time-shifted

2

t0
lag

time

x

x

(3) (4)

(7)
(2)

(5) (6)

show4 show3 show2 show1

t1
show4 show3 show2 show1

(1)

Figure 1: Use cases of time-shifted IPTV systems

IPTV have been published, so we composed from well-known characteristics of
both live and Video-on-Demand streaming systems to conjecture the behavior of
clients in time-shifted streaming systems. Second, we propose two peer-to-peer
providers for time-shifted streaming systems. The first system is a structured
system, namely turntable, that distributes on a set of network elements the
task of the provider. That is, elements that are not client of the system can
also participate to the storage, for example network operators may use some
controlled set-top-boxes to raise a distributed time-shifted streaming system.
The second one, namely interval overlay, uses exclusively the storage capacity
of clients. The goal here is to ensure that all chunks are actually saved and
available, while the cost is well distributed among clients.

2 Time-shifted IPTV Systems

The goal of this section is to characterize time-shifted streaming systems, i.e.
describing the main use-cases, revealing typical client behaviors and popularity
trends, and finally estimating the capacity requirements. We focus on peer-to-
peer time-shifted IPTV systems because (i) IPTV systems have been extensively
studied recently, so our conjectural analysis can base on proved existing facts,
(ii) IPTV is currently the most attractive and challenging application.

2.1 Use Cases

Figure 1 depicts use cases of time-shifted IPTV systems. The y-axis represents
the playing time of the video source, and the x-axis shows the time lag distri-
bution of playing positions with the source at a particular time. The shaded
area denotes the time range for the live streaming service, that is, peers in this
area are synchronous with the source, but with a small time lag because of the
buffer mechanism and network delay. The small black points denote the playing
positions of peers in the system, and the rectangle with shadow presents a data
chunk.

In an idle context, peers and source are shifting with the same direction and

3

#
a
ct

iv
e

p
ee

rs
0

shown
shown−1

......

......

show2 show1

Figure 2: Population size vs. time lag (with shows)

a uniform velocity. So the time lags between peers and the source are constant
from time t0 to t1. From the viewpoint of chunks in case (1), chunks move
along x-axis at the same speed as the source that continues outputting new
content. Therefore, between time t0 and time t1, a chunk moves t1− t0 far from
the stream producer. In television, the stream is basically cut into successive
shows (news, movie, sport event, etc.). In this example, we represent four shows
(show1, show2, show3 and show4). From time t0 to t1, the four shows move
t1 − t0 far from the source.

We detail now the main events that are possible for a peer x in a time-shifting
stream system. They are commonly referred to as VCR operations.

Pause: it occurs when a user leaves for a moment and is expected to resume
streaming later from this current position. This is represented by case (2) in
Figure 1. If the peer x performs a pause at time t0 and continues playback at
time t1, the lag between x and the source will increase by t1−t0. This operation
is implemented in current live streaming systems. In these systems, x continues
to download the fresh content and buffers it.

Forward and Backward: a viewer in time-shifted IPTV system can perform
forward or backward operations inside a show, as depicted in cases (3) and
(4), or between different shows in cases (5) and (6). We distinguish these two
scenarios because both starting and ending times of a show are special points
where the behavior of clients can be very different from other stream positions.

Churn: a peer x may join the system as a live client, but it can also imme-
diately start at a past position. As in other peer-to-peer systems, a peer should
be assumed to be able to leave at any time, sometimes abruptly. We highlight
however in the case (7) that it is also more probable that peer leaves at the end
of a show, as it has been shown in recent studies [12].

2.2 Trends on User Behavior

To the best of our knowledge, no measurement study dealing with time-shifted
IPTV systems has been published yet. However, we observe that this service
combines somehow the real-time property of IPTV and the flexibility of VoD
applications. Therefore we match the related characteristics of IPTV and VoD
systems to highlight expected behavior of clients using a time-shifted IPTV
systems. Note however that some of the ideas extracted from these well-known

4

measurements are in contradiction with the aforementioned previous works on
peer-to-peer time-shifted video systems.

Stream Popularity: the relevance of Zipf distribution to describe the popular-
ity of content in current large-scale applications has been widely demonstrated.
It applies also to both IPTV [13] and VoD systems [14]. For time-shifted video
streaming systems, it is reasonable to expect that streams will exhibit Zipfian
popularity distribution. For very popular streams, the storage capacity can be
neglected in comparison to the upload bandwidth requirement. In the opposite
for the huge number of unpopular streams, the required storage can become the
main problem. This differences may lead to distinct strategies.

Show Popularity: in the same manner, the popularity of different shows in
a channel could be similar to VoD systems. Figure 2 represents a conjectured
situation where the population varies with the popularity distribution of the
shows in a channel. In [15], a peak has been identified at the beginning of each
show. Then, as can be also stated in VoD systems, the number of watchers
decreases, because a portion of viewers often surf the beginning of shows or
leaves after few minutes. Note that the populations are probably different for
distinct shows .

Churn: the spikes of departure have been shown to occur mostly either
at the end of the show, or because the user does not find any interest after
browsing the beginning of the show. That is, peers usually leave immediately,
or simultaneously at the end of programs in [12]. Moreover, a large number of
sessions end in the first minute, which means that these clients are not interested
in the shows after browsing through the beginning. In this study, it is shown
that more than half of the population quits during the first ten minutes of a
show in average. Moreover, in most cases, the more popular is the show, the
shorter is the session length.

2.3 System Perimeters

If we assume that the size of each chunk is 2 MBytes and the source video rate
is 500 Kbps [16], the number of chunks that should be stored in one day is
approximately 2, 700, so it represents more than 5 GBytes of video data. These
numbers are respectively 80, 000 and 160 GBytes for one month for only one
stream. The amount of data that should be handled in time-shifted streaming
system are several orders of magnitude larger than in VoD systems. That is, it
is not surprising that many issues that can be easily tackled in VoD peer-to-peer
systems can hardly find solutions in our context.

The approaches commonly used in peer-to-peer VoD systems to store data
can be roughly classified into two categories: distributed data storage (e.g. [17]),
and sliding window buffering (e.g. [18]).

In the distributed data storage, each peer is assigned to store some video
chunks and serve other peers. Ideally, a peer is assigned to a small amount of
chunks, therefore the impact of downloading them initially can be neglected,
while it can not in time-shifted systems. Moreover, the total number of chunks

5

is fixed in VoD systems, although fresh chunks should continuously be treated
in time-shifted streaming systems.

In the sliding window buffering, each peer caches the past downloaded chunks
for a period of time before discarding them. It serves other peers with this
cached content. This cache corresponds to a sliding buffer window with a fixed
size, from the upcoming chunks that will be soon played to the chunks that
have been played not so recently. In these systems, peers whose buffers overlap
are likely to exchange data. However, in comparison to VoD systems where
the typical video duration is not long, time-shifted streaming systems apply on
far much longer time. Several issues immediately raise: how to ensure that a
unpopular past portion of the stream is covered by at least one sliding buffer,
how to dimension the buffer size, etc.

3 Our Proposals

Our purpose is to build a distributed time-shifted streaming system. We call
peer an entity having both storage and network capabilities. We aim to utilize
the upload bandwidth of peers to reduce the bandwidth burdens placed on the
server. Among the peers, we distinguish the clients, who are also consuming
the stream, and other elements that are generously contributing to the system
without immediate reciprocity (for example, a set-top-box controlled by a net-
work operator). We neglect here the selfish behavior of peers, that is, we do
not design any incentive to prevent free-riders. Then, we say that a client can
be either a live client (consuming the live stream) or a hookup client (consum-
ing a past portion of the stream). The delivery of the live content (multicast,
peer-to-peer, etc.) is out of the scope of this paper. Rather, we focus on serving
the hookup clients. Please note that a VCR operation can make a live client
become a hookup client, and vice versa.

We identify three main challenges in peer-to-peer time-shifted streaming
systems: (i) how to store the continuous content output from the source; (ii)
how to guarantee that every past chunk is still available in the system; (iii) how
to retrieve a series of successive chunks from a past stream portion. We propose
two possible approaches: a distributed turntable structure and an interval graph
structure.

3.1 Distributed Turntable Structure

We propose first a structured system based on a turntable. See Figure 3 for
a representation. The main idea is as follows. We divide the turntable into
m sectors noted si, 0 ≤ i < m. Every peer joins a sector. The turntable
implements a rotational motion in clockwise direction. At every time t, the
producer, noted p, produces a new chunk that is sent to peers in a sector si,
then the chunk produced at time t + 1 is sent to sector sj with j = (i + 1)
mod m, and so on1. Hence, every new chunk is stored by a subset of peers. See

1in the following, we omit the modulo for notation clarity.

6

s j

s j
+
1

p

p

p

Figure 3: The distributed turntable structure

Table 1 to see a typical distribution of chunks to sectors. When a client wants
to download any past portion of the stream, it should first determine the sector
associated with the first chunk of this portion. After finding a peer that has
stored the requested chunks in this sector, the peer can begin to download the
stream. It should then jump to the next sector in order to retrieve the next
chunk and continues consuming the stream.

Sector Id Chunk Id

0 0 m 2m · · ·
1 1 m + 1 2m + 1 · · ·
· · · · · · · · · · · · · · ·

m − 1 m − 1 2m − 1 3m − 1 · · ·

Table 1: The chunk distribution in the turntable

The producer must be connected to at least one peer in every sector. These
peers are called representant. When it is time for a sector si to download and
store a chunk, the source alerts the representants for si and sends the chunk to
them, then this chunk is diffused in the sector. The overall structure overlay
formed by the turntable structure depends on how peers are linked inside a
sector, which are called the intra-sector links, and how peers from one sector
are linked to peers of the next sector, namely the inter-sector links.

The main purpose of the intra-sector links is to allow an efficient diffusion of
fresh chunks into one sector. Moreover, the overlay formed by intra-sector links
should also serve to implement a mechanism aiming to ensure a fair allocation
of the past chunks. Indeed, past chunks concentrate on oldest peers, so oldest
peers attract requests. This uneven request distribution may not reflect peer
capacities (old peers may have a lower upload capacity than the new ones).
Ideally, the number of replicas of a chunk should correspond to the number of
requests emitted for the stream portion this chunk belongs to.

7

p

· · ·

s1 s2 sm

Links inside a sector
Links among sectors

Figure 4: The tree-based overlay structure

The inter-sector links aim to ease the retrieval of consecutive chunks. A client
x downloading a past stream portion will produce many successive requests to
successive past chunks. The purpose of an inter-sector link is to connect two
peers that are in successive sectors and that store some successive chunks from
past stream portions. When x is served by a node yi ∈ si, its next request will
be in sector si+1, i.e. x should find in sector si+1 a peer that stores the chunk
next to the one it just downloads from yi. Ideally, the peer yi+1 ∈ si+1 to which
yi is connected stores the next chunk that x will request, so yi can introduce
yi+1 to x and save request messages.

We describe in the following two possible implementations: a tree-based (see
Figure 4) and a mesh-based (see Figure 5) overlays for every sector. Please note
that, for clarity reasons, we do not give further implementation details, this is
left for future works, especially a comprehensive system evaluation.

3.1.1 Tree-Based Turntable

The first proposal is to build, into every sector, a logical tree rooted on the
producer, where the representants are immediate children and other peers self-
organize to build a tree. In this configuration, the intra-sector links form m

independent trees for m sectors. Thus, when representants receive a chunk from
the producer, this chunk can be optimally diffused to all peers in the sector.
Various optimization algorithms can be used in our context. In particular,
algorithms for building minimum-cost spanning trees can help to diminish the
network cost to span all peers (e.g., the number of Autonomous Systems (AS)
traversed by a chunk in the tree). Another optimization consists in matching
the capacity of peers (e.g., upload bandwidth) and their position in the tree
(e.g., the level).

We propose also to implement a mechanism that allows every peer to know
all the replicas that are currently stored in the sub-tree rooted on it. This
can typically be implemented without much efforts with transmission of Bloom
Filters where an entry i corresponds to whether the ith chunk is guaranteed to
be found in at least one descendant. The purpose of this mechanism is twofold:

8

(i) if a chunk is missing at the highest levels of the tree, it is possible to run an
emergency procedure aiming to reproduce new replicas of this chunk, (ii) when
a peer receives a request for a chunk it does not have it can immediately know if
the request should be routed to its children or its father. That is, a basic Bloom
Filter mechanism may allow efficient replica management and request routing.

The drawbacks include that trees are known to be difficult to maintain in
dynamic peer-to-peer systems, as other structured peer-to-peer systems. More-
over, the capacity of leaf peers is unused in the diffusion of live chunks, while
the peers at the highest levels can be overloaded. Actually, a trade-off should be
found between the number of leaves and the depth of a tree, which have a direct
impact on the cost of the Bloom Filter mechanism and on the performances of
the request routing. Finally, this structure is efficient to diffuse a chunk to all
peers, but this may be unnecessary because only some replicas of fresh chunks
should be stored.

3.1.2 Mesh-Based Turntable

The second proposal is to build, into every sector, a mesh-based overlay where
the diffusion of chunks is based on gossip protocols. Every peer has a list of
peers that it continuously refreshes. Peers exchange messages on a periodic
manner, these messages may carry chunks or neighborhood information. The
randomized processes in action in gossip protocol have proved to be both efficient
and adequate to maintain consistently a given number of replicas in dynamic
systems [19]. However, determining the adequate parameters for these systems,
especially the frequency of message exchanges, is not easy.

In a mesh structure, a challenge consists in ensuring that every peer is close
to any chunk, so that requests for past chunks can be treated as quickly as
possible. We propose to use a mechanism based on domination theory. This
mechanism is somehow similar as the one recently described in [20]. A set
D ⊆ V of vertices in a graph G = (V,E) is called a dominating set if every
vertex x in V is either an element of D or is adjacent to an element of D.
Most domination problems are NP-hard problems, so no exact solution can be
computed in a reasonable time. In our case, a practical distributed solution aims
to maximize the number of distinct chunks in the neighborhood. The idea is to
build a domatic partition of the overlay, that is, to determine several distinct
dominating sets, each dominating set being responsible to store a subset of the
chunks of this sector. Every past chunk and every peer are associated with a
color, the number of colors being the partition size. A peer in a color should be
able to retrieve any chunk associated with this color. So, when a representant
receives a new chunk, it sends this chunk to the neighbor that has the same
color, then the diffusion is restricted to peers in this color. Similarly, when a
request for a past chunk is received by a peer, it should first determine the
color associated with this chunk, then forward the request to its appropriate
neighbor.

9

p

si

si−1 si+1

Figure 5: The mesh-based overlay structure

3.1.3 Discussion

The advantages of the turntable structure include that every sector should par-
ticipate at the same level. Because every sector is associated with a chunk unit,
the portion popularity variation does not impact the sector request load. More-
over, every sector should store the same amount of chunks. However, the cost
of maintaining the structure in an efficient manner may be high. Moreover, it is
not clear that easy incentive mechanism can be implemented in such a structure.
Note however that, contrarily to previous works, the design of this structure fits
definitely the characteristics of time-shifted streaming systems.

3.2 Interval Overlay Structure

We propose now an overlay structure based on interval graphs. Here, every peer
is a client that is requesting a past portion of the stream. The idea is that the
chunks sent to the clients are temporarily stored by the clients, so that other
peers can request them.

First, we recall the definition of interval graph. A graph is called an interval
graph if its vertices can be put in a one-to-one correspondence with a family F

of intervals on the real line, such that two vertices are adjacent in G iff their
corresponding intervals have nonempty intersection. Formally, let {I1, I2, ..., In}
be a set of intervals. A graph G = (V,E) is an interval graph when ∀x, y ∈
V, {x, y} ∈ E ⇔ Ix ∩ Iy 6= ∅.

3.2.1 Description

In peer-to-peer VoD systems, each peer manages a sliding buffer containing
some past chunks that have been already played and a few chunks that have
been downloaded in advance. A sliding buffer is at a given time t an interval.
We define, for every peer x, its interval Ix containing a left bound lx, a playing
position cx and a left bound rx. The value of these parameters are related with
the source. That is, the interval (lxcx) contains chunks that will be played (this
interval may be incomplete, i.e. some chunks may be missing) and the interval
(cx, rx) contains past chunks that have been played (it is expected to be full).

10

Peers connect with the other peers whose buffers overlap. We do not detail
here the straightforward gossip protocol resulting eventually in that every peer
is connected with all peers whose buffer overlap. As we previously noticed, the
challenge of implementing such buffer-based techniques in time-shifted stream-
ing systems is to ensure that all past chunks are in at least one sliding buffer.
Our idea is that every peer should adjust its variable lx and rx, so that the global
overlay respects some conditions. We formulate the problem as an optimization
problem whose formulation is as follows.

Actually, the size of the buffers should be reduced. Indeed, the management
of large buffers implies large neighborhood and potentially a large traffic. That
is, our objective is to minimize the length of the intervals:

minimize
∑

x∈V

lx − rx

The first constraint, obvious, is that the resulting interval graph should
be connected. Furthermore, ensuring a sufficient redundancy requires a k-
connectivity. In interval graphs, this notion is easier to understand, every chunk
should be covered by at least k intervals. Formally:

∀t ∈ [0, T], |{x ∈ V : t ∈ (lx, rx)}| ≥ k

The second constraint is that peers have limited upload capacities. We
denote by cap(x) the number of peers a peer x can serve. A peer y whose
left interval (ly, cy) overlaps the right interval (cx, rx) is a neighbor that x will
exclusively serve. If x accepts too many peers overlapping its right buffer, it
will probably experience troubles in serving them. Therefore, we introduce the
following constraint:

∀x ∈ V, |{y ∈ V : (ly, cy) ∩ (cx, rx) 6= ∅}| ≤ cap(x)

It is easy to verify whether it is possible to build an interval graph respecting
these constraints. Most algorithms for interval graphs are based on an iterative
exploration of nodes based on their left (or right) interval bound. Here, we
can use the playing time to iteratively explore the peers from the peers which
is playing the freshest portion of the stream to the peers requesting the oldest
stream portion. The k first peers should determine their left bound so that
the graph is k-connected. Once these k first left bounds are set, every peer
determines iteratively their right bounds so that the second constraint is not
violated. Applying iteratively this process should determine a solution, if any.
The optimal solution is not guaranteed, though.

The distributed implementation of this algorithm is also straightforward. A
gossip protocol ensures that every peer is connected with a neighborhood that
is beyond the set of peers to which it must be connected. Every event is diffused
within this neighborhood. Every peer is continuously resetting its parameters
by running the algorithm from the neighbor whose playing time is the closest
to the source to the neighbor with the oldest playing position. When a peer

11

crashes or abruptly changes its parameters (e.g., after a VCR operation), the
gossip protocol should ensure that a new neighbor is added, and the algorithm
re-runs.

3.2.2 Discussion

The advantage of this interval-based overlay is that a peer should not download
unnecessary chunks (or very few). Based on one-to-one relations, this overlay
should also support well-known incentive mechanisms. The size of the buffer is
not fixed, it depends on the popularity of the portion that is requested by the
peer. In a very popular portion (beginning of a popular show), peers have a
small buffer and interact with peers whose playing position is very close. On
the contrary, peers enjoying a unpopular portion may have to manage a very
large number of chunks. In a practical implementation, some dedicated servers
may manage these unpopular portions. To the best of our knowledge, this is
the first time that the management of buffer size aims to satisfy a large set of
peers.

4 Conclusion

Time shifted streaming provides a new attractive service whose implementa-
tion is quite challgenging. We have raised two crucial drawbacks having the
potential to prevent the use of data-centers: scalability and ethics. Although no
measurement of current time-shifted services have been published yet, we pro-
pose a conjectural analysis highlighting the main characteristics of this service.
Then, we describe two peer-to-peer systems: a turntable overlay and an interval
overlay, both of them being still at the early stage of development. Future works
include obviously a comprehensive evaluation of their performances.

Our feeling is that an early publication of the main principles of these over-
lays should foster fruitful discussions about the numerous issues that should
still be tackled. In our opinion, previous works have only sketched unconvinc-
ing solutions. In this paper, the design of the proposed structures is expected to
address some of the main problems (request of consecutive chunks, allocation of
chunks, etc.), but we have emphasized that the management of both fresh and
past chunks is still especially challenging.

References

[1] Cisco, “Forecast and methodology, 2008 - 2013,” Cisco Systems, Tech. Rep.,
June 2009.

[2] V. Bush, “As we may think,” The Atlantic Monthly, vol. 176, no. 1, pp.
101–108, July 1945.

12

[3] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins,
“Stuff I’ve seen: a system for personal information retrieval and re-use,” in
Proc. of the 26th ACM SIGIR, 2003, pp. 72–79.

[4] J. Gama and M. M. Gaber, Learning from Data Streams: Processing Tech-
niques in Sensor Networks, 1st ed. Springer, December 2007.

[5] E. Freeman and D. Gelernter, “Lifestreams: A storage model for personal
data,” SIGMOD Record, vol. 25, no. 1, 1996.

[6] C. Huang, C. Zhu, Y. Li, and D. Ye, “Dedicated Disk I/O Strategies for
IPTV Live Streaming Servers Supporting Timeshift Functions,” in Proc.
of IEEE CIT, 2007, pp. 333–338.

[7] T. Wauters, W. V. de Meerssche, F. D. Turck, B. Dhoedt, and P. De-
meester, “Co-operative Proxy Caching Algorithms for Time-Shifted IPTV
Services,” in Proc. of 32nd Euromicro SEEA, 2006, pp. 379–386.

[8] J. Zhuo, J. Li, G. Wu, and S. Xu, “Efficient cache placement scheme for
clustered time-shifted TV servers,” IEEE Transactions on Consumer Elec-
tronics, vol. 54, no. 4, pp. 1947–1955, November 2008.

[9] W. Xiang, G. Wu, Q. Ling, and L. Wang, “Piecewise Patching for Time-
shifted TV Over HFC Networks,” IEEE Transactions on Consumer Elec-
tronics, vol. 53, no. 3, pp. 891–897, Aug. 2007.

[10] F. V. Hecht, T. Bocek, C. Morariu, D. Hausheer, and B. Stiller, “LiveShift:
Peer-to-Peer Live Streaming with Distributed Time-Shifting,” in Proc. of
8th Int. P2P Conf., 2008, pp. 187–188.

[11] D. Gallo, C. Miers, V. Coroama, T. Carvalho, V. Souza, and P. Karlsson,
“A Multimedia Delivery Architecture for IPTV with P2P-Based Time-Shift
Support,” in Proc. of 6th IEEE CCNC, 2009, pp. 1–2.

[12] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “A Measurement Study
of a Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia,
vol. 9, no. 8, pp. 1672–1687, Dec. 2007.

[13] M. Cha, P. Rodriguez, J. Crowcroft, S. Moon, and X. Amatrianin, “Watch-
ing television over an ip network,” in Proc. of Usenix/ACM SIGCOMM
Internet Measurement Conference (IMC), 2008.

[14] Y. Hongliang, Z. Dongdong, Z. B. Y., and Z. Weimin, “Understanding user
behavior in large-scale video-on-demand systems,” SIGOPS Oper. Syst.
Rev., vol. 40, no. 4, pp. 333–344, 2006.

[15] T. Wauters, W. V. de Meerssche, F. D. Turck, B. Dhoedt, P. Demeester,
T. V. Caenegem, and E. Six, “Management of Time-Shifted IPTV Ser-
vices through Transparent Proxy Deployment,” in Proc. of IEEE Globecom,
2006, pp. 1–5.

13

[16] Y. Huang, T. Z. J. Fu, D.-M. Chiu, J. C. S. Lui, and C. Huang, “Challenges,
Design and Analysis of a Large-Scale P2P-VoD System,” in SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, 2008, pp. 375–388.

[17] V. Nevena, a. K. N. Gupta Priya, K. Dejan, and R. Antony, “Enabling
DVD-like features in P2P video-on-demand system,” in Proc. of Workshop
ACM P2P-TV, 2007, pp. 329–334.

[18] Y. W.-P.K., X. Jin, and C. S.-H.G., “Vmesh: Distributed segment storage
for peer-to-peer interactive video streaming,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 9, pp. 1717–1731, December 2007.

[19] H. Weatherspoon, H. Miranda, K. Iwanicki, A. Ghodsi, and Y. Busnel,
“Gossiping over storage systems is practical,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 5, pp. 75–81, 2007.

[20] A.-M. Kermarrec, E. L. Merrer, Y. Liu, and G. Simon, “Surfing peer-to-
peer iptv system: Distributed channel switching,” in Proc. of Euro-Par,
2009.

14

