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AbstratSine modeling re�etions in image proessing is a di�ult task, most omputer visionalgorithms assume that objets are Lambertian and that no lighting hange ours. Somephotometri models an partly answer this issue by omputing the illumination hanges insmall areas of the image, but they often assume that the lighting hanges are the same in eahpoint of a window of interest. Through a study based on speular re�etion models, suh as thePhong and the Torrane-Sparrow ones, we explain expliitly the assumptions on whih thesemodels are impliitly based and therefore the situations in whih they fail.In this report, we propose two photometri models, whih ompensate for speular high-lights and lighting variations. They are based on the assumption that illumination hangesvary smoothly on the window of interest. The �rst one is more suitable when speular high-lights our and when small windows of interest are used, as in feature points traking. Theseond model ompensates for more omprehensive hanges suh as speular highlights andlighting hanges, and an be used on larger areas of the image. Contrary to existing models,the harateristis of the surfae of the objet and the lighting hanges an vary in the areabeing observed. A part of this report deals with the study on the validity of these modelingswith respet to the aquisition on�guration: relative loations between the lighting soure, theamera and the objet, properties of the surfae (urvatures and roughness). These models areused to improve feature points traking in image sequenes, by omputing simultaneously thephotometri and geometri hanges. The proposed methods are ompared to traking methodswith photometri normalization [34℄ and the tehnique proposed by Jin et al. [31℄. Both ofthem ompensate for a�ne photometri hanges. Sine our approah orrets spatial photo-metri variations, the robustness and the auray of the traking are improved. Experimentalresults on speular objets demonstrate the robustness of our approahes to speular highlightsand lighting hanges, without inreasing omputation times. These proedures provide a goodauray of the points loation during the sequene.KeywordsIllumination hanges, lighting, speular re�etion, photometri models, traking.
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RésuméPuisque la modélisation préise des ré�exions dans des images est une tâhe di�ile, laplupart des algorithmes de vision par ordinateur suppose que les objets sont lambertiens etqu'auun hangement d'élairage ne se produit. Des modèles photométriques répondent par-tiellement à e problème en alulant les hangements d'illumination dans de petites fenêtresd'intérêt de l'image, mais ils font généralement l'hypothèse que les hangements d'intensité sontidentiques en tout point de la fenêtre. A partir d'une étude basée sur des modèles de ré�exionspéulaires, omme les modèles de Phong ou de Torrane-Sparrow, nous dérivons expliite-ment les hypothèses sur lesquelles es modèles sont impliitement basés, et don les situationspour lesquelles ils éhouent.Nous proposons ensuite de nouveaux modèles photométriques loaux, qui peuvent om-penser di�érents types de hangements d'illumination, tels que des variations de ré�exionspéulaire et des hangements d'élairage. Ils sont basés sur l'hypothèse selon laquelle leshangements d'illumination varient douement dans la fenêtre d'intérêt onsidérée. Le premiers'avère le plus adapté aux variations spéulaires sur de petites fenêtres d'intérêt, omme ellesutilisées dans le adre du suivi de points d'intérêt. Par ontre, le seond s'avère approprié à lafois pour les hangements spéulaires et les variations d'élairage.Nous nous attahons à analyser la validité de es modélisations, en fontion de la on�gu-ration d'aquisition : positions relatives entre la soure d'élairage, le apteur et la surfae del'objet, ainsi que les propriétés de la surfae. Ces modèles sont ensuite mis en oeuvre pouraméliorer le suivi de points aratéristiques et de zones d'intérêt dans des séquenes d'images.Les méthodes proposées sont omparées à la méthode de suivi ave normalisation pho-tométrique et la tehnique proposée par Jin et al. [31℄, qui sont robustes aux variations d'illu-mination a�nes. Du fait que la modélisation photométrique proposée prend orretement enompte les variations spatiales d'illumination, la robustesse du suivi et le alul du modèle demouvement sont améliorés. Des résultats expérimentaux sur des objets spéulaires montrentla bonne robustesse de es approhes vis-à-vis des ré�exions et des hangements d'élairage.Elles assurent également une bonne préision de la loalisation des points au ours du suivi,sans augmenter de manière signi�ative les temps de alul.Mots lé : Changements d'illumination, élairage, ré�exion spéulaire, modèles pho-tométriques, suivi de points et de zones d'intérêt.
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1 IntrodutionComputer vision has reently emerged in many �elds suh as mobile robotis [9℄, visual in-spetion, in surgial, agriultural, spatial or underwater domains [11℄, i.e in various naturalenvironments. For suh pratial appliations, one of the ruial problems lies in the robust-ness of the low level algorithms with respet to some ritial aquisition onditions: blurredimages, aquisition noise, illumination hanges, re�etions. High level algorithms suh as 3Dreonstrution, ative vision or visual servoing for example an be e�iently improved by in-reasing the robustness of spatial and temporal mathing proess.This paper addresses more preisely the problem of robust feature traking with respet tolighting hanges and speular highlights.When it is possible, the robustness of this proedure an be improved by extrating salientfeatures in the image, suh as edges [36℄, orners [16℄, lines [6℄ sine they almost only depend onthe objets shape or on the luminane gradients. It beomes far more ompliated when no markan be extrated from the observed objet, suh as in natural environment. In suh a ontext,only points, among possible features, are likely to be easily detetable. However, traking apoint in an image is not a trivial task sine the only available information is the luminaneof the point and of its neighboring pixels. In suh a ontext, the illumination variations areproblemati, sine they often make proessings fail.The seminal works in the domain of feature points traking are due to Luas and Kanade[23, 33℄ who assume the onservation of the point luminane during the image sequene [19℄.The measure of a orrelation funtion between two suessive frames provides the translationmotion undergone by the point to trak. This motion model theoretially assumes that eahpoint in the window entered around the point to trak moves parallel to the image sensor atonstant depth. Therefore, this di�erential traker assumes a high aquisition frequeny and asmall motion between two suessive frames. However, this tehnique is still onsidered to bepowerful [32℄.Thereafter, the robustness of this traking approah has been improved, by using some morepowerful motion models. For example, the literature has proposed several motion models:a�ne [29℄, quadrati [26℄ and homographi [7, 8℄. More reently, [2℄ has ompared severalimplementations of the di�erential trakers. Sine these formalims are quite more realisti thanthe translational one, the orrelation an be measured between the �rst and the urrent frame,so that the traking errors are not umulated during the sequene. The auray of the trakingan also be veri�ed a posteriori, by deteting and rejeting outliers points automatially [34℄.Moreover, it is possible to use a robust estimator [26℄, in order to weight the measurements byan in�uene funtion and give less on�dene to outliers. This type of methods has proved tobe e�ient to overome the problem of olusions, and to avoid taking noise into aount inthe orrelation measure [28℄. Using statistial �lters [1, 24℄ an also improve the robustness ofthe proess, when points trajetories are omplex.The traking of planes an also be implemented by an e�ient seond order minimization(ESM) [4℄.However, these methods assume that the luminane remains onstant between two suessive5



frames, whih is not true. Indeed, most surfaes are not Lambertian and lighting onditions aremostly variable during an image sequene. When olor sensors are available, the measure of theorrelation funtion has proved to be more e�ient by using olor invariants, as in [13℄. Undera few assumptions, these attributes do not depend neither on the intensity of lighting, nor onits diretion. Nevertheless, their omputation requires images with highly saturated olors.Hager and Belhumeur [15℄ propose to aquire an image data base of the sene under severalilluminations and to use these data to improve the traking. This method is e�ient and nosalient feature is needed. Nevertheless, it requires a prior learning step, whih an be seen astoo restritive. Very often, one an prefer to ahieve a simple loal photometri normalizationas in [34℄.Illumination hanges an also be ompensated by omputing a photometri model whihproperly �ts the luminane variations in restrited areas of the image. Suh models have beenused in several appliations suh as optial �ow omputation [5, 17, 21, 25℄, objet reogni-tion [12℄, image mathing and indexing [14℄. For instane in [31℄, the feature points trakingproedure ompensates for a�ne illumination hanges by omputing the ontrast and illumi-nation variations during the image sequene. Reently in [30℄, the authors have omputedarbitrary illumination hanges on a large planar path in a traking ontext, by using an ESMalgorithm. However, the main di�ulty of the illumination ompensation is to balane thetrade-o� between omplexity, and thus omputational ost, and adequay of the model withthe real illumination hanges.Moreover, these illumination models are based on several assumptions, about the senegeometry and the surfae roughness, whih have not been learly de�ned yet. In general, thespatial variations of illumination hanges, suh as ontrast and intensity hanges, are not takeninto aount. However, the luminane results from a olletion of interation mehanismsbetween the light, the matter and the sensor, whih are di�ult to ompute in a omputervision appliation. The �rst ontribution of this report is to learly explain the modeling ofillumination hanges ourring when the relative position between the objets, the lighting andthe amera are modi�ed or when the lighting onditions are hanged. This analysis is based onsome widely used speular re�etion models, suh as the Phong [27℄ and the Torrane-Sparrowones [35℄. In partiular, we fous on two spei� illumination models. The �rst one, whihuses three photometri parameters, is partiularly well adapted to ompensate for speularhighlights and lighting hanges when small areas are onerned. The seond model, based onsix parameters, is more relevant for larger windows. In partiular, these models an ompensatefor spatial variations of illumination hanges. They orretly �t the real photometri hanges,while requiring a low algorithmi omplexity.Obviously, the validity of these models depends on the objet surfaes (orientation, re-�etane and roughness), on the loation of the lighting soures but also on the viewer dire-tion. Therefore, the seond ontribution of the paper onsists in studying the validity of theproposed models, by onsidering several simpli�ed aquisition geometries. Finally, we ompareour approah to the most ommonly used in the literature.This report is organized as follows. Setion 2 fouses on the general modeling of luminanehanges, espeially in the ase of speular re�etions and lighting variations. Then, Setion3 deals �rst with the loal illumination models whih are used in temporal orrespondenes6
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Figure 1: Vetors and angles involved in the re�etions desription.mathing, then details the two photometri models we propose.The theoretial validity of the photometri models, and onsequently of the traking proe-dures, is studied by onsidering several spei� on�gurations on the viewing geometry and thesurfae properties. This study is the aim of Setion 4. Setion 5 details some of the existingtrakers, regarding to the illumination model on whih they are based. Then, the two proposedtrakers are detailed in Setion 5.3.The relevane of our approahes is proved through experimental results, in Setion 6. More-over, a omparison with the standard traking tehniques is also performed, in terms of robust-ness, loation auray and onvergene of the traking.
2 Modeling of luminane hangesIn this setion, we detail the desription of the luminane, while referring to physial modelslargely used in image synthesis and image analysis. Then, starting from this modeling, wefous partiularly on the luminane hanges ourring between two images of the same sene,aquired for example during an image sequene. Let us notie that we do not onsider themodeling of luminane hanges aused by the aquisition proess (for instane distortion dueto the objetive, blur), but only on those due to illumination hanges.Let us �rst introdue our notations (see �gure 1 whih skethes the vetors and the angles).Let be P a point of the objet. V and L are respetively the viewing and the lighting diretions,whih form the angles θr and θi with the normal n in P . B is the biseting line between V and
L, it forms an angle ρ with the normal n. Let f and f ′ be respetively the images of an objetaquired at two di�erent times. A point P of this objet projets in image f in p of oordinates
(xp, yp) and in p′ of oordinates (x′p, y

′
p) in the image f ′ after a relative motion between theamera and the sene. We all δ the vetorial funtion whih links p′ to p suh that δ(p,µ) = p′aording to a parameterization desribed by µ.7



2.1 The luminane in the CCD planeThe relationship between the radiane L of the observed objet and the irradiane reeived bythe sensor Ic, is given by [18℄
Ic(λ) = KcL(λ). (1)

Kc is a salar whih does not depend on the wavelength λ but only on the geometry of theamera suh as the foal distane and the aperture. It is generally onsidered as a onstantsalar. Then, the luminane f(p) depends on the spetral sensitivity S(λ) of the sensor
f(p) =

∫ λmax

λmin

S(λ)Ic(λ, P )dλ = Kc

∫ λmax

λmin

S(λ)L(λ, P )dλ = Kc

∫ λmax

λmin

S(λ)E(λ, P )R(λ, P )dλ(2)where R(λ, P ) is the re�etane of the material and E(λ, P ) the illuminant spetrum.Several expressions of the radiane L(λ, P ) have been proposed aording to the physialproperties of the material and to the sene geometry. Among them, the Lambertian model [22℄is undoubtedly the most widely used beause of its simpliity and its relevane.Lambertian model. It expresses the radiane as
LL(λ, P ) =

{
Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) if θi(P ) ∈ [−π

2
, π

2
]

0 otherwise (3)In other words, the radiane in P is expressed as a funtion of the inident angle θi(P ), thedi�use re�etane Rb(λ, P ), most often alled body re�etion or albedo, and the illuminationspetrum E(λ, P ) in P .Most surfaes also re�et light in a speular manner, not only in a di�use one, and severalfuntions an be used to model this luminane. We desribe here the most interesting oneaording to our problem.The Phong model. Phong [27℄ has desribed the radiane of speular surfaes in a heuristiway. However, this model is simple to use. The radiane is given by
LP (λ, P ) =






Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) + Ks(λ, P ) cosn(ρ(P )) + Ka(λ, P ) if θi(P ) ∈ [−π
2 , π

2 ]

0 otherwise (4)It is omposed of a di�use and a speular omponent and assumes a point light soure. Thesalar n is inversely proportional to the roughness of the surfae andKs is the speular oe�ientof the diret lighting, depending also on the gain of the amera. Ka is the intensity of ambientlighting in P . It is ommonly admitted that it is an empirial model but it proves largelyinteresting for its simpliity, and beause it is appropriate for various types of materials, whetherthey are rough or smooth.The Torrane-Sparrow model [35℄. Contrary to the previous models, this one is based onthe optial geometry. However, sine it neglets the eletromagneti harateristis of light, it8



is valid only when the surfae asperity is larger than the light wavelength. The radiane in Pis expressed as
LT (λ, P ) =






Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) +
Ks(λ, P )

cos(θr(P ))
e(−ρ2(P )/2ς2) if θi(P ) ∈ [−π

2 , π
2 ]

0 otherwise (5)where ς is the roughness parameter of the model. The Torrane-Sparrow model is viewed asan interesting model beause of the good adequay between simpliity and auray omparedto physial reality. Let us remark in both ases, for Phong or Torrane models, that thespeular term reahes its maximum value for ρ(P ) = 0, that is when B oinides with n. Inthe remainder of the paper, we all h this speular term.Some more advaned formalisms, suh as the Bekmann model [3℄ based on the eletromag-neti waves theory an be found in the literature. Nevertheless, this model is di�ult to use inpratie in omputer vision beause of the large number of parameters.2.2 The luminane modeling in an imageLet us note M(λ) = S(λ)E(λ, P ) in (2). When the sensor has a linear response and the olorof illuminant is onstant during the time, M(λ) an be expressed as the produt of a gain
Km, whih does not depend of the wavelength, with a spetrum shape e(λ). In that ase, theluminane beomes

f(p) = KcKm(p)

∫ λmax

λmin

e(λ)R(λ, P )dλ. (6)Aording to the re�etion models desribed previously, R(λ, P ) is omposed of a di�usere�etane Rb(λ, P ) and a speular term diretly related to the illuminant. Let us write a(p)the following term:
a(p) =

∫ λmax

λmin

e(λ)Rb(λ, P )dλ. (7)Sine it depends on the albedoRb(λ, P ), it is also an intrinsi property of the material. Whateverthe photometri model is, the luminane f an be modeled as a sum of three terms whih arerespetively related to the di�use, speular and ambiant re�exions:
f(p) = Kd(p)a(p) cos θi(P ) +Ks(p)hf (P ) +Ka(p) (8)where Kd(p) = KcKm(p) and hf refers to the speular re�etion funtion whih depends onthe photometri model (see 2.1): it an be either a osine fontion (Phong) or an exponentialone (Torrane-Sparrow). Ks(p) and Ka(p) are the integration values respetively of Ks(λ, P )and Ka(λ, P ) (see (4) and (5)) aording to the wavelengths.Aording to (8), the illumination hanges ourring between two images of the same sene,an be easily dedued. 9



2.3 The luminane hanges between two images of a sequeneLet us �rst distinguish between the illumination variations due to speular re�etion and theillumination hanges related to lighting onditions hanges.Speular re�etions. They an our due to a simple motion of the amera with respetto the surfae. Then, the inident angle θi is onstant in P during the time.Moreover, if no lighting hange ours, the intensities Kd and Ka are also onstant. In thesame way, a(δ(p,µ)) = a(p) sine this term depends only on the loation of P .However, the speular omponent h, whih depends on the viewing diretion via the angle
ρ, varies strongly. In those onditions, the luminane f ′ is given by

f ′(δ(p,µ)) = Kd a(p) cos θi(P ) + h′(δ(p,µ)) +Ka (9)where h′ is the speular funtion. By subtrating (9) with (8), it yields to the following rela-tionship between the two images
f ′(δ(p,µ)) = f(p) + ψ(p) (10)where
ψ(p) = h′(δ(p,µ)) − h(p). (11)Lighting hanges and speular highlights. Now, let us onsider that some lightinghanges ∆Ka, ∆Kd are produed on Ka and Kd respetively. These variations an be due to ashift of the amera gain or a variation of the lighting intensity. Moreover, the inident angle θihanges in P aording to a funtion that we all ∆θi. Suh variations our when the objetmoves aording to the light soure or when the light soure moves. Then, the relative motionbetween the amera, the surfae and the lighting an make the speular term h′(δ(p,µ)) vary.Thus, the luminane in image f ′ is expressed as

f ′(δ(p,µ)) = K
′

d(δ(p,µ)) a(p) cos θi
′(P ) + h′(δ(p,µ)) +K

′

a (12)with: 




K
′

d(δ(p,µ)) = Kd(δ(p,µ)) + ∆Kd(p)
θ
′

i(P ) = θi(P ) + ∆θi(P )
K

′

a = Ka + ∆Ka.

(13)The speular term h′(δ(p,µ)) inludes the intensity hange of the speular oe�ient Ks ifneessary.Therefore, by using equations (8) and (12), the relationship between two images of the samesene an be desribed by two di�erent expressions.First, it an be written as (10), where the funtion ψ is given by the following relationship:
ψ(p) = a(p)(K ′

d(δ(p,µ)) cos(θi(p) + ∆θi(p)) −Kd cos θi(p)) +

h′(δ(p,µ)) − h(p) + ∆Ka (14)In that ase, the funtion ψ(p) depends on a(p) and thus on the albedo of the material, loselyrelated to its re�etane. 10



Seond, the luminane hange an be expressed by the following relationship
f ′(δ(p,µ)) = λ(p)f(p) + η(p) (15)where: 





λ(p) = −
(Kd(δ(p,µ)) + ∆Kd(δ(p,µ))) cos(θi(P ) + ∆θi(P ))

Kd cos θi(P )

η(p) = −(h(p) +Ka)λ(p) + h′(δ(p,µ)) +Ka + ∆Ka.

(16)In the remainder of the paper, it is important to notie that both funtions λ(p) and η(p) donot depend on a(p), but only on the geometri parameters. Nevertheless, sine this modelingrefers to a large number of parameters, their use in omputer vision is not straightforward.Indeed, sine it depends on the material properties (the roughness of the surfae by the meansof the speular terms), the funtions λ(p) and η(p) are not easy to ompute. Therefore, somesimpler models are used in omputer vision.3 Loal modeling of illumination hangesGenerally speaking, the simpli�ed photometri models rely on the loal modeling of luminanehanges in small areas of the image, seldom in the whole image. Therefore they are availablefor image mathing or feature points traking proedures. Let us see from (15), on whihassumptions these models are based. We will refer to W as a window of interest entered in p.We all m an other point belonging to W.3.1 The luminane onstanyIn a large number of appliations, it is assumed that the luminane of images from the samesene remains onstant during the time [19℄. From the radiane models given in Setion 2.1, itan be true only for Lambertian objets under onstant lighting. In that ase, we simply have:
f ′(δ(m,µ)) = f(m) for any m ∈ W. (17)3.2 The a�ne modelThe a�ne model assumes that λ(p) = λ and η(p) = η leading to:

f ′(δ(m,µ)) = λf(m) + η. (18)Aording to (16), this model assumes that the inident angles θi and ∆θi are onstant in eahpoint of the window of interest. This statement is rigorously true only if the normal n is thesame in eah point of W, i.e if the surfae is loally planar.Moreover, both objets and lighting must be motionless. Seond, the speular terms h′and h must be onstant in W. Aording to the speular re�etion models (4) or (5), thisstatement is true if the angle ρ is the same in eah point and the roughness is onstant in W.11



This statement is orret for all m, if the speular funtions h and h′ are equal to zero in eahpoint of W, that is for Lambertian surfaes only.Now, let us show that the a�ne model based on the photometri normalization [34℄ does notdepend on the a�ne photometri hanges. Let us reall that it is de�ned through the followingtransformation of luminane f
f(m) − µf

σf

, (19)where µf and σf are respetively the average and standard deviation of the luminane in awindow of interest W, of size N ×N .Indeed, from the a�ne photometri model, given by (18): we easily dedue a relationshipbetween the average of f ′ in W and the average of f :
µf ′ =

1

N 2

∑

m∈W

(λf(m) + η) = λ

(
1

N 2

∑

m∈W

f(m)

)
+ η

µf ′ = λµf + η

(20)The standard deviation of f ′ in W is also related to the standard deviation of f :
σf ′ =

∑

m∈W

(λf(m) + η − (λµf + η))2

σf ′ = λσf

(21)Therefore, the photometri normalization given by f(δ(m)) − µf

σf
and the use of (18) yields:

f ′(δ(m,µ)) − µf ′

σf ′

=
λf(m) + η − (λµf + η)

λσf
=
f(m) − µf

σf
(22)This ratio does not depend on the a�ne photometri hanges, under the di�erent assumptionsthat this model requires. Atually, by writing f ′ as a funtion of f in (22), we obtain:

f ′(δ(m,µ)) =
σf ′

σf
f(m) + µf ′ −

σf ′µf

σf
(23)and therefore the photometri normalization model is an a�ne model with:






λ =
σf ′

σf

η = µf ′ −
σf ′µf

σf

(24)Remark: eah ratio of luminane di�erene only depends on the albedo. Let usonsider two points m0 and m1 in W. If the lighting parameters Ka, ∆Ka, θi, ∆θi, and thespeular term h′ are onstant on W, we an state from (12) that the di�erene between theluminane of two points m0 and m1 in W does not depend on speular highlights variations:
f ′(δ(m0,µ)) − f ′(δ(m1,µ)) = K ′

d(a(m0) − a(m1)) cos(θi + ∆θi) (25)12



but still involves the intensity (or amera gain) and the diretion of the lighting. Let us nowonsider a third point m2 in W. The following ratio is invariant to every kind of illuminationhange:
f ′(δ(m0,µ)) − f ′(δ(m1,µ))

f ′(δ(m0,µ)) − f ′(δ(m2,µ))
=
a(m0) − a(m1)

a(m0) − a(m2)
. (26)sine the ratio of luminane di�erenes only depends on the albedo, whih is an intrinsi hara-teristi of the material. In the same way, any ratio of luminane di�erenes in W is invariant toillumination hanges but depends on the albedo only. f(m)−µf , a(m)−µa and f ′(δ(m))−µf ′are invariant to highlights ourrene.As a onlusion, the photometri properties of (18) are true and the relationships (24) areorret only if the speular re�etion and the lighting hanges are the same in eah point of W,as mentioned above. In some ases, these assumptions are not realisti, partiularly when Wis the projetion of a large and non planar surfae of the sene. In addition, the normalizationmay get noisy for low standard deviation at denominator, that is when the intensities almostsaturate or more generally when they are almost homogeneous in W.In order to redue those limitations, we propose and validate two photometri models whihompensate for spatial illumination variations in W.3.3 Some illumination models adapted for speular highlights our-rene and lighting hangesThe previous illumination models rely on several restriting assumptions that are inorret fornon-planar objets, for instane the onstany of the angle values. Here, we propose two models,where illumination variations are assumed to be varying in the window of interest. The �rstone is available for small windows of interest, whereas the seond one an be used for largerones.3.3.1 An illumination model adapted for small areasIt has been shown in setion 2 how eah kind of illumination hanges an be expressed. Whenonly speular highlights our, the luminane variations between two frames an properly bedesribed by (10).Aording to the most widely used re�etion models (see (4) and (5)), the funtion ψ, givenby (11) or (14), is not onstant in W sine it depends on the viewing and lighting angles andtherefore on the normal n in eah point of W. It also depends on the harateristis of thematerial, suh as the roughness of the surfae. We admit that ψ an be orretly approximatedon W by a CK , K > 1 funtion, that we all ψmod. In that ase, ψmod an be approximatedby a Taylor series expansion, performed in a point m of oordinates (x, y), belonging to theneighborhood of p and being the projetion of a point M of the sene:

ψ(m) ≃ ψmod(p) +
∂ψmod

∂x

∣∣∣∣
p

(x− xp) +
∂ψmod

∂y

∣∣∣∣
p

(y − yp). (27)13



Let us all α =
∂ψmod

∂x

∣∣∣∣
p

, β =
∂ψmod

∂y

∣∣∣∣
p

and γ = ψmod(p). We write α = (α, β, γ) and
u = (x− xp, y − yp, 1). By injeting (27) in (10) we obtain

f ′(δ(m,µ)) = f(m) + α⊤u (28)Compared to the simpler illumination models desribed previously, this one relies on lowerassumptions about the sene. The surfae projeted onto W is not assumed to be planar, theparameters Ks and n (or ς) an vary smoothly in the window of interest. Therefore, speularhighlights an be di�erent in eah point of W.Nevertheless, this model is more appropriate to deal with speular highlights than to opewith lighting hanges. Indeed, when lighting hanges are aused (equation (14)) the albedomay vary strongly in W aording to the re�etane of the objet, and thus (27) is not true.The approximation of the albedo by a �rst order polynomial beomes more and more rudefor large and very textured surfaes. Therefore, the next setion proposes a model whih opeswith this issue.3.3.2 An illumination model adapted for large areasAording to (16), the funtion λ depends on the inident angle, whih an highly vary when
W is large or when the objet surfae is not planar. Likewise, the funtion η depends on thespeular highlights variations, on the intensities and on the inident angle values. Thus, thesefuntions are not onstant in eah point of W.However, it is possible to assume that these funtions are ontinuous and derivable in eahpoint m. This statement implies that the surfae varies in a smooth way. In addition, thespeular terms have to be ontinuous and derivable, so that the roughness of the material mustbe ontinuous and derivable in W. Then, λ and η an be expanded in Taylor series around p.By negleting the oe�ients of high order, these equations beome

λ(m) = λ⊤u with λ =

(
∂λ

∂x

∣∣∣∣
p

,
∂λ

∂y

∣∣∣∣
p

, λ(p)

) (29)
η(m) = η⊤u with η =

(
∂η

∂x

∣∣∣∣
p

,
∂η

∂y

∣∣∣∣
p

, η(p)

) (30)leading to
f ′(δ(m,µ)) = λ⊤uf(m) + η⊤u (31)This model an take many kinds of illumination hanges into aount, due either to high-lights or lighting hanges. In ontrast to the previous models, it supposes that these hangesan be di�erent on the same window of interest W. Partiularly, the surfae involved in thewindow of interest is not assumed to be planar, the parameters Kd, Ks and the roughness n(or ς) an also vary. Therefore, speular highlights and lighting hanges an be di�erent ineah point of the window of interest. Nevertheless, the number of parameters whih have to beomputed is inreased. Now, let us study the onditions of validity of (31).14



4 Validity of the photometri modelThe purpose of this setion is to analyze the validity of the photometri model desribed by(31). First, we onsider a quadrati objet, of whih the loal shape is known. We assumethat this objet is viewed under one lighting soure of known loation. We ompute the realorresponding photometri hanges obtained when the lighting soure has moved (η and λ givenby (16)), for di�erent aquisition onditions:
• the pose of the amera with regard to the objet;
• the pose of the lighting soure with regard to the objet;
• the shape of the surfae (value of the urvatures of a quadrati surfae);
• the material properties of the objet, that is to say its roughness parameter.Seond, we ahieve a loal approximation of these photometri hanges by omputing the Taylorseries at seond order of η and λ. Our photometri model, whih is a �rst order approximation,will be the most adequate when the oe�ients of seond order of this latter approximationwill be null or approximately null. So this study onsists in �nding the on�gurations for whihthese seond order oe�ient vanish.4.1 Modeling of the sene geometryWe onsider a frame Fc, linked to the amera. A point P of oordinates (Xp, Yp, ZP ) is loatedat the enter of a region of interest on the objet. Let us also onsider a pointM , of oordinates

(X, Y, Z), whih is loated in the neighborhood of P (see the �gure 2). We assume that thesurfae in P an be desribed as a fontion of lass C2 leading to the following approximationof the depth in M
Z = ZP +DX(X−XP )+DY (Y −YP )+

1

2
DXX(X−XP )2 +

1

2
DY Y (Y −YP )2 +DXY (X−XP )(Y −YP )(32)where DX , DY are the �rst derivatives of the surfae at the point P . These parameters desribethe orientation between the tangent plane of the surfae at the point and the CCD plane:

DX =
∂Z

∂X

∣∣∣∣
P

DY =
∂Z

∂Y

∣∣∣∣
P

(33)The values DXX , DY Y and DXY refer to the seond order derivatives of the surfae in P
DXX =

∂2Z

∂X2

∣∣∣∣
p

DY Y =
∂2Z

∂Y 2

∣∣∣∣
p

DXY =
∂2Z

∂X∂Y

∣∣∣∣
p

(34)From (32), we obtain the normal vetor in P
n =

(
∂Z

∂X
,
∂Z

∂Y
,−1

) (35)15
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SFigure 2: Modeling of the sene geometry.
In addition, we suppose that (32) is valid in every point of W.Given S = (Sx, Sy, Sz) (in the frame Fc) the loation of the lighting soure, we write
L = (X − Sx, Y − Sy, Z) the vetor linking the lighting soure S to the point M . Then, theosinus of the angle formed by S and n (i.e. cos θi) is written as the salar produt between
S and n. By perspetive projetion and by using Z given by (32), all the geometrial terms(the angle θi for example) and the real parameters λ and η given by (16) an be expressed withrespet to the pixels oordinates m.Therefore some approximations and Taylor series expansions are ahieved aording to theaquisition on�gurations. In a �rst step, we study the validity of the approximation of thefuntion λ by (29), whih depends on the intensity level and the inident angle of the lighting.The proposed model approximates the variation of this funtion on W by a �rst order polyno-mial. However, as soon as ψ is onerned, we have seen in 3.3.1 that, when lighting hangesare onsidered, ψ depends on the albedo. In this setion, we do not take this on�guration intoaount. In addition, in order to simplify this study, we fous on small windows of interest Wwhih are loated near the optial axis of the amera.16



4.2 Validity of the modeling of λLet be u = x− xP and v = y − yP . We onsider the approximation of λ (see equation (16)) atseond order:
λ(m) = λ1u+ λ2v + λ3 + λ4u

2 + λ5v
2 + λ6uv. (36)In order to analyze the validity of (31), we study the on�gurations for whih the terms ofseond order (λ4, λ5, λ6) vanish. The lighting onditions for whih they an be negleted arethose for whih the photometri model �ts the illumination hanges at best.We restrit the study to the ase of a moving amera whih observes a motionless objet.A small motion of the diret lighting soure dS = (dSX , dSY , dSZ) is aused with respet to itsinitial position S. Several viewing and lighting loations as well as various surfaes urvaturesare also onsidered. Indeed, the only motion of the lighting soure auses variations on bothterms λ and η. The motion of the lighting soure is assumed to be small so that the oe�ients

λi an be expanded in Taylor series around (dSX , dSY , dSZ). The study is limited to the �rstorder to obtain some useful expressions. Moreover, the following most interesting ases arestudied
• the lighting vetor oinides with the normal of the surfae;
• the lighting soure is lose to the amera;
• the lighting soure is lose to the surfae.4.2.1 The lighting vetor oinides with the normal of the surfaeIn this ase, we assume that L = τn. For small variations of the lighting angle around thenormal, one an show that λ4, λ5 and λ6 are null (their expansion in Taylor series aordingto dS yields to null oe�ients). Consequently, the approximation of the illumination hangesgiven by (31) is relevant.4.2.2 The lighting soure is lose to the ameraIn this ase, we simply have S = O and thus V = L. First of all, we onsider a planar objet,then a non-planar one.Planar objet. When the objet is planar, the seond order oe�ients λi beome:






λ4(planar) = −
1

ZP
(2dSZ + 2DXdSX)

λ5(planar) = −
1

ZP
(2DY dSY + 2dSZ)

λ6(planar) = −
1

ZP
(DXdSY + DY dSX) .

(37)They are diretly related to the error obtained between the photometri model (31) and a moreomprehensive approximation of the illumination hanges by a seond order approximation.17



Therefore, these terms vanish when the surfae is nearly parallel to the CCD plane. This remarkis validated by the example given in the �gure 3. This �gure shows the real variations of λ (givenby (16)) aused loally in a small area W of a planar surfae, without any approximation. Thelighting soure is moving along dSX and dSY while dSZ = 0. As previously, when the surfaeof the objet is parallel to the amera, that is when DX = DY = 0 (�gure 3a), the illuminationmodel is well adapted sine the terms λi(planar) vanish. We learly notie that the shape of thephotometri hanges is almost planar. In the other hand, when DX 6= 0 and DY 6= 0 (see �gure3b), the illumination hanges an not be totally ompensated by the photometri model andthe shape (�gure 3b) is not planar anymore. Only a motion dSZ of the lighting soure along theoptial axis (a bakward or a forward motion of the amera with respet to the objet) yieldsinevitably some illumination hanges whih are not ompensated by the model. In addition,these latter hanges are higher when the amera is lose to the surfae, as it is shown by thepresene of ZP at the denominator in (37).Non planar objet. In the ase of a non-planar objet for whih (32) is valid, the seondorder terms of the surfae appear in the seond-order oe�ients:





λ4 = λ4(plan) + 2(DY DXX + DXY DX)dSY − 4DXXdSZ + 6DXDXXdSX

λ5 = λ5(plan) + 2(DY DXY + DX .DY Y )dSX + 6DY DY Y dSY − 4DY Y dSZ

λ6 = λ6(plan) + 2(DY Y DX + DY DXY )dSY − 2DXY dSZ + 2(DXXDY + DXDXY )dSX.

(38)The higher the terms (DXX , DXY , DY Y ) are, the more the oe�ients λi vary with respet to amotion dS of the lighting soure. Let us also point out that when the orientation of the tangentplane of the surfae in P is parallel to the sensor (DX and DY are lose to zero), the motionof the lighting soure (dSX and dSY ) has a weak in�uene. In ontrast, motions of the ameraalong the optial axis always ause an error on the seond-order oe�ients.4.2.3 The lighting soure is lose to the surfaeNow, let us onsider that the lighting soure is initially loated at a small depth ǫ of the surfaeso that S = (Xp, Yp, Zp − ǫ). We onsider that this distane is small enough to expand therelationships around ǫ = 0. Thus, we obtain the following expression of the oe�ients λi:





λ4 =
2ZP (DXXZP DY + DXY DXǫ)

ǫ2
dSY −

2ZP (ZP + D2

X
ǫ − ZP D2

X
+ 2ZP DXXǫ)

ǫ3
dSZ+

2ZP (DX(ǫ − 1) + DXX(2ǫ2 + ZP ǫ))

ǫ3
dSX

λ5 =
2ZP DY (DY Y ZP ǫ + 2DY Y ǫ2 − 2ZP + ǫ)

ǫ3
dSY −

2ZP (2DY Y ZP ǫ − D2

Y
ZP + ZP + D2

Y
ǫ)

ǫ3
dSZ

+
2ZP (DY Y ZP DX + DXY DY ǫ)

ǫ2
dSX

λ6 =
ZP (DY DXY (ZP ǫ + ǫ2) + DX(ǫ + 2DY Y ǫ2 − 2ZP ))

ǫ3
dSY −

2ZP (DY DX(ǫ − ZP ) + ZP DXY ǫ)

ǫ3
dSZ+

ZP (DXDXY (ZP ǫ + ǫ2) + DY (ǫ + 2DXXǫ2 − 2ZP )))

ǫ3
dSX . (39)Here again, if the orientation between the surfae and the sensor vanishes (DX = DY =

0), a motion of the lighting soure dSX and dSY does not a�et the modeling errors. The18



(a) (b)Figure 3: Examples of illumination hanges in W when the lighting soure is lose to the amera. (a)
DX = DY = 0, a motion of the lighting soure along X or Y axes is ompensated by the photometri model,whih forms a plane in W. (b) DX = DY = 5 m, the illumination variations are not perfetly ompensatedby the model. In eah ase, the objet is planar and the model parameters are the following: XP = YP = 0,
ZP = 100 m, dS = (0.1, 0.1, 0)⊤.approximation of the illumination hanges by a �rst order polynomial is well justi�ed. Moreover,it is more relevant when the depth of the lighting soure from the objet is higher (high ǫ) thanthe depth of the amera. In that ondition, the ontributions of the variations dSX , dSY , dSZin the terms λi are minimal. However, sine the lighting soure is onsidered to be lose to thesurfae, the amera should also be lose to the surfae. If not, the photometri model is lessappropriate. As an example, the �gures 4a, 4b and 4c show the illumination variations ausedby a motion of the lighting soure with regard to the surfae. In the �rst ase, the depth of thelighting is larger than the depth of the amera. In the seond ase, the soure and the sensorare loated at the same distane, and �nally in the third ase, the soure is loser to the surfaethan the amera is. As a onlusion, the loser the lighting soure is with regard to the sensor,the less relevant the proposed photometri model.To summarize, some onlusions arise from this study about the validity of the estimationof λ by a �rst order Taylor series expansion.

• It is partiularly well adapted when the lighting vetor L oinides with the normal n inthe onsidered point (see setion 4.2.1);
• The approximation is also valid when the orientation of the tangent plane of the surfaein P with regard to the sensor plane is low (V oinides with n), and the seond order19



(a) (b) (c)Figure 4: Examples of illumination variations aused in W when the lighting soure is lose to the surfae. (a)The lighting soure is farther from the surfae in omparison with the sensor (SZ = 15, ZP = 10 m). (b) Thelighting soure and the sensor are loated at the same distane to the surfae (SZ = ZP = 10m). () The lightingsoure is loser to the surfae in omparison to the sensor (SZ = 2 m, ZP = 10 m). In the three ases, theparameters used are the following ones: ǫ = 0, 2m, XP = YP = 0, DY = DXY = 0, DX = DXX = DY Y = 0.1,
dS = (1,1,−0.5)T.terms of the surfae of the objet are weak, that is the objet is quite planar (see setion4.2.2 for instane).

• When the lighting soure is lose to the surfae, it is more appropriate when the amerais even loser to the surfae than the lighting soure is (see setion 4.2.3).
• The photometri model is more adapted when the depth of amera and lighting soureare high (see setion 4.2.2).However, this estimate turns out to be more adequate than an approximation by a onstant,whih requires the anellation of the seond-order and �rst-order terms. Obviously, as it isshown by the examples of the previous �gures, the illumination hanges are not onstant.4.3 Validity of the modeling of ηIn order to study the validity of η, expressed by (16), it is neessary to take the speularhighlights model into aount. Consequently, the material properties of the objet have to beonsidered. For this purpose, we use the speular model of Phong (equation (4) of setion2.1). In order to simplify the equations, we assume a motionless objet and onstant intensitylighting (Ka and Kd), so that λ(m) = 1. Consequently, η gets equivalent to the funtion ψdesribed by (11). Thus, we study the validity of the following expression:

η(m′) = hg(M) − hf(M) (40)After an expansion in Taylor series at seond order around p, η is approximated by:20



η(m) = η1x+ η2y + η3 + η4x
2 + η5y

2 + η6xy (41)where the oe�ients ηi depend on the geometry parameters explained in setion 4.1. Sinethe speular highlights funtion h reahes its maximum when ρ is null, it is interesting to studythe validity of the photometri models in this on�guration. The initial loation of the lightingsoure is hosen so that the normal n of the surfae oinide with B (see �gure 5).Similarly to the previous setions, we assume a small motion of the lighting soure dSaording to its initial loation. This assumption allows us to ahieve a Taylor series expansionof (41) around S. Some partiular on�gurations of the sene geometry are studied in order toobtain some simple onlusions about the validity of the models:
• the lighting, the viewing and the normal vetors oinide;
• there is a small orientation between the surfae tangent plane and the amera.
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PFigure 5: The normal vetor at the surfae in point P is the biseting vetor between vetors L and V.
4.3.1 The lighting, viewing and normals vetors oinideInitially, before any motion of the lighting soure, L, V and n are equal. Consequently, thetangent plane at the objet surfae is parallel to the sensor plane (DX = DY = 0) and thelighting angle θi is null. Let us onsider a non-planar objet the surfae of whih an bedesribed by (32). Unfortunately, even in this simple ase, the expressions of oe�ients η4,
η5 and η6 are far too ompliated to dedue any useful information about the validity of thephotometri model. In that ontext we have to fous on some partiular on�gurations, �rstlywhen the lighting soure is lose to the surfae, seondly when the sensor is lose to the surfae.21



Figure 6: Example of variation of η when the sensor is lose to the surfae ZP = 10 m. The objetis not planar, DX=0, DY =0, DXX=0.1 m, DY Y =0.1 m, DXY =0. The motion of the lighting soure is
dS = (1,−1,−1)T and ǫ = 100.
1-The lighting soure is lose to the surfae.When the lighting soure is lose to the surfae, i.e at a small distane ZS = ZP − ǫ, theparameters ηi an be expanded in Taylor series around ǫ = 0. All omputations done, thevalues ηi are expressed as follows:






η4 = −n
(
2DXX + 1

ZP

)
dSZ

η5 = −n
(
2DY Y + 1

ZP

)
dSZ

η6 = −nDXY dSZ

(42)When the lighting soure is lose to the surfae, a forward (or a bakward) motion dSZ of thelighting soure with respet to the surfae always indues some variations of the parameters
ηi, whether the surfae is planar or not. On the other hand, the parameter η6 = 0 when
DXY = 0, for example for surfaes of revolution (when still assuming that the lighting, viewingand normal vetors oinide). A motion along the Z axis has less in�uene if the sensor issu�iently far from the surfae and if the surfae is rough (in other words when n is low) andplanar (DXX = DY Y = DXY = 0).2-The sensor is lose to the surfae (ZP low). When the sensor is lose to the surfae, allthe oe�ients vanish. Consequently, the approximation of the illumination hanges by ourphotometri model is well founded. Figure 6 illustrates this senario when the surfae is notplanar. As we an notie, the variations of η are well ompensated by a Taylor expansion at�rst order, sine the shape of the funtion is similar to a plane.22



4.3.2 Small orientation of the surfae with regard to the sensor planeIn the ase of a small orientation between the surfae and the sensor (small DX and DY ), theoe�ients ηi an be expanded in Taylor series around DX = DY = 0. We still onsider thatthe normal at the surfae n in P oinide with the biseting vetor B between L and V suhthat the larger the viewing orientation is, the larger the inident angle θi is. We only fous onthe ase of planar objets, the ase of non-planar objets is too omplex. As previously, severallighting onditions are analyzed.1-The lighting soure is loated near the surfae ZS = ZP . The expressions of η4, η5 and η6 aregiven by: 




η4 = −
n

ZP

(
DX

4
(3n + 7)dSX +

DX

4
(n + 1) dSY + dSZ

)

η5 = −
n

ZP

(
DY

4
(n + 1) dSX +

DY

4
(3n + 7) dSY + dSZ

)

η6 =
n

ZP

(n + 3)

4
(DXdSX + DY dSY )

(43)When DX and DY are not null, a motion of the lighting soure (dSX , dSY ) auses somevariations of the parameters ηi. These hanges are higher when the material is smooth (highvalue of n), when the amera is lose (ZP low) to the surfae, and when DX and DY are high.This is illustrated by �gures 7a and 7b, whih show respetively two examples of variationof η when the orientation of the tangent plane of the surfae in P is low (�gure 7a) or high(�gure 7b).2-The sensor is lose to the surfae. When the tangent plane and the CCD plane of the sensorare almost parallel and when the sensor is su�iently lose to the surfae (low value of ZP ),then the approximation of η by a �rst order polynomial is perfetly founded. Indeed, the terms
η4, η5 and η6 are not signi�ant. This point is illustrated by the �gure 8, whih shows anexample of the variation of η in a window of interest W. Indeed, the shape of the funtion islearly a plane.To summarize, when λ = 1, the approximation of the term η (equivalent to ψ in thisspei� ase), by a polynomial of �rst degree is the more appropriate when one or several ofthe following onditions are observed:

• the seond order terms of the surfae are small and the tangent plane orientation is lowwith regard to the sensor plane;
• the surfae is rough;
• the sensor is lose to the surfae.In those onditions, the speular highlights variations draw up a plane on the windowof interest W. Therefore, these photometri hanges are well ompensated by the proposedillumination model. 23



(a) (b)Figure 7: Examples of variations of η when the lighting soure is lose to the surfae and when the tangentplane at the surfae in point P is weakly oriented (�gure (a)) or strongly oriented (�gure (b)) with respet tothe sensor plane.4.4 DisussionTable 1 provides an overview of the on�gurations for whih the proposed photometri model isadapted (+) or not (-), or when the on�guration has no in�uene (=). Let us �nally onludethat the approximations of the photometri funtions λ and η by a Taylor expansion at seondorder are adapted at best when the sensor is lose to the surfae, or when the lighting or theviewing vetors oinide with the normal. On the other hand, the shape of the surfae has tobe loally ontinuous and the surfae must be rough enough.However, the photometri model desribed in Setion 3.2 relies on assumptions that are morerestritive in omparision to our model. Indeed, funtions λ and η are assumed to be onstantat eah point of the window of interest W. That means that not only Taylor's oe�ients atseond order in (36) and (41) are wrong, but also a part of the oe�ients of the �rst ordersine they are supposed to be null. The few examples of illumination hanges (from �gure 3ato �gure 8) have on�rmed these remarks. As a onlusion, the photometri model proposedin setion 3.3 is theoretially more aurate that the photometri normalization or the a�nemodel with onstant parameters.The di�erent photometri models an be used in appliations where temporal orrespon-denes have to be mathed, in order to improve some higher level proedures: 3D reonstrutionor ative vision for example.In this report, we address the problem of robustifying feature points traking with respetto illumination hanges. The idea is to orretly ompensate for the illumination hanges byomputing the photometri models, in order to obtain more aurately the geometri deforma-24



Figure 8: Example of the variation of η when the tangent plane to the surfae and the sensor plane are almostparallel, the amera being lose to the surfae.tions of the windows of interest during the whole sequene. To our knowledge, the two proposedmodels have not been implemented in suh a ontext. Blak et al. [5℄ have used (31) with η = 0and (28) in the ontext of image orretion, without any justi�ation.5 Feature points traking algorithmsAurately omputing orrespondenes between two frames or traking features along an imagesequene are two key problems, even though many approahes are available. This setion detailsthe traking tehniques involving a photometri model, and proposes two ways to improve themby exploiting the photometri models de�ned previously in 3.3.1 and 3.3.2.5.1 Modeling of the geometri deformationThe geometri deformations indued by the relative motion between the amera and the seneare desribed by a funtion whih models the motion of all the points inside a window of interest
W entered around the point to be traked p. Therefore, this funtion is alled δ(p,µ). Thefeature point traking proedure onsists in omputing the parameters µ suh that

m′ = δ(m,µ) (44)aording to a photometri model for m ∈ W. We will show how to ompute µ for thephotometri models given in setion 3. 25



Table 1: Overview of the results about the validity of the approximations of λ and η by a Taylorseries expansion at �rst order. +: good approximation. -: bad approximation. = : there is noin�uene on the validity.Con�guration λ ηLighting vetor oinide with the normal + +Viewing vetor oinides with the normal + +Rough surfae = +Sensor lose to the surfae and lighting soure far from the surfae + +Motion of the lighting soure along the optial axis - -High values of the seond order oe�ients of the surfae - -5.2 Commonly used traking methods5.2.1 The lassial approahThe lassial feature points traker, i.e. the KLT tehnique (for Kanade-Tomasi-Luas traker[23,33℄) assumes a perfet onservation of luminane at a point during the sequene (see (17)),so we have:
f(m) = f ′(δ(m,µ)) (45)However, as seen in setion 2, the luminane assumption is not true. Besides, the motionmodel is also an approximation. Thus, it is more judiious to minimize the following riterion:

ǫ1(µ) =
∑

m∈W

(f(m) − f ′(δ(m,µ)))
2 (46)In order to obtain µ, we suppose that µ = µ̂ + ∆µ, where ∆µ expresses a small variationaround an estimation µ̂ of µ. In those onditions, f ′(δ(m,µ)) an be expanded in Taylor seriesof �rst order around µ̂:

f ′(δ(m,µ)) = f ′(δ(m, µ̂)) + ∇f ′⊤(δ(m, µ̂)) Jδ
µ̂ ∆µ (47)where Jδ

µ̂ is the Jaobian of δ aording to µ, expressed in µ̂. We injet (47) in (46), leadingto a linear system in ∆µ, whih an be solved iteratively:
(
∑

m∈W

vc vc
T

)

∆µ =
∑

m∈W

(f(m) − f ′(δ(m, µ̂)))vc (48)with
vc = (Jδ

µ̂)
⊤

∇f ′(δ(m, µ̂)). (49)When onsidering an a�ne motion model, vc is the vetor de�ned by:
vc =

(
f ′

x, f
′

y, xf
′

x, xf
′

y, yf
′

x, yf
′

y

) (50)where f ′
x and f ′

y are the derivatives of f ′ with respet to x and y respetively.26



5.2.2 Traking methods robust to a�ne photometri hangesThese approahes are based on the photometri model desribed in setion 3.2. Therefore,instead of minimizing (46), we minimize
ǫ2(µ, λ, η) =

∑

m∈W

(λf(m) + η − f ′(δ(m,µ)))
2
, (51)where λ and η refer to the parameters of the a�ne illumination model given by (18). There aretwo ways to obtain λ and η, either by using (24) or by omputing them simultaneously with µ.The photometri normalization.Eah photometri parameter λ and η is omputed from (24). The traking tehnique onsistsin omputing µ as in setion 5.2.1 sine λ and η are onstant. We have to solve:

(
∑

m∈W

vc vc
⊤

)

∆µ =
∑

m∈W

(
λ̂f(m) + η̂ − f ′(δ(m, µ̂))

)
vc (52)Estimation of λ and η : the Jin's tehnique. In [31℄, the authors propose to estimate theontrast λ and intensity η simultaneously with the motion model.Let us all ν the vetor of photometri variations ν = (λ, η), and d the onatenation of µand ν. As previously, we suppose a small variation ∆d = (∆µ,∆ν) of d around its estimation

d̂ so that d = d̂ + ∆d. Thus, by using (47), we an write (51) as
(
∑

m∈W

vs vs
⊤

)
∆d =

∑

m∈W

(
λ̂f(m) + η̂ − f ′(δ(m, µ̂))

)
vs (53)where vs = (vc,ν). Unfortunately, as shown in appendix A, the matrix ∑m∈W vs vs

⊤ is ill-onditioned. Therefore, it is required to arry out a preonditioning of this matrix but itdepends on the image. That is a drawbak of this tehnique.On the other hand, this proedure provides a lower omputational ost than the photometrinormalization, sine the averages and standard deviations do not have to be omputed in eahframe.In this setion, we have presented several feature points traking tehniques; the lassialone is based on the luminane onstany, whereas the traking with normalization and themethod proposed by Jin et al. are robust to a�ne illumination variations. In eah ase, thephotometri parameters are supposed to be onstant in eah window of interest.In the next setion, we propose two traking proedures whih take the spatial variationsof illumination hanges into aount.5.3 Proposed traking proeduresThe �rst tehnique has been de�ned to ompensate for speular highlights and lighting hangeson small windows of interest, whereas the seond one is its extension to wider windows ofinterest. 27



5.3.1 A traking approah robust to speular highlightsThe �rst traking method is based on the illumination model given by (28).Thus, in that ase, we have to minimize the following riterion:
ǫ3(µ,α) =

∑

m∈W

(
f(m) − f ′(δ(m,µ)) − u⊤α

)2 (54)Be d = (µ,α). Let us suppose a small displaement ∆d = (∆µ,∆α) around an estimation
d̂ of d, whih is the solution of (54). Similarly to the method 5.2.1, ∆d is obtained by solvingthe following linear system:

(
∑

m∈W

vp vp
⊤

)
∆d =

∑

m∈W

(
f(m) − f ′(δ(m, µ̂)) − u⊤α̂

)
vp (55)where the vetor vp is written as:

vp = − (vc,u) (56)for an a�ne motion model.Unlike the previous traker, a preonditioning of the matrix (∑m∈W
vp vp

T
) is not neessary.As shown in appendix A, this matrix is well onditioned.Aording to the assumptions of the photometri model (28) desribed in 3.3.1, this trakingmethod is appropriate to ope with speular highlights. For small windows of interest, it an alsoompensate for lighting hanges, as soon as the funtion given by (14) an be approximated bya Taylor series expansion at �rst order. Sine this assumption an be oarse for large windows,the following setion proposes a more appropriate algorithm.5.3.2 A traking approah robust to speular highlights and lighting hangesSetion 3.3.2 has detailed a omprehensive photometri model whih ompensates for the spatialvariations of speular highlights and lighting hanges. Let us use this model in order to improvethe feature point traking sheme.The motion parameter µ and the re�etion parameters λ and η are obtained by the mini-mization of the following riterion

ǫ4(µ,λ,η) =
∑

m∈W

(
u⊤λf(m) − f ′(δ(m,µ)) − u⊤η

)2 (57)The system an be linearized as in setion 5.3.1, with d = [µ,λ,η]. Thus, the traking proessonsists in solving the following system:
(
∑

m∈W

vm vm
⊤

)

∆d =
∑

m∈W

(
u⊤λ̂f(m) − f ′(δ(m, µ̂)) − u⊤η̂

)
vm (58)where

vm = (−vc, f(m)u,−u) (59)28



The matrix∑m∈W
vm vm

⊤ an be ill-onditioned (see appendix A), sine the values of vm aremuh dissimilar. As for Jin's approah, a preonditioning stage is required.Moreover, the number of illumination parameters is quite large. Indeed, by using an a�nemotion model, twelve parameters have to be omputed. Obviously, the use of too small windowsof interest may alter the auray of both photometri and motion models.The aim of the next setion is to validate experimentally our trakers by omparing themwith the lassial approahes.6 Validation and experimental resultsThis setion presents some traking experiments, where the trakers detailed previously areompared through sequenes showing geometri and photometri hanges simultaneously. Firstof all, we detail the experimental setup and notations. Seond, we analyze the validity of theseexperimental onditions by omparing experiments on lab sequenes where ground-truth isavailable. Finally, the traking is arried out on real sequenes.6.1 Experimental setup6.1.1 NotationsThroughout this setion, we use the following notations:C : the lassial traking approah (setion 5.2.1) whih assumes that
f ′(δ(m,µ)) = f(m)N : the traking with photometri normalization (setion 5.2.2)
f ′(δ(m,µ)) = λf(m) + ηJ : the method proposed by Jin et al. (setion 5.2.2)
f ′(δ(m,µ)) = λf(m) + η

P3 : the traker whih uses three photometri parameters (setion 5.3.1)
f ′(δ(m,µ)) = f(m) + u⊤α

P6 : the traker whih uses six photometri parameters (setion 5.3.2)
f ′(δ(m,µ)) = u⊤λf(m) + u⊤ηNow, let us detail the setup: the hoie of the window's size, the points detetion andrejetion proedures, the omparison riteria.6.1.2 Size of the windows of interestUsually, the hoie of the window size N is based on a trade-o� between robustness to noise,omputation duration and reliability of the assumptions on whih the traking method is based,suh as the planarity of the surfae or the onstany of illumination hanges. Naturally, it alsodepends on the appliation. Here, we onsider some sizes from N = 9 to N = 35, sine nospei� appliation is onerned. 29



6.1.3 Rejetion proessThe points are seleted in the �rst frame of the sequene by the Harris detetor [16℄. Thetraking proess omputes an a�ne motion model between the �rst frame and the urrent one,as desribed in setion 5.1. They integrate an outliers rejetion module, based on the analysisof the onvergene of residuals ǫi, i = 1 . . . 4. A point is rejeted as soon as its residuals beomegreater than a threshold, Sconv = N 2E2
ave, where Eave is the tolerated luminane variation foreah point in W between f and its modeling. In these experiments, Eave = 15.6.1.4 Comparison riteriaFor eah image sequene, we an ompare the trakers by studying the following riteria:1. The robustness of the traking, that is to say the number of points that have been trakedduring the whole sequene.2. The temporal evolution of the mean onvergene residues obtained by the points that areorretly traked. These two �rst riteria have to be onsidered jointly. Indeed, when twomethods obtain similar average residues, the more relevant tehnique is the one whihtraks a larger number of points.3. The temporal evolution of the re�etion parameters omputed by the proposed paramet-ri methods.As mentioned in 6.1.3, a point is rejeted when its residuals beome higher than a thresh-old. Residuals are ommonly used as a omparison riterion, when ground-truth is notavailable (in [31℄ or [15℄ among others). Although some low residues are not an evideneof the traking orretness (beause of potential ambiguities), setion 6.2 study theirrelevane.4. The loation errors. In preliminary experiments, where ground-truth is available, a fourthriterion is omputed: the average distane (omputed on all the points that are orretlytraked by the tehnique) between the position of the points that is omputed by thetraker and the true position. Here again, this riterion has to be onsidered jointly withthe number of points orretly traked. Indeed, for the same loation error, the besttehnique will be the most robust one.Next setion aims to analyze the relevane of residues as a omparison riterion and gives some�rst omparison results.6.2 Validation of the experimental setup on lab sequenesThis setion studies the validity of our experimental setup by onsidering lab sequenes whereground-truth an be evaluated. We disuss the relevane of riteria 1 and 2.30



6.2.1 Computation of the ground-truthTwo tehniques of ground-truth extration are implemented, depending on the shape of theonsidered objet.Ground-truth for planar objets. When the points to trak belong to a planar objet,their oordinates in two di�erent images of the sequene are linked together by an homographytransformation H, whih is desribed by a 3 × 3 matrix. Only four points are needed toompute the oe�ients of the matrix H in a linear manner for eah frame. However, thesepoints have to be mathed aurately between the two frames in order to properly evaluate thetraking tehniques, these four points must not depend on the traking proedure. Thus, theyare hosen to be the enters of four white blobs loated on the planar surfae, whih an beeasily segmented for eah frame of the sequene.So, on the one hand, the homography matrix is omputed between the initial frame andthe urrent one by using four blobs. On the other hand, we estimate the urrent oordinates ofthe feature points by applying the homography matrix on the points that have been seletedinitially in the �rst frame. Sine the homography is known, it beomes easy to obtain the trueloation of m′ from its loation m in the �rst image. Indeed, we have m′ = Hm (m and m′ arehere homogeneous oordinates).Ground-truth for non-planar objets. In the ase of non-planar objets, we use thepose between the amera and the objet [10℄. This method assumes that we an detet at leastfour non oplanar points and that we know the 3D loation of these points in the objet frame.In our ontext, the four points are four white blobs, whih are easy to segment. The wholealgorithm is desribed as follows.1. Detetion of the four non-oplanar blobs pc
init in the image;2. Computation of the transformation matrix cMo between the objet and the amera o-ordinate frames [10℄;3. Intersetion of the view line passing through pc

init with the objet in order to obtain Po;For eah experiment, we assume that the objet is motionless during the image sequene.Therefore, the oordinates Po are onstant for eah frame;4. After a motion of the amera, omputation of the pose [10℄ and obtention of the transfor-mation matrix cMo between the objet and the amera oordinate frames. Consequently,the oordinates Pc of a point expressed in the amera frame is given by Pc = cMoP
o.5. Computation of the projetion pc of Pc on the CCD plane. Of ourse, the intrinsi ameraparameters are supposed to be known.6. Comparison between pc and the estimate p̂c provided by the onsidered traker. There-fore, at eah iteration, we ompute the eulidean distane between pc and p̂c, expressedin pixels. When the traking is perfetly aurate, this distane is null.31



6.2.2 Experiments on lab sequenesThis setion ompares the behavior of the methods, in terms of residues, loation errors androbustness, for di�erent window sizes, either for planar or non-planar surfaes. Moreover, itis disussed the problem of evaluating the methods in the general ase where no ground-truthinformation is available.6.2.2.1 Planar surfaes The image sequene depited on the �gure 9 shows a planarsurfae of size 1 × 1 meter, on whih four blobs have been put. The amera is loated approxi-mately 4 meters in front of the objet and two lighting soures are loated at 2 meters. Duringthe sequene, the amera is motionless and the objet is moving with respet to the ameraand lightings. The lighting intensity being onstant, only speular highlights appear. Beauseof the low distane between lighting and surfae, that is not optimum for the good validity ofthe photometri models (see setion 4).Robustness. Figure 10 ompares the temporal evolution of the number of points that areorretly traked during the sequene for eah approah and for three window sizes: N = 9,
N = 15 and N = 25. Simultaneously, table 2a page 36 shows the perentage of points orretlytraked until the end of the sequene. Whatever the window size is, C traks less points than theother approahes. For N = 9, P3 traks a larger number of points, whih proves its relevanefor small window sizes. Unfortunately, for larger ones (N = 15), the performanes of P3 areredued ompared to the other tehniques, it traks orretly one point less than J (see �gure11). On the other hand, for suh windows sizes, P6 is the most ompetitive method sine ittraks around twie more points orretly.Figure 11 ompares more preisely the behavior of eah traking tehnique, by analyzingboth the evolution of the residues during the sequene and the mean loation error obtainedon the points orretly traked (the lassial method is not taken into aount sine a too largenumber of points is lost).Loation errors. The loation errors are quite satisfying. They reah only around 1 pixelat the beginning of the sequene and then derease signi�antly as soon as outliers points arelost. Indeed, when points of high residuals are lost, the auray of the traking is improved.That shows the reliability of the rejetion rule and put in evidene the orrelation betweenresidues and auray.Convergene residues. For N = 9, P3 obtains higher residues that the other approahes.However, these residues are obtained (see �gure 10) by averaging the residues of a larger numberof points ompared to the N and J tehniques. To go further in the omparison, �gure 12 showsthe same riteria as �gure 11 while onsidering only the points traked simultaneously by eahmethod. Here, for N = 9, P3 is more aurate. Thus, this method traks a larger number ofpoints and is more aurate.For wider windows (N = 15 and N = 25), P6 obtains the lowest residues, although it traksa larger number of points. The motion and photometri models are orretly omputed.These results illustrate the fat that the mean residues and the loation errors are not alwayssigni�ant without onsidering the number of points orretly traked. A method an show low32



residues by orretly traking only few points. This method is although less performant thananother one whih traks a hundred of points with slight higher residues.However, we an also note that, in most ases, the onvergene residues evolve roughly ina similar way as loation errors. In addition, when residues are low, the loation error are alsolow.6.2.2.2 Non-planar surfaes In order to study the in�uene of the surfae urvature onthe traking algorithm, a ylinder of radius 7m has been used. The objet and the lightingare motionless and the amera moves. As shown in Setion 4, the larger the urvatures are,the less appropriate the photometri models are. The amera is approximately loated at 1meter from the surfae and the lighting soures are less lose to the surfae than the amera is.As notied in setion 4.4, this is one of the favorable on�gurations for using the photometrimodels (see table 1). There is no lighting hanges but the motion of the amera yields to smallspeular variations.Figure 13 shows two images of the ylinder sequene and �gure 14 depits the number ofpoints that are orretly traked by the proedures versus the frame number (table 2(b) showsthe perentage of points whih have been orretly traked until the end of the sequene).Robustness. Here also, P3 orretly traks the largest number of points for small windows(see �gure 14). In addition, it remains learly the most relevant algorithm for N = 15 and
N = 25, whih was not the ase in the previous experiment. Previously the perentage ofpoints traked was lower.For N = 9, the J tehnique obtains very poor performane results, sine all the points arelost, whereas even the lassial KLT proedure orretly traks a few points. Obviously, thesepoints an been lost partly beause of the ill-onditioning of this tehnique or beause theillumination model is not appropriate (λ and η are onstant on W). Sine N also traks a fewernumber of points, the latter assumption is quite plausible. These problems will be disussedlater in setion 6.4. For N = 35, P6 orretly traks a larger number of points than the othertehniques. Despite the bad onditioning of this method, it is more relevant than J sine itbetter takes the speular hanges into aount.Let us now onsider the �gure 15 whih shows the evolution of the onvergene residues andloation errors.Loation errors. For small windows of interest, (see �gure 15 for N = 9) N yields poorauray results. In ontrast, the use of the P3 or P6 photometri models provides an aurateomputation of the motion model, i.e a low average of loation errors, despite the amount ofpoints traked (table 2). Thus, the use of an appropriate photometri model improves theomputation of the motion model and has yields better auray of the points loations duringthe motion.Convergene residues. As seen from the results with N = 9, N does not perform well,sine its onvergene residues are really higher than P3 and C residues. J loses the whole of33



Figure 9: Images of the sequene of a planar surfae used to ompute the positioning errors.
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N = 25Figure 10: Planar surfae. Number of traked points versus the frame number for N = 9up to N = 25.
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(a) Planar surfae (b) Cylinder

N 9 15 25
C 6 9 6
N 29 32 32
J 23 37 43
P3 34 34 37
P6 0 46 69

N 11 15 25 35
C 8 24 14 10
N 2 30 36 40
J 0 8 28 34
P3 10 40 70 62
P6 0 0 34 68

the points, whih explains the vanishing of its residues at the 80th frame. These proedures donot prove to be appropriate for small windows, espeially when the onsidered surfae is notplanar as it is preisely the ase here.Here also, P6 provides quite satisfying results on large windows (N > 25). Its onvergeneresidues are globally lower: the geometri and photometri hanges are omputed more or-retly. However, the results of table 2 show that it traks a lower perentage of points than forplanar surfaes, whih on�rms that the model is more adapted to suh kind of surfae.In this sequene, note that the residues assert the results on the loation error. Indeed, thelowest residues are obtained for the more aurate traker (see �gure 15).6.2.2.3 Disussions. As seen in these �rst experiments, the onvergene residues roughlyevolve similarly to the mean loation error. Generally speaking, as shown on �gure 15 for36



Figure 13: Images of the sequene of a ylinder used to evaluate the auray of the trakingproedures.
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example, the lowest residues are obtained for the most aurate tehniques. Although theonvergene residues are not exatly an evidene of the good performane of the traking, theyprovide reliable information to ompare several traking tehniques, espeially when groundtruth is not available. Of ourse, this riterion has to be onsidered jointly with the robustness,i.e the number of points traked.In addition, these �rst experiments have allowed to reah some onlusions onerning thebehavior of the traking experiments.
• For small windows of interest (N ≤ 15 ), P3 is more performant (lowest onvergeneresidues, more points traked). In ontrast, for larger ones (N > 15), P6 is the mostrelevant tehnique. Obviously, the photometri hanges are better ompensated for by P3for small windows of interest, while they are better taken into aount with P6 on largerwindows of interest.
• N and J tehniques, whih are based on the omputation of an a�ne photometri modelare not appropriate for small windows of interest, espeially when the surfae urvaturesare strong (Cylinder for example). This remark on�rms the theoretial analysis on thevalidity of the photometri models (see Setion 4) where it has been dedued that thestronger the surfae urvatures are, the less e�ient these tehniques are.In this setion, the ground truth has been obtained, either by omputing the homographymatrix from markers for planar surfaes or by using the pose and a modeling of the objet.Unfortunately, these two approahes annot be implemented when some real images sequenesare onsidered, residues and robustness are the only available riteria.6.3 ExperimentsHere, experiments are onsidered on images sequenes where no ground-truth is available.However, we have seen in the previous experiments that the onvergene residues vary quitesimilarly to the loation error. In onjuntion with the number of points orretly traked, theyrepresent a satisfying way to ompare the traking methods.Besides, the image sequenes are played from the �rst frame to the last one and then fromthe last one to the �rst one in order to qualitatively evaluate the behavior of the tehniquesby verifying the symmetry of the omputed parameters. We analyze suessively the robust-ness, the auray of the modeling and the evolution of the photometri parameters. Theomputation times are also provided.In order to properly ompare the behavior of the trakers on real image sequenes, eahof them is �rst tested on sequenes where only speular highlights our. Then, the lightinghanges are also taken into aount.6.3.1 Speular highlight ourreneThe two �rst sequenes, Book (200 images) and Cylinder (150 images) (whih are shown re-spetively on �gures 16a and 17a) refer to speular objets, respetively a planar surfae and a39



ylinder. In eah ase, the sene is motionless and the lighting onditions do not hange but theamera moves, whih auses some speular highlights variations at the surfae of the objets. Inthe Book sequene, speular highlights disappear during the motion, whereas some other onesappear in di�erent regions of the objet. In the ase of the ylinder, (�gure 17a), two lightingsoures are taken into aount, whih auses the appearane of two highly saturated areas.During the motion of the amera, the speular highlights variations are partiularly strong inthe neighborhood of these two regions.Robustness. A total number of 97 points is seleted initially in the sequene Book and137 in the sequene Cylinder. Tables 3a and 3b report respetively the perentage of pointsorretly traked (with respet to the points that are not oluded or those whih go out of theimage) with respet to N , for eah traking tehnique.In sequene Book, P3 traks the largest number of points for N ≤ 15, and for sequeneCylinder, it remains the most robust up to N = 25. Consequently, the ontribution of P3 ismore signi�ant for non-planar surfaes. Indeed, that is the ondition when the illuminationhanges are the most likely to be di�erent in eah point of the window of interest. Besides, thisresult orroborates the theoretial study of the modelings of setion 4 page 15.
P6 does not onverge for small windows of interest, the number of parameters to estimateis too large with respet to the pixels available in W and the amount of noise.In the two sequenes, J is not more robust than C forN ≤ 13. Consequently, this proedureis not adapted for small window sizes, espeially when sequenes show speular highlightsvariations.
N is more robust than the lassial tehnique C when the objet is planar (sequene Book).If not, C provides better results for N < 25. Thus, using an a�ne photometri model is moreappropriate for planar surfae, as mentioned in setion 4.Convergene residues. Figures 16b and 17b ompare the average onvergene residuesobtained respetively during the sequenes Book and Cylinder, for small windows of interest(N = 9). When the objet is planar (sequene Book), N obtains lower onvergene residuesthan P3 (�gure 16b). Nevertheless, the omparison is not fair sine the average of the residues isomputed on 68 points when P3 is used and only 33 points when N is arried out. Therefore, inorder to obtain a more aurate analysis, �gure 16c ompares the average residues obtained onthe same points, i.e the points whih have been orretly traked by N and P3 simultaneously.These residues are lower for P3, whih on�rms the relevane of the photometri model in aseof speular highlights ourrene.In the Cylinder sequene, P3 obtains the lowest residues for N = 9. The residues of Nare high at the beginning of the sequene (before the 50th frame) and then derease when theoutliers points are lost. Then, �gures 16d and 17c show the onvergene residues obtainedwith N=35. In suh a ontext, P6 proves to be the most aurate tehnique. Indeed, itsmean residues (omputed on 71 points for the sequene Book and 105 points for the sequeneCylinder) are lower than those obtained by P3 (respetively omputed on 65 and on 92 points).Not only P6 traks a larger number of points, but their loation is more aurate.Photometri model. In order to analyze the illumination variations, we have seleted thepoint A (see �gure 16a) sine it is loated on an area of high speular highlights. The �rst row of40



�gure 16e shows the luminane values in the window of interest entered around A, whereas theseond row refers to the same window after a photometri ompensation by the use of P6, with
N = 35. Partiularly, let us notie on the �rst row, that the last image is less luminous thanthe previous ones, whereas the use of the illumination model has ompensated for these hanges(the geometri orretion has not been ahieved here). The spatial hanges of the illuminationmodel (ηu⊤ and λu⊤) are shown on the �gure 16f , where the intensity level is proportionalto the orretion. We notie that the illumination hanges are not onstant on W. In orderto understand the temporal evolution of the photometri models, let us refer to the �gure 16g,whih displays the parameters λi and ηi for i = 1..3. The symmetry of the urves attests that fortwo ourrenes of the same image (let us reall that the sequene is played from the �rst imageto the last one and then from the last one to the �rst one), the photometri parameters remainthe same, whih asserts the orret onvergene of the algorithm. In the sequene Cylinder,the evolution of the parameters omputed on the point A (whih is visible on the image 17a) isshown on the �gure 17d. Similarly to the previous experiment, the urves obtained prove thegood onvergene of the approah. Note that the parameters λ also ompensates for a partof the speular variations. That may be due to the weakness of the modeling of photometrihanges by a �rst order polynomial.Computation times. Let us onsider a point whih is orretly traked by eah proedurefor di�erent values of N . The omputation times of the tehniques are reported in table 4, for
N=9, 15 and 35. N and P6 are the most time-onsuming tehniques (either beause of the om-putation of the photometri normalization or beause of the large number of parameters whihhave to be approximated). These high values an also be explained by the bad onvergene ofthese tehniques when small windows of interest are used. Sine the algorithms are iterative,they require a larger number of iterations to onverge. For N=9 and 15, the tehniques C, Jand P3 obtain some similar omputation times.Up to now, the experiments have been ahieved on sequenes where speular highlightsour. The next setion deals with the omparison of the traking proedures when lightinghanges are also involved.6.3.2 Lighting variations and speular highlights hangesLet us onsider several image sequenes showing lighting hanges, and for some of them, speularhighlights hanges.The sequenes Planar objet and Marylin show several textured objets (see the �gures 18aand 19a) onsisting of several materials (glossy paper, erami, metal, ardboard, glass) andlighted by an ambient lightning (the daylight and the �uoresent lamps loated at the eiling)and a diret light soure. Then, the sequenes Hill (�gure 20a) and Corner 1(�gure 21a) showtwo outdoor senes a priori aquired at di�erent moments of the day. In eah ase, the amerais moving and the sene is motionless.1These sequenes an be found in the image data base CMU/VASC : http://vas.ri.mu.edu/idb/html/-motion/index.html 41
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Figure 16: Experiment Book (97 points are seleted). (a) Frames 1, 100 and 200 in the sequene. (b) Averageonvergene residues for N = 9. () Comparison of the onvergene residues obtained on the points that havebeen traked simultaneously by N and P3, for N = 9. (d) Average onvergene residues for N=35. (e) Imagesof the windows of interest entered around the point A : before (�rst row) and after (seond row) a photometriorretion by P6. (f) Illumination parameters of P3. (g) Evolution of the illumination parameters of P6.
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(d)Figure 17: Sequene Cylinder. (a) Images of the sequene (137 points have been seleted). (b) Evolution ofthe average of the residues for N = 9. () Evolution of the average residues for N = 35. (d) Evolution of thephotometri parameters omputed at point A by P6.
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Table 3: Perentage of the points that have been traked up to the end of the sequene withrespet to the points whih were initially seleted, with regard to N , in the ase of speularhighlights ourrene.
(a) Book (97 points seleted)

N 9 11 13 15 25 35
C 27.3 30.7 23 18.6 11.8 9.4
N 37.5 53.4 60.9 65.1 63.5 50.6
J 17 28.4 55.2 65.1 77.6 81.2
P3 77.3 77.3 79.3 77.9 78.8 76.5
P6 - - 34.5 54.7 90.6 83.5

(b) Cylinder (137 points seleted)
N 9 11 13 15 25 35
C 86.5 83.5 81.1 80.2 71.4 60.5
N 40.6 54.9 62.1 69.5 83.3 71.4
J 76.7 80.5 81.8 85.5 85.7 73.9
P3 96.2 94 93.9 93.1 87.3 77.3
P6 - - 51.5 64.8 81.7 88.2Table 4: Computation times (in ms) of the traking of one point in the sequene Book, for

N=9, 15 et 35. Method N=9 N=15 N=35
C 1.3 2.7 21
N 4.6 6.8 31.2
J 1.7 3.1 21.7
P3 1.4 3.2 12.3
P6 9 8.5 25In the sequene Planar objet, the intensity of the diret lighting varies strongly and pe-riodially, with a period of about 20 frames, from a maximum value to a minimal one. Thesequene Marylin is partiularly ompliated beause of the large motion of the amera andsome olusions. In addition, some intensity variations of the lighting soure are deliberatelyaused: around the iteration 135, the diret light is swithed o�, whih indues some strongillumination hanges. To �nish, the sequenes Hill and Corner show some lighting hangeswhih are not homogeneous in the image. Here also, we fous both on the robustness of thetraking and on the auray of the modeling.Robustness. We selet 58 points in the �rst frame of the sequene Planar objet, 156 inHill, 56 points inMarylin and 44 in Corner. These values are reported respetively in the tables5a, 5b, 5c, 5d. For small windows of interest (N<15) and whatever the image sequene is, P3loses less points than the other tehniques. For larger windows, most tehnique are robust (Cis an exeption). Nevertheless, for N ≥ 25 P6 is the most robust.Compared to the previous experiments where only speular highlights hanges were aused,44



methods N and J appear to be more robust. Indeed, they are always more relevant than C,whereas it was not the ase for small windows of interest when only highlights appeared. As aonlusion, these tehniques are more appropriate to ompensate for lighting hanges than totake speular highlights into aount.Convergene residues. The onvergene residues obtained with N = 9 by the trakersare shown on �gures 18b, 19b, 20b and 21b. Here again, these residues evolve in the same way asthe illumination hanges. This an be learly seen on �gure 18b, where they vary periodiallywith the same frequeny as the intensity hanges that have been aused.In the sequene Marylin, P3 traks a larger number of points (�gure 19b) from N = 9 up to
N = 13. As regards the other sequenes, the average residues of J , N and P3 are omparable,although P3 residues are omputed with a larger number of points than J and N (refer to tables5a, 5c and 5d).For sake of larity, �gures 18c and 20c ompare the residues obtained by P3, N and J onthe few points that are orretly traked by eah of these three trakers simultaneously. Forthe sequene Planar Objet, P3 obtains lower residues than N . However, in Hill, it is moredi�ult to reah a onlusion sine the residues are almost similar. In Marylin sequene, with
N = 15 (see the �gure 19c), the residues of P3 are the highest. As a �rst onlusion, P3 is moreappropriate for traking small windows of interest, espeially when only speular highlights areaused (see the previous experiments).Now, for wider windows (from N = 15 to N = 35), whatever the image sequene is (seethe evolution of the residues on the �gures 18d, 19d, 20d and 21c) the proedure P6 yields thelowest onvergene residues and traks the largest number of points.In ontrast, for sequenes Planar Objet, Marylin and Corner, P3 obtains worse residuesthan J , N and P6. On the other hand, it yields the lowest residues in the Hill sequene.Indeed, the three �rst sequenes represent senes whih are strongly strutured, and wherere�etane is likely to show strong edges, whereas the Hill sequene is more textured and showsfew strong variations of re�etane. Yet, when lighting hanges are aused, the performanesof P3 depend on the re�etane hanges of the onsidered surfae. Beause of the assumptionformulated about the smooth illumination hanges (in setion 3.3.1), the more the re�etanevaries the less the proposed modeling ompensates for these hanges.Consequently, P3 proves to be more relevant to take speular highlights into aount thanto ompensate for lighting intensity variations, sine the model must ompensate for variationswhih depend on the parameter a depending on the re�etane. More preisely, P3 approximates
a by a plane. Unlike P3, P6 proedure does not have to ompensate for re�etane hangesand an deal with the spatial variations of the illumination hanges. However, it is relevant forlarge windows of interest sine a higher number of parameters has to be taken into aount.Photometri parameters. The �rst row of the �gure 18e shows the intensities of thewindow of interest entered around one of the traked points, whih has been seleted in anarea of high illumination hange (point A is visible in the �rst image of �gure 18a). The oarselighting hanges are notieable. The seond row is assoiated to the intensities that have beenorreted by the photometri model of P6. The illumination hanges are not visible anymore.45



The omponents of ηu⊤ and λu⊤ are shown on �gure 18f , respetively on the �rst and seondrows. They ompensate for the spatial variations of the ontrast and for the speular re�etionhanges (as it an be seen, they are not onstant). The evolution of these parameters duringthe sequene is shown on the �gure 18g. It really orresponds to the lighting variations whihhave been aused. Indeed, we reognize the frequeny of 20 iterations between a maximumintensity value and a minimum one.Computation time. Aording to the omputation times written in the table 6, the teh-niques N and P6 are the most time-onsuming. For small windows of interest, the omputationtimes of P6 are high, sine this tehnique does not onverge e�iently on small windows of in-terest. Let us also notie that P3 obtains larger omputation times than in the ase of speularhighlights (see table 4). This fat shows that, even if this approah is robust it is more adaptedto speular highlights than to lighting hanges.6.3.3 Traking experiments on large windows of interest.Due to the adequay of the onsidered motion model in the di�erential tehniques, suhapproahes an be extended to trak wider windows of interest, as it is done for instanein [4,8,15,20℄. Let us notie that the lighting hanges are taken into aount in [15℄, where theauthors use an image data base aquired o�ine under various illumination onditions, in orderto ope with eah possible appearane hange. This tehnique is quite e�ient but it requiresa prior learning stage, whih an be seen as too restritive.In setion 3.3.2, a omprehensive illumination model has been introdued, whih ompen-sates spatial variations of speular and lighting variations. We use this model to trak largewindows of interest.Speular re�etion. Figure 22a shows an image sequene of a non-planar speular objet.An area of the image has been seleted by hand in the neighborhood of the areas of highsaturation (speular highlights). With Eave = 25, only P3 et P6 are able to trak the window ofinterest from the beginning to the end of the sequene. In addition, �gure 22b, whih displaysthe onvergene residues, shows that P6 models more aurately the speular hanges omparedto P3, sine it yields lower residues. Let us also notie that C loses the area of interest veryquikly ompared to N and J .Lighting hanges (Sequene Planar Objet). Figure 23a represents an image sequenewith shows the sene of the Planar objet sequene. An area of the image is seleted, and thetraking is ahieved with Eave = 15. Figure 23b refers to the onvergene residues obtained.They show that P6 models more aurately the speular hanges whih have been aused inomparison to the other tehniques, sine it yields lowest onvergene residues. We have notdisplayed the residues obtained by C, sine this tehnique was not able to trak the area duringthe whole sequene. P6 is more adapted to ompensate the illumination hanges on wide areasof the image.Traking of a road sign (lighting hanges). The sequene of �gure 24(a) has beenaquired from a moving ar2. This sequene is of poor quality, beause of noise, gain hanges,2This sequene is available on http://vas.ri.mu.edu/idb/html/jist/index.html.46



Table 5: Lighting hanges. Perentage of points whih have been orretly traked during thesequene (the oluded points or points whih go out of the image are not taken into aount).
(a) Planar objet (58 points are seleted)

N 9 11 13 15 25 35
C 63.8 50 39.7 36.2 8.6 6.9
N 77.6 87.9 91.4 91.4 96.6 93.1
J 67.2 82.8 87.9 51 87.9 89.7
P3 100 100 100 100 96.6 96.6
P6 48.3 75.9 87.9 94.8 100 100

(b) Hill (156 points are seleted)
N 9 11 13 15 25 35
C 49.6 31.1 23.7 20 11.2 9.6
N 45.9 60 63.7 63.7 73.7 75
J 55.6 56.3 63.7 70.4 85.6 93.3
P3 74.8 74.8 74.8 75.6 86.4 95.2
P6 - 67.4 70.4 77.8 89 97.1

(c) Marylin (56 points are seleted)
N 9 11 13 15 25 35
C 0 0 0 0 0 0
N 0 3.6 3.6 21.4 17.9 17.9
J 0 3.6 3.6 7.2 10.7 17.9
P3 46.4 28.6 21.4 14.3 7.2 3.6
P6 - - - 14.3 42.9 39.3

(d) Corner (44 points are seleted)
N 9 11 13 15 25 35
C 90.9 86.4 88.6 88.6 84.1 67.4
N 72.7 63.6 90.9 95.5 86.4 81.8
J 100 100 100 100 97.7 88.6
P3 100 100 100 100 100 100
P6 34.1 50 72.7 86.4 100 100
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Figure 18: Experiment Planar objet. (a) Three images of the sequene. (b) Average residues obtainedwith N=9. () Residues obtained with N=9 on the points whih are traked simultaneously by Nand P3. (d) Average residues obtained with N=35. (e) Images of the window of interest entered onA: before (�rst row) and after (seond row) orretion by the six parameters of the photometri model
P6. (f) Illumination parameters omputed with P6 on the window of interest. (g) Evolution of thephotometri parameters omputed with P6. 48



1rst frame 145th frame 215th frame 299th frame (a)

(b) N = 9 (c) N = 15 (d) N = 35Figure 19: Experiment Marilyn. (a) Images of the sequene. (b) Average residues obtained with N=9. ()Average residues obtained with N=15. (d) Average residues obtained with N=29.
Table 6: Computation times (in ms) used to trak one point in the Planar objet sequene,with N=9, 15 and 35. Method N=9 N=15 N=35

C 1.3 2.9 11.4
N 4.3 3.5 14.1
J 1.6 3.2 11.5
P3 2 3.5 13.8
P6 32 5.9 18.4
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2nd frame 4th frame 9th frame 13th frame
(a)

(b) (c) (d)Figure 20: Experiment Hill. (a) Images of the sequene. (b) Average residues with N = 9. (): residues with N = 15 obtained on the points that have been traked simultaneously with P3,
N and J . () Average residues with N = 35.

2nd frame 13th frame 21th frame 24th frame
(a)

(b) (c)Figure 21: Experiment Corner. (a) A few images of the sequene. (b) Average residues for
N = 9. () Average residues for N = 35. 50



1rst frame 25th frame 50th frame
75th frame 99th frame 200th frame

(a)

(b)Figure 22: Traking of large regions of interest (N = 151), speular highlights our. (a)Images of the sequene and region traked with P6. (b) Evolution of the onvergene residues.
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1rst frame 25th frame 50 th frame
75th frame 99th frame 200th frame

(a)

(b)Figure 23: Traking of large regions of interest (N = 151): lighting and speular highlightshanges. (a) Images of the sequene with the region traked by P6. (b) Evolution of theonvergene residues versus the number of the frame.
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1rst frame 11th frame 54th frame
(a)

(b)Figure 24: Traking of a road sign. (a) Images of the sequene. (b) Convergene residues versusthe number of frame.darkness. Around the 11th frame, a wide motion is aused, beause of the vehile vibrations.The road sign is seleted by hand in the �rst frame with a window size 81×81. The traking ofthis road sign has been ahieved orretly and the onvergene residues of �gure 24(b) show that,here again, P6 ompensates more omprehensively for the illumination hanges, in omparisonto J .6.4 DisussionFirst, the experimental results have shown that the lassial traking tehnique C is not robustneither to the speular highlights variations nor to ilumination hanges sine it is based on theassumption of luminane onstany.In ontrast, using an a�ne photometri model (methods J or N) provides a better robust-ness, exept when the window of interest is small. It an be partly explained by their sensivityto noise. Indeed, when a pixel is noisy in W, the values of µf , σf , µg, σg, and λ beome alsonoisy, sine they depend on eah luminane in W. For the J approah, λ is multiplied by eahvalue of f . Consequently, an error aused on λ an have a huge in�uene. The minimizationof ǫ2 an �nally lead to an inorret value of µ. On the other hand, for wider windows ofinterest, the ontribution of one noisy pixel in the omputation of these parameters beomes53



less signi�ant. Consequently, the omputation of µf , µg, σf , σg, λ is more aurate leadingto a more preise value of µ. This remark has been illustrated by the onvergene residuesobtained by these approahes on small windows of interest.For small windows of interest, P3 traks a larger number of points than N and J . It or-retly ompensates for the speular highlights and lighting hanges on W and is quite aurate.On the other hand, its performanes are redued when lighting hanges have to be modelled,partiularly on very large windows of interest. Indeed, in suh a ontext, the modeling has toapproximate the albedo of the objet by a �rst order polynomial on W. This assumption anbe seen as a strong assumption on large windows of interest, where the re�etane may varydrastially. On the other hand, N and J annot ope orretly with the photometri modelingon non-planar surfaes.Let us also notie that, from the omputation time point of view, even if P3 requires the om-putation of an additional parameter with regard to J and onsequently the inversion of a widermatrix, the omputation times of these tehniques are similar, due to a better onvergene of P3.On the other hand, P6 is more aurate for large windows, whatever the illumination hangesare. Indeed, using a omprehensive photometri model improve the estimation of the motionmodel during the sequene. In ontrast, using it on small windows does not allow the ompu-tation of the true photometri and motion parameters.7 ConlusionsSine the use of speular re�etane models implies the handling of a large number of param-eters, most omputer vision algorithms assume that the objets in the sene are Lambertianand that no lighting hange ours. However, that is a oarse assumption.Nevertheless, the use of loal simpli�ed photometri models an signi�antly robustify theproessings, by onsidering the luminane hanges ourring between images. Through theanalysis of speular re�etion models, we have explained expliitly on whih assumptions themost widely used photometri models are impliitly based. Then, we propose some new photo-metri models, whih rely on the preise analysis of the re�etion, and on the assumption thateah kind of illumination hange an be approximated by a ontinuous and derivable funtionin a loal are of the image. The �rst model, whih uses three parameters, is well appropriateto ompensate for speular highlights ourrene. The seond one uses six parameters andtakes eah kind of illumination hanges into aount: speular highlights ourrene, lightingvariations or hanges of the gain of the amera.The validity of these photometri models has been theoretially studied, by onsidering somepartiular on�gurations of the sene. First of all, it appears that the photometri models aremore appropriate than the a�ne photometri model and the photometri normalization, sinethey allow some spatial variations of illumination hanges. Our models are quite lose to thereal illumination hanges when surfaes projeted in the windows of interest show some lowurvature disontinuities, and when the surfae is rough enough. Moreover, the photometri54



models are more relevant when the sensor is su�iently lose to the surfae, and when thelights are su�iently far from the surfaes.The two proposed photometri models an be useful in many omputer vision appliations,where lightning is not perfetly ontrolled, espeially in outdoor experiments.In this paper, we implemented them in two feature points traking proedures. The aimof these approahes was to e�iently ompensate for the photometri hanges aused duringan image sequene, in order to obtain a more aurate estimation of the motion model. Theseproedures have been ompared, theoretially and experimentally, to some widely used featurepoints traking methods: the lassial approah, the traking with photometri normalizationand the traker proposed by Jin et al., in their simple implementation.By ompensating for the spatial variations of illumination hanges, the proposed methodshave proved to be more robust than the existing approahes. The �rst traker is well adapted forsmall windows of interest, whereas the seond one is appliable for larger windows of interest.Experimental results obtained from several images sequenes have shown a good onvergeneand a good auray of these proedures. In this paper, we have deliberately foused on thespei� problem of illumination hanges, without onsidering the problem of olusions, whihis an other di�ult subjet.A ConditioningThe onditioning of the trakers detailed in that report an be ompared. Indeed, eah linearequation system envolved in the traking proedure (see equations (48), (52), (53), (55) and(58)) an be written as Ax = y and more preisely
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Consequently, the inversion of A sueeds if A11 and A22 are well-onditioned and an beorretly inverted.In the traking tehniques, for eah approah the matrix A11 is the same. Therefore, theomparison of the onditioning of the method only depends on the onditioning of A22. Thematries assoiated to the methods whih approximate the photometri parameters A22
J (forthe Jin's tehnique), A22

P3 and A22
P6 are written as:

J A22
J =

∑
m(f(m), 1)(f(m), 1)⊤

P3 : A22
P3 =

∑
m uu⊤

P6 : A22
P6 =

∑
m(uf(m),−u)(uf(m),−u)⊤

(63)The matrix A22
P3 is the best well-onditioned. In addition, its terms are onstant, thereforethey an be omputed o�-line. On the ontrary, the matrix A22
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