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Abstra
tSin
e modeling re�e
tions in image pro
essing is a di�
ult task, most 
omputer visionalgorithms assume that obje
ts are Lambertian and that no lighting 
hange o

urs. Somephotometri
 models 
an partly answer this issue by 
omputing the illumination 
hanges insmall areas of the image, but they often assume that the lighting 
hanges are the same in ea
hpoint of a window of interest. Through a study based on spe
ular re�e
tion models, su
h as thePhong and the Torran
e-Sparrow ones, we explain expli
itly the assumptions on whi
h thesemodels are impli
itly based and therefore the situations in whi
h they fail.In this report, we propose two photometri
 models, whi
h 
ompensate for spe
ular high-lights and lighting variations. They are based on the assumption that illumination 
hangesvary smoothly on the window of interest. The �rst one is more suitable when spe
ular high-lights o

ur and when small windows of interest are used, as in feature points tra
king. These
ond model 
ompensates for more 
omprehensive 
hanges su
h as spe
ular highlights andlighting 
hanges, and 
an be used on larger areas of the image. Contrary to existing models,the 
hara
teristi
s of the surfa
e of the obje
t and the lighting 
hanges 
an vary in the areabeing observed. A part of this report deals with the study on the validity of these modelingswith respe
t to the a
quisition 
on�guration: relative lo
ations between the lighting sour
e, the
amera and the obje
t, properties of the surfa
e (
urvatures and roughness). These models areused to improve feature points tra
king in image sequen
es, by 
omputing simultaneously thephotometri
 and geometri
 
hanges. The proposed methods are 
ompared to tra
king methodswith photometri
 normalization [34℄ and the te
hnique proposed by Jin et al. [31℄. Both ofthem 
ompensate for a�ne photometri
 
hanges. Sin
e our approa
h 
orre
ts spatial photo-metri
 variations, the robustness and the a

ura
y of the tra
king are improved. Experimentalresults on spe
ular obje
ts demonstrate the robustness of our approa
hes to spe
ular highlightsand lighting 
hanges, without in
reasing 
omputation times. These pro
edures provide a gooda

ura
y of the points lo
ation during the sequen
e.KeywordsIllumination 
hanges, lighting, spe
ular re�e
tion, photometri
 models, tra
king.
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RésuméPuisque la modélisation pré
ise des ré�exions dans des images est une tâ
he di�
ile, laplupart des algorithmes de vision par ordinateur suppose que les objets sont lambertiens etqu'au
un 
hangement d'é
lairage ne se produit. Des modèles photométriques répondent par-tiellement à 
e problème en 
al
ulant les 
hangements d'illumination dans de petites fenêtresd'intérêt de l'image, mais ils font généralement l'hypothèse que les 
hangements d'intensité sontidentiques en tout point de la fenêtre. A partir d'une étude basée sur des modèles de ré�exionspé
ulaires, 
omme les modèles de Phong ou de Torran
e-Sparrow, nous dé
rivons expli
ite-ment les hypothèses sur lesquelles 
es modèles sont impli
itement basés, et don
 les situationspour lesquelles ils é
houent.Nous proposons ensuite de nouveaux modèles photométriques lo
aux, qui peuvent 
om-penser di�érents types de 
hangements d'illumination, tels que des variations de ré�exionspé
ulaire et des 
hangements d'é
lairage. Ils sont basés sur l'hypothèse selon laquelle les
hangements d'illumination varient dou
ement dans la fenêtre d'intérêt 
onsidérée. Le premiers'avère le plus adapté aux variations spé
ulaires sur de petites fenêtres d'intérêt, 
omme 
ellesutilisées dans le 
adre du suivi de points d'intérêt. Par 
ontre, le se
ond s'avère approprié à lafois pour les 
hangements spé
ulaires et les variations d'é
lairage.Nous nous atta
hons à analyser la validité de 
es modélisations, en fon
tion de la 
on�gu-ration d'a
quisition : positions relatives entre la sour
e d'é
lairage, le 
apteur et la surfa
e del'objet, ainsi que les propriétés de la surfa
e. Ces modèles sont ensuite mis en oeuvre pouraméliorer le suivi de points 
ara
téristiques et de zones d'intérêt dans des séquen
es d'images.Les méthodes proposées sont 
omparées à la méthode de suivi ave
 normalisation pho-tométrique et la te
hnique proposée par Jin et al. [31℄, qui sont robustes aux variations d'illu-mination a�nes. Du fait que la modélisation photométrique proposée prend 
orre
tement en
ompte les variations spatiales d'illumination, la robustesse du suivi et le 
al
ul du modèle demouvement sont améliorés. Des résultats expérimentaux sur des objets spé
ulaires montrentla bonne robustesse de 
es appro
hes vis-à-vis des ré�exions et des 
hangements d'é
lairage.Elles assurent également une bonne pré
ision de la lo
alisation des points au 
ours du suivi,sans augmenter de manière signi�
ative les temps de 
al
ul.Mots 
lé : Changements d'illumination, é
lairage, ré�exion spé
ulaire, modèles pho-tométriques, suivi de points et de zones d'intérêt.
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1 Introdu
tionComputer vision has re
ently emerged in many �elds su
h as mobile roboti
s [9℄, visual in-spe
tion, in surgi
al, agri
ultural, spatial or underwater domains [11℄, i.e in various naturalenvironments. For su
h pra
ti
al appli
ations, one of the 
ru
ial problems lies in the robust-ness of the low level algorithms with respe
t to some 
riti
al a
quisition 
onditions: blurredimages, a
quisition noise, illumination 
hanges, re�e
tions. High level algorithms su
h as 3Dre
onstru
tion, a
tive vision or visual servoing for example 
an be e�
iently improved by in-
reasing the robustness of spatial and temporal mat
hing pro
ess.This paper addresses more pre
isely the problem of robust feature tra
king with respe
t tolighting 
hanges and spe
ular highlights.When it is possible, the robustness of this pro
edure 
an be improved by extra
ting salientfeatures in the image, su
h as edges [36℄, 
orners [16℄, lines [6℄ sin
e they almost only depend onthe obje
ts shape or on the luminan
e gradients. It be
omes far more 
ompli
ated when no mark
an be extra
ted from the observed obje
t, su
h as in natural environment. In su
h a 
ontext,only points, among possible features, are likely to be easily dete
table. However, tra
king apoint in an image is not a trivial task sin
e the only available information is the luminan
eof the point and of its neighboring pixels. In su
h a 
ontext, the illumination variations areproblemati
, sin
e they often make pro
essings fail.The seminal works in the domain of feature points tra
king are due to Lu
as and Kanade[23, 33℄ who assume the 
onservation of the point luminan
e during the image sequen
e [19℄.The measure of a 
orrelation fun
tion between two su

essive frames provides the translationmotion undergone by the point to tra
k. This motion model theoreti
ally assumes that ea
hpoint in the window 
entered around the point to tra
k moves parallel to the image sensor at
onstant depth. Therefore, this di�erential tra
ker assumes a high a
quisition frequen
y and asmall motion between two su

essive frames. However, this te
hnique is still 
onsidered to bepowerful [32℄.Thereafter, the robustness of this tra
king approa
h has been improved, by using some morepowerful motion models. For example, the literature has proposed several motion models:a�ne [29℄, quadrati
 [26℄ and homographi
 [7, 8℄. More re
ently, [2℄ has 
ompared severalimplementations of the di�erential tra
kers. Sin
e these formalims are quite more realisti
 thanthe translational one, the 
orrelation 
an be measured between the �rst and the 
urrent frame,so that the tra
king errors are not 
umulated during the sequen
e. The a

ura
y of the tra
king
an also be veri�ed a posteriori, by dete
ting and reje
ting outliers points automati
ally [34℄.Moreover, it is possible to use a robust estimator [26℄, in order to weight the measurements byan in�uen
e fun
tion and give less 
on�den
e to outliers. This type of methods has proved tobe e�
ient to over
ome the problem of o

lusions, and to avoid taking noise into a

ount inthe 
orrelation measure [28℄. Using statisti
al �lters [1, 24℄ 
an also improve the robustness ofthe pro
ess, when points traje
tories are 
omplex.The tra
king of planes 
an also be implemented by an e�
ient se
ond order minimization(ESM) [4℄.However, these methods assume that the luminan
e remains 
onstant between two su

essive5



frames, whi
h is not true. Indeed, most surfa
es are not Lambertian and lighting 
onditions aremostly variable during an image sequen
e. When 
olor sensors are available, the measure of the
orrelation fun
tion has proved to be more e�
ient by using 
olor invariants, as in [13℄. Undera few assumptions, these attributes do not depend neither on the intensity of lighting, nor onits dire
tion. Nevertheless, their 
omputation requires images with highly saturated 
olors.Hager and Belhumeur [15℄ propose to a
quire an image data base of the s
ene under severalilluminations and to use these data to improve the tra
king. This method is e�
ient and nosalient feature is needed. Nevertheless, it requires a prior learning step, whi
h 
an be seen astoo restri
tive. Very often, one 
an prefer to a
hieve a simple lo
al photometri
 normalizationas in [34℄.Illumination 
hanges 
an also be 
ompensated by 
omputing a photometri
 model whi
hproperly �ts the luminan
e variations in restri
ted areas of the image. Su
h models have beenused in several appli
ations su
h as opti
al �ow 
omputation [5, 17, 21, 25℄, obje
t re
ogni-tion [12℄, image mat
hing and indexing [14℄. For instan
e in [31℄, the feature points tra
kingpro
edure 
ompensates for a�ne illumination 
hanges by 
omputing the 
ontrast and illumi-nation variations during the image sequen
e. Re
ently in [30℄, the authors have 
omputedarbitrary illumination 
hanges on a large planar pat
h in a tra
king 
ontext, by using an ESMalgorithm. However, the main di�
ulty of the illumination 
ompensation is to balan
e thetrade-o� between 
omplexity, and thus 
omputational 
ost, and adequa
y of the model withthe real illumination 
hanges.Moreover, these illumination models are based on several assumptions, about the s
enegeometry and the surfa
e roughness, whi
h have not been 
learly de�ned yet. In general, thespatial variations of illumination 
hanges, su
h as 
ontrast and intensity 
hanges, are not takeninto a

ount. However, the luminan
e results from a 
olle
tion of intera
tion me
hanismsbetween the light, the matter and the sensor, whi
h are di�
ult to 
ompute in a 
omputervision appli
ation. The �rst 
ontribution of this report is to 
learly explain the modeling ofillumination 
hanges o

urring when the relative position between the obje
ts, the lighting andthe 
amera are modi�ed or when the lighting 
onditions are 
hanged. This analysis is based onsome widely used spe
ular re�e
tion models, su
h as the Phong [27℄ and the Torran
e-Sparrowones [35℄. In parti
ular, we fo
us on two spe
i�
 illumination models. The �rst one, whi
huses three photometri
 parameters, is parti
ularly well adapted to 
ompensate for spe
ularhighlights and lighting 
hanges when small areas are 
on
erned. The se
ond model, based onsix parameters, is more relevant for larger windows. In parti
ular, these models 
an 
ompensatefor spatial variations of illumination 
hanges. They 
orre
tly �t the real photometri
 
hanges,while requiring a low algorithmi
 
omplexity.Obviously, the validity of these models depends on the obje
t surfa
es (orientation, re-�e
tan
e and roughness), on the lo
ation of the lighting sour
es but also on the viewer dire
-tion. Therefore, the se
ond 
ontribution of the paper 
onsists in studying the validity of theproposed models, by 
onsidering several simpli�ed a
quisition geometries. Finally, we 
ompareour approa
h to the most 
ommonly used in the literature.This report is organized as follows. Se
tion 2 fo
uses on the general modeling of luminan
e
hanges, espe
ially in the 
ase of spe
ular re�e
tions and lighting variations. Then, Se
tion3 deals �rst with the lo
al illumination models whi
h are used in temporal 
orresponden
es6
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Figure 1: Ve
tors and angles involved in the re�e
tions des
ription.mat
hing, then details the two photometri
 models we propose.The theoreti
al validity of the photometri
 models, and 
onsequently of the tra
king pro
e-dures, is studied by 
onsidering several spe
i�
 
on�gurations on the viewing geometry and thesurfa
e properties. This study is the aim of Se
tion 4. Se
tion 5 details some of the existingtra
kers, regarding to the illumination model on whi
h they are based. Then, the two proposedtra
kers are detailed in Se
tion 5.3.The relevan
e of our approa
hes is proved through experimental results, in Se
tion 6. More-over, a 
omparison with the standard tra
king te
hniques is also performed, in terms of robust-ness, lo
ation a

ura
y and 
onvergen
e of the tra
king.
2 Modeling of luminan
e 
hangesIn this se
tion, we detail the des
ription of the luminan
e, while referring to physi
al modelslargely used in image synthesis and image analysis. Then, starting from this modeling, wefo
us parti
ularly on the luminan
e 
hanges o

urring between two images of the same s
ene,a
quired for example during an image sequen
e. Let us noti
e that we do not 
onsider themodeling of luminan
e 
hanges 
aused by the a
quisition pro
ess (for instan
e distortion dueto the obje
tive, blur), but only on those due to illumination 
hanges.Let us �rst introdu
e our notations (see �gure 1 whi
h sket
hes the ve
tors and the angles).Let be P a point of the obje
t. V and L are respe
tively the viewing and the lighting dire
tions,whi
h form the angles θr and θi with the normal n in P . B is the bise
ting line between V and
L, it forms an angle ρ with the normal n. Let f and f ′ be respe
tively the images of an obje
ta
quired at two di�erent times. A point P of this obje
t proje
ts in image f in p of 
oordinates
(xp, yp) and in p′ of 
oordinates (x′p, y

′
p) in the image f ′ after a relative motion between the
amera and the s
ene. We 
all δ the ve
torial fun
tion whi
h links p′ to p su
h that δ(p,µ) = p′a

ording to a parameterization des
ribed by µ.7



2.1 The luminan
e in the CCD planeThe relationship between the radian
e L of the observed obje
t and the irradian
e re
eived bythe sensor Ic, is given by [18℄
Ic(λ) = KcL(λ). (1)

Kc is a s
alar whi
h does not depend on the wavelength λ but only on the geometry of the
amera su
h as the fo
al distan
e and the aperture. It is generally 
onsidered as a 
onstants
alar. Then, the luminan
e f(p) depends on the spe
tral sensitivity S(λ) of the sensor
f(p) =

∫ λmax

λmin

S(λ)Ic(λ, P )dλ = Kc

∫ λmax

λmin

S(λ)L(λ, P )dλ = Kc

∫ λmax

λmin

S(λ)E(λ, P )R(λ, P )dλ(2)where R(λ, P ) is the re�e
tan
e of the material and E(λ, P ) the illuminant spe
trum.Several expressions of the radian
e L(λ, P ) have been proposed a

ording to the physi
alproperties of the material and to the s
ene geometry. Among them, the Lambertian model [22℄is undoubtedly the most widely used be
ause of its simpli
ity and its relevan
e.Lambertian model. It expresses the radian
e as
LL(λ, P ) =

{
Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) if θi(P ) ∈ [−π

2
, π

2
]

0 otherwise (3)In other words, the radian
e in P is expressed as a fun
tion of the in
ident angle θi(P ), thedi�use re�e
tan
e Rb(λ, P ), most often 
alled body re�e
tion or albedo, and the illuminationspe
trum E(λ, P ) in P .Most surfa
es also re�e
t light in a spe
ular manner, not only in a di�use one, and severalfun
tions 
an be used to model this luminan
e. We des
ribe here the most interesting onea

ording to our problem.The Phong model. Phong [27℄ has des
ribed the radian
e of spe
ular surfa
es in a heuristi
way. However, this model is simple to use. The radian
e is given by
LP (λ, P ) =






Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) + Ks(λ, P ) cosn(ρ(P )) + Ka(λ, P ) if θi(P ) ∈ [−π
2 , π

2 ]

0 otherwise (4)It is 
omposed of a di�use and a spe
ular 
omponent and assumes a point light sour
e. Thes
alar n is inversely proportional to the roughness of the surfa
e andKs is the spe
ular 
oe�
ientof the dire
t lighting, depending also on the gain of the 
amera. Ka is the intensity of ambientlighting in P . It is 
ommonly admitted that it is an empiri
al model but it proves largelyinteresting for its simpli
ity, and be
ause it is appropriate for various types of materials, whetherthey are rough or smooth.The Torran
e-Sparrow model [35℄. Contrary to the previous models, this one is based onthe opti
al geometry. However, sin
e it negle
ts the ele
tromagneti
 
hara
teristi
s of light, it8



is valid only when the surfa
e asperity is larger than the light wavelength. The radian
e in Pis expressed as
LT (λ, P ) =






Kd(P )E(λ, P )Rb(λ, P ) cos θi(P ) +
Ks(λ, P )

cos(θr(P ))
e(−ρ2(P )/2ς2) if θi(P ) ∈ [−π

2 , π
2 ]

0 otherwise (5)where ς is the roughness parameter of the model. The Torran
e-Sparrow model is viewed asan interesting model be
ause of the good adequa
y between simpli
ity and a

ura
y 
omparedto physi
al reality. Let us remark in both 
ases, for Phong or Torran
e models, that thespe
ular term rea
hes its maximum value for ρ(P ) = 0, that is when B 
oin
ides with n. Inthe remainder of the paper, we 
all h this spe
ular term.Some more advan
ed formalisms, su
h as the Be
kmann model [3℄ based on the ele
tromag-neti
 waves theory 
an be found in the literature. Nevertheless, this model is di�
ult to use inpra
ti
e in 
omputer vision be
ause of the large number of parameters.2.2 The luminan
e modeling in an imageLet us note M(λ) = S(λ)E(λ, P ) in (2). When the sensor has a linear response and the 
olorof illuminant is 
onstant during the time, M(λ) 
an be expressed as the produ
t of a gain
Km, whi
h does not depend of the wavelength, with a spe
trum shape e(λ). In that 
ase, theluminan
e be
omes

f(p) = KcKm(p)

∫ λmax

λmin

e(λ)R(λ, P )dλ. (6)A

ording to the re�e
tion models des
ribed previously, R(λ, P ) is 
omposed of a di�usere�e
tan
e Rb(λ, P ) and a spe
ular term dire
tly related to the illuminant. Let us write a(p)the following term:
a(p) =

∫ λmax

λmin

e(λ)Rb(λ, P )dλ. (7)Sin
e it depends on the albedoRb(λ, P ), it is also an intrinsi
 property of the material. Whateverthe photometri
 model is, the luminan
e f 
an be modeled as a sum of three terms whi
h arerespe
tively related to the di�use, spe
ular and ambiant re�exions:
f(p) = Kd(p)a(p) cos θi(P ) +Ks(p)hf (P ) +Ka(p) (8)where Kd(p) = KcKm(p) and hf refers to the spe
ular re�e
tion fun
tion whi
h depends onthe photometri
 model (see 2.1): it 
an be either a 
osine fon
tion (Phong) or an exponentialone (Torran
e-Sparrow). Ks(p) and Ka(p) are the integration values respe
tively of Ks(λ, P )and Ka(λ, P ) (see (4) and (5)) a

ording to the wavelengths.A

ording to (8), the illumination 
hanges o

urring between two images of the same s
ene,
an be easily dedu
ed. 9



2.3 The luminan
e 
hanges between two images of a sequen
eLet us �rst distinguish between the illumination variations due to spe
ular re�e
tion and theillumination 
hanges related to lighting 
onditions 
hanges.Spe
ular re�e
tions. They 
an o

ur due to a simple motion of the 
amera with respe
tto the surfa
e. Then, the in
ident angle θi is 
onstant in P during the time.Moreover, if no lighting 
hange o

urs, the intensities Kd and Ka are also 
onstant. In thesame way, a(δ(p,µ)) = a(p) sin
e this term depends only on the lo
ation of P .However, the spe
ular 
omponent h, whi
h depends on the viewing dire
tion via the angle
ρ, varies strongly. In those 
onditions, the luminan
e f ′ is given by

f ′(δ(p,µ)) = Kd a(p) cos θi(P ) + h′(δ(p,µ)) +Ka (9)where h′ is the spe
ular fun
tion. By subtra
ting (9) with (8), it yields to the following rela-tionship between the two images
f ′(δ(p,µ)) = f(p) + ψ(p) (10)where
ψ(p) = h′(δ(p,µ)) − h(p). (11)Lighting 
hanges and spe
ular highlights. Now, let us 
onsider that some lighting
hanges ∆Ka, ∆Kd are produ
ed on Ka and Kd respe
tively. These variations 
an be due to ashift of the 
amera gain or a variation of the lighting intensity. Moreover, the in
ident angle θi
hanges in P a

ording to a fun
tion that we 
all ∆θi. Su
h variations o

ur when the obje
tmoves a

ording to the light sour
e or when the light sour
e moves. Then, the relative motionbetween the 
amera, the surfa
e and the lighting 
an make the spe
ular term h′(δ(p,µ)) vary.Thus, the luminan
e in image f ′ is expressed as

f ′(δ(p,µ)) = K
′

d(δ(p,µ)) a(p) cos θi
′(P ) + h′(δ(p,µ)) +K

′

a (12)with: 




K
′

d(δ(p,µ)) = Kd(δ(p,µ)) + ∆Kd(p)
θ
′

i(P ) = θi(P ) + ∆θi(P )
K

′

a = Ka + ∆Ka.

(13)The spe
ular term h′(δ(p,µ)) in
ludes the intensity 
hange of the spe
ular 
oe�
ient Ks ifne
essary.Therefore, by using equations (8) and (12), the relationship between two images of the sames
ene 
an be des
ribed by two di�erent expressions.First, it 
an be written as (10), where the fun
tion ψ is given by the following relationship:
ψ(p) = a(p)(K ′

d(δ(p,µ)) cos(θi(p) + ∆θi(p)) −Kd cos θi(p)) +

h′(δ(p,µ)) − h(p) + ∆Ka (14)In that 
ase, the fun
tion ψ(p) depends on a(p) and thus on the albedo of the material, 
loselyrelated to its re�e
tan
e. 10



Se
ond, the luminan
e 
hange 
an be expressed by the following relationship
f ′(δ(p,µ)) = λ(p)f(p) + η(p) (15)where: 





λ(p) = −
(Kd(δ(p,µ)) + ∆Kd(δ(p,µ))) cos(θi(P ) + ∆θi(P ))

Kd cos θi(P )

η(p) = −(h(p) +Ka)λ(p) + h′(δ(p,µ)) +Ka + ∆Ka.

(16)In the remainder of the paper, it is important to noti
e that both fun
tions λ(p) and η(p) donot depend on a(p), but only on the geometri
 parameters. Nevertheless, sin
e this modelingrefers to a large number of parameters, their use in 
omputer vision is not straightforward.Indeed, sin
e it depends on the material properties (the roughness of the surfa
e by the meansof the spe
ular terms), the fun
tions λ(p) and η(p) are not easy to 
ompute. Therefore, somesimpler models are used in 
omputer vision.3 Lo
al modeling of illumination 
hangesGenerally speaking, the simpli�ed photometri
 models rely on the lo
al modeling of luminan
e
hanges in small areas of the image, seldom in the whole image. Therefore they are availablefor image mat
hing or feature points tra
king pro
edures. Let us see from (15), on whi
hassumptions these models are based. We will refer to W as a window of interest 
entered in p.We 
all m an other point belonging to W.3.1 The luminan
e 
onstan
yIn a large number of appli
ations, it is assumed that the luminan
e of images from the sames
ene remains 
onstant during the time [19℄. From the radian
e models given in Se
tion 2.1, it
an be true only for Lambertian obje
ts under 
onstant lighting. In that 
ase, we simply have:
f ′(δ(m,µ)) = f(m) for any m ∈ W. (17)3.2 The a�ne modelThe a�ne model assumes that λ(p) = λ and η(p) = η leading to:

f ′(δ(m,µ)) = λf(m) + η. (18)A

ording to (16), this model assumes that the in
ident angles θi and ∆θi are 
onstant in ea
hpoint of the window of interest. This statement is rigorously true only if the normal n is thesame in ea
h point of W, i.e if the surfa
e is lo
ally planar.Moreover, both obje
ts and lighting must be motionless. Se
ond, the spe
ular terms h′and h must be 
onstant in W. A

ording to the spe
ular re�e
tion models (4) or (5), thisstatement is true if the angle ρ is the same in ea
h point and the roughness is 
onstant in W.11



This statement is 
orre
t for all m, if the spe
ular fun
tions h and h′ are equal to zero in ea
hpoint of W, that is for Lambertian surfa
es only.Now, let us show that the a�ne model based on the photometri
 normalization [34℄ does notdepend on the a�ne photometri
 
hanges. Let us re
all that it is de�ned through the followingtransformation of luminan
e f
f(m) − µf

σf

, (19)where µf and σf are respe
tively the average and standard deviation of the luminan
e in awindow of interest W, of size N ×N .Indeed, from the a�ne photometri
 model, given by (18): we easily dedu
e a relationshipbetween the average of f ′ in W and the average of f :
µf ′ =

1

N 2

∑

m∈W

(λf(m) + η) = λ

(
1

N 2

∑

m∈W

f(m)

)
+ η

µf ′ = λµf + η

(20)The standard deviation of f ′ in W is also related to the standard deviation of f :
σf ′ =

∑

m∈W

(λf(m) + η − (λµf + η))2

σf ′ = λσf

(21)Therefore, the photometri
 normalization given by f(δ(m)) − µf

σf
and the use of (18) yields:

f ′(δ(m,µ)) − µf ′

σf ′

=
λf(m) + η − (λµf + η)

λσf
=
f(m) − µf

σf
(22)This ratio does not depend on the a�ne photometri
 
hanges, under the di�erent assumptionsthat this model requires. A
tually, by writing f ′ as a fun
tion of f in (22), we obtain:

f ′(δ(m,µ)) =
σf ′

σf
f(m) + µf ′ −

σf ′µf

σf
(23)and therefore the photometri
 normalization model is an a�ne model with:






λ =
σf ′

σf

η = µf ′ −
σf ′µf

σf

(24)Remark: ea
h ratio of luminan
e di�eren
e only depends on the albedo. Let us
onsider two points m0 and m1 in W. If the lighting parameters Ka, ∆Ka, θi, ∆θi, and thespe
ular term h′ are 
onstant on W, we 
an state from (12) that the di�eren
e between theluminan
e of two points m0 and m1 in W does not depend on spe
ular highlights variations:
f ′(δ(m0,µ)) − f ′(δ(m1,µ)) = K ′

d(a(m0) − a(m1)) cos(θi + ∆θi) (25)12



but still involves the intensity (or 
amera gain) and the dire
tion of the lighting. Let us now
onsider a third point m2 in W. The following ratio is invariant to every kind of illumination
hange:
f ′(δ(m0,µ)) − f ′(δ(m1,µ))

f ′(δ(m0,µ)) − f ′(δ(m2,µ))
=
a(m0) − a(m1)

a(m0) − a(m2)
. (26)sin
e the ratio of luminan
e di�eren
es only depends on the albedo, whi
h is an intrinsi
 
hara
-teristi
 of the material. In the same way, any ratio of luminan
e di�eren
es in W is invariant toillumination 
hanges but depends on the albedo only. f(m)−µf , a(m)−µa and f ′(δ(m))−µf ′are invariant to highlights o

urren
e.As a 
on
lusion, the photometri
 properties of (18) are true and the relationships (24) are
orre
t only if the spe
ular re�e
tion and the lighting 
hanges are the same in ea
h point of W,as mentioned above. In some 
ases, these assumptions are not realisti
, parti
ularly when Wis the proje
tion of a large and non planar surfa
e of the s
ene. In addition, the normalizationmay get noisy for low standard deviation at denominator, that is when the intensities almostsaturate or more generally when they are almost homogeneous in W.In order to redu
e those limitations, we propose and validate two photometri
 models whi
h
ompensate for spatial illumination variations in W.3.3 Some illumination models adapted for spe
ular highlights o

ur-ren
e and lighting 
hangesThe previous illumination models rely on several restri
ting assumptions that are in
orre
t fornon-planar objets, for instan
e the 
onstan
y of the angle values. Here, we propose two models,where illumination variations are assumed to be varying in the window of interest. The �rstone is available for small windows of interest, whereas the se
ond one 
an be used for largerones.3.3.1 An illumination model adapted for small areasIt has been shown in se
tion 2 how ea
h kind of illumination 
hanges 
an be expressed. Whenonly spe
ular highlights o

ur, the luminan
e variations between two frames 
an properly bedes
ribed by (10).A

ording to the most widely used re�e
tion models (see (4) and (5)), the fun
tion ψ, givenby (11) or (14), is not 
onstant in W sin
e it depends on the viewing and lighting angles andtherefore on the normal n in ea
h point of W. It also depends on the 
hara
teristi
s of thematerial, su
h as the roughness of the surfa
e. We admit that ψ 
an be 
orre
tly approximatedon W by a CK , K > 1 fun
tion, that we 
all ψmod. In that 
ase, ψmod 
an be approximatedby a Taylor series expansion, performed in a point m of 
oordinates (x, y), belonging to theneighborhood of p and being the proje
tion of a point M of the s
ene:

ψ(m) ≃ ψmod(p) +
∂ψmod

∂x

∣∣∣∣
p

(x− xp) +
∂ψmod

∂y

∣∣∣∣
p

(y − yp). (27)13



Let us 
all α =
∂ψmod

∂x

∣∣∣∣
p

, β =
∂ψmod

∂y

∣∣∣∣
p

and γ = ψmod(p). We write α = (α, β, γ) and
u = (x− xp, y − yp, 1). By inje
ting (27) in (10) we obtain

f ′(δ(m,µ)) = f(m) + α⊤u (28)Compared to the simpler illumination models des
ribed previously, this one relies on lowerassumptions about the s
ene. The surfa
e proje
ted onto W is not assumed to be planar, theparameters Ks and n (or ς) 
an vary smoothly in the window of interest. Therefore, spe
ularhighlights 
an be di�erent in ea
h point of W.Nevertheless, this model is more appropriate to deal with spe
ular highlights than to 
opewith lighting 
hanges. Indeed, when lighting 
hanges are 
aused (equation (14)) the albedomay vary strongly in W a

ording to the re�e
tan
e of the obje
t, and thus (27) is not true.The approximation of the albedo by a �rst order polynomial be
omes more and more 
rudefor large and very textured surfa
es. Therefore, the next se
tion proposes a model whi
h 
opeswith this issue.3.3.2 An illumination model adapted for large areasA

ording to (16), the fun
tion λ depends on the in
ident angle, whi
h 
an highly vary when
W is large or when the obje
t surfa
e is not planar. Likewise, the fun
tion η depends on thespe
ular highlights variations, on the intensities and on the in
ident angle values. Thus, thesefun
tions are not 
onstant in ea
h point of W.However, it is possible to assume that these fun
tions are 
ontinuous and derivable in ea
hpoint m. This statement implies that the surfa
e varies in a smooth way. In addition, thespe
ular terms have to be 
ontinuous and derivable, so that the roughness of the material mustbe 
ontinuous and derivable in W. Then, λ and η 
an be expanded in Taylor series around p.By negle
ting the 
oe�
ients of high order, these equations be
ome

λ(m) = λ⊤u with λ =

(
∂λ

∂x

∣∣∣∣
p

,
∂λ

∂y

∣∣∣∣
p

, λ(p)

) (29)
η(m) = η⊤u with η =

(
∂η

∂x

∣∣∣∣
p

,
∂η

∂y

∣∣∣∣
p

, η(p)

) (30)leading to
f ′(δ(m,µ)) = λ⊤uf(m) + η⊤u (31)This model 
an take many kinds of illumination 
hanges into a

ount, due either to high-lights or lighting 
hanges. In 
ontrast to the previous models, it supposes that these 
hanges
an be di�erent on the same window of interest W. Parti
ularly, the surfa
e involved in thewindow of interest is not assumed to be planar, the parameters Kd, Ks and the roughness n(or ς) 
an also vary. Therefore, spe
ular highlights and lighting 
hanges 
an be di�erent inea
h point of the window of interest. Nevertheless, the number of parameters whi
h have to be
omputed is in
reased. Now, let us study the 
onditions of validity of (31).14



4 Validity of the photometri
 modelThe purpose of this se
tion is to analyze the validity of the photometri
 model des
ribed by(31). First, we 
onsider a quadrati
 obje
t, of whi
h the lo
al shape is known. We assumethat this obje
t is viewed under one lighting sour
e of known lo
ation. We 
ompute the real
orresponding photometri
 
hanges obtained when the lighting sour
e has moved (η and λ givenby (16)), for di�erent a
quisition 
onditions:
• the pose of the 
amera with regard to the obje
t;
• the pose of the lighting sour
e with regard to the obje
t;
• the shape of the surfa
e (value of the 
urvatures of a quadrati
 surfa
e);
• the material properties of the obje
t, that is to say its roughness parameter.Se
ond, we a
hieve a lo
al approximation of these photometri
 
hanges by 
omputing the Taylorseries at se
ond order of η and λ. Our photometri
 model, whi
h is a �rst order approximation,will be the most adequate when the 
oe�
ients of se
ond order of this latter approximationwill be null or approximately null. So this study 
onsists in �nding the 
on�gurations for whi
hthese se
ond order 
oe�
ient vanish.4.1 Modeling of the s
ene geometryWe 
onsider a frame Fc, linked to the 
amera. A point P of 
oordinates (Xp, Yp, ZP ) is lo
atedat the 
enter of a region of interest on the obje
t. Let us also 
onsider a pointM , of 
oordinates

(X, Y, Z), whi
h is lo
ated in the neighborhood of P (see the �gure 2). We assume that thesurfa
e in P 
an be des
ribed as a fon
tion of 
lass C2 leading to the following approximationof the depth in M
Z = ZP +DX(X−XP )+DY (Y −YP )+

1

2
DXX(X−XP )2 +

1

2
DY Y (Y −YP )2 +DXY (X−XP )(Y −YP )(32)where DX , DY are the �rst derivatives of the surfa
e at the point P . These parameters des
ribethe orientation between the tangent plane of the surfa
e at the point and the CCD plane:

DX =
∂Z

∂X

∣∣∣∣
P

DY =
∂Z

∂Y

∣∣∣∣
P

(33)The values DXX , DY Y and DXY refer to the se
ond order derivatives of the surfa
e in P
DXX =

∂2Z

∂X2

∣∣∣∣
p

DY Y =
∂2Z

∂Y 2

∣∣∣∣
p

DXY =
∂2Z

∂X∂Y

∣∣∣∣
p

(34)From (32), we obtain the normal ve
tor in P
n =

(
∂Z

∂X
,
∂Z

∂Y
,−1

) (35)15



O Fc

X

Y

Z

m

p

~n

P

M

Π

SFigure 2: Modeling of the s
ene geometry.
In addition, we suppose that (32) is valid in every point of W.Given S = (Sx, Sy, Sz) (in the frame Fc) the lo
ation of the lighting sour
e, we write
L = (X − Sx, Y − Sy, Z) the ve
tor linking the lighting sour
e S to the point M . Then, the
osinus of the angle formed by S and n (i.e. cos θi) is written as the s
alar produ
t between
S and n. By perspe
tive proje
tion and by using Z given by (32), all the geometri
al terms(the angle θi for example) and the real parameters λ and η given by (16) 
an be expressed withrespe
t to the pixels 
oordinates m.Therefore some approximations and Taylor series expansions are a
hieved a

ording to thea
quisition 
on�gurations. In a �rst step, we study the validity of the approximation of thefun
tion λ by (29), whi
h depends on the intensity level and the in
ident angle of the lighting.The proposed model approximates the variation of this fun
tion on W by a �rst order polyno-mial. However, as soon as ψ is 
on
erned, we have seen in 3.3.1 that, when lighting 
hangesare 
onsidered, ψ depends on the albedo. In this se
tion, we do not take this 
on�guration intoa

ount. In addition, in order to simplify this study, we fo
us on small windows of interest Wwhi
h are lo
ated near the opti
al axis of the 
amera.16



4.2 Validity of the modeling of λLet be u = x− xP and v = y − yP . We 
onsider the approximation of λ (see equation (16)) atse
ond order:
λ(m) = λ1u+ λ2v + λ3 + λ4u

2 + λ5v
2 + λ6uv. (36)In order to analyze the validity of (31), we study the 
on�gurations for whi
h the terms ofse
ond order (λ4, λ5, λ6) vanish. The lighting 
onditions for whi
h they 
an be negle
ted arethose for whi
h the photometri
 model �ts the illumination 
hanges at best.We restri
t the study to the 
ase of a moving 
amera whi
h observes a motionless obje
t.A small motion of the dire
t lighting sour
e dS = (dSX , dSY , dSZ) is 
aused with respe
t to itsinitial position S. Several viewing and lighting lo
ations as well as various surfa
es 
urvaturesare also 
onsidered. Indeed, the only motion of the lighting sour
e 
auses variations on bothterms λ and η. The motion of the lighting sour
e is assumed to be small so that the 
oe�
ients

λi 
an be expanded in Taylor series around (dSX , dSY , dSZ). The study is limited to the �rstorder to obtain some useful expressions. Moreover, the following most interesting 
ases arestudied
• the lighting ve
tor 
oin
ides with the normal of the surfa
e;
• the lighting sour
e is 
lose to the 
amera;
• the lighting sour
e is 
lose to the surfa
e.4.2.1 The lighting ve
tor 
oin
ides with the normal of the surfa
eIn this 
ase, we assume that L = τn. For small variations of the lighting angle around thenormal, one 
an show that λ4, λ5 and λ6 are null (their expansion in Taylor series a

ordingto dS yields to null 
oe�
ients). Consequently, the approximation of the illumination 
hangesgiven by (31) is relevant.4.2.2 The lighting sour
e is 
lose to the 
ameraIn this 
ase, we simply have S = O and thus V = L. First of all, we 
onsider a planar obje
t,then a non-planar one.Planar obje
t. When the obje
t is planar, the se
ond order 
oe�
ients λi be
ome:






λ4(planar) = −
1

ZP
(2dSZ + 2DXdSX)

λ5(planar) = −
1

ZP
(2DY dSY + 2dSZ)

λ6(planar) = −
1

ZP
(DXdSY + DY dSX) .

(37)They are dire
tly related to the error obtained between the photometri
 model (31) and a more
omprehensive approximation of the illumination 
hanges by a se
ond order approximation.17



Therefore, these terms vanish when the surfa
e is nearly parallel to the CCD plane. This remarkis validated by the example given in the �gure 3. This �gure shows the real variations of λ (givenby (16)) 
aused lo
ally in a small area W of a planar surfa
e, without any approximation. Thelighting sour
e is moving along dSX and dSY while dSZ = 0. As previously, when the surfa
eof the obje
t is parallel to the 
amera, that is when DX = DY = 0 (�gure 3a), the illuminationmodel is well adapted sin
e the terms λi(planar) vanish. We 
learly noti
e that the shape of thephotometri
 
hanges is almost planar. In the other hand, when DX 6= 0 and DY 6= 0 (see �gure3b), the illumination 
hanges 
an not be totally 
ompensated by the photometri
 model andthe shape (�gure 3b) is not planar anymore. Only a motion dSZ of the lighting sour
e along theopti
al axis (a ba
kward or a forward motion of the 
amera with respe
t to the obje
t) yieldsinevitably some illumination 
hanges whi
h are not 
ompensated by the model. In addition,these latter 
hanges are higher when the 
amera is 
lose to the surfa
e, as it is shown by thepresen
e of ZP at the denominator in (37).Non planar obje
t. In the 
ase of a non-planar obje
t for whi
h (32) is valid, the se
ondorder terms of the surfa
e appear in the se
ond-order 
oe�
ients:





λ4 = λ4(plan) + 2(DY DXX + DXY DX)dSY − 4DXXdSZ + 6DXDXXdSX

λ5 = λ5(plan) + 2(DY DXY + DX .DY Y )dSX + 6DY DY Y dSY − 4DY Y dSZ

λ6 = λ6(plan) + 2(DY Y DX + DY DXY )dSY − 2DXY dSZ + 2(DXXDY + DXDXY )dSX.

(38)The higher the terms (DXX , DXY , DY Y ) are, the more the 
oe�
ients λi vary with respe
t to amotion dS of the lighting sour
e. Let us also point out that when the orientation of the tangentplane of the surfa
e in P is parallel to the sensor (DX and DY are 
lose to zero), the motionof the lighting sour
e (dSX and dSY ) has a weak in�uen
e. In 
ontrast, motions of the 
ameraalong the opti
al axis always 
ause an error on the se
ond-order 
oe�
ients.4.2.3 The lighting sour
e is 
lose to the surfa
eNow, let us 
onsider that the lighting sour
e is initially lo
ated at a small depth ǫ of the surfa
eso that S = (Xp, Yp, Zp − ǫ). We 
onsider that this distan
e is small enough to expand therelationships around ǫ = 0. Thus, we obtain the following expression of the 
oe�
ients λi:





λ4 =
2ZP (DXXZP DY + DXY DXǫ)

ǫ2
dSY −

2ZP (ZP + D2

X
ǫ − ZP D2

X
+ 2ZP DXXǫ)

ǫ3
dSZ+

2ZP (DX(ǫ − 1) + DXX(2ǫ2 + ZP ǫ))

ǫ3
dSX

λ5 =
2ZP DY (DY Y ZP ǫ + 2DY Y ǫ2 − 2ZP + ǫ)

ǫ3
dSY −

2ZP (2DY Y ZP ǫ − D2

Y
ZP + ZP + D2

Y
ǫ)

ǫ3
dSZ

+
2ZP (DY Y ZP DX + DXY DY ǫ)

ǫ2
dSX

λ6 =
ZP (DY DXY (ZP ǫ + ǫ2) + DX(ǫ + 2DY Y ǫ2 − 2ZP ))

ǫ3
dSY −

2ZP (DY DX(ǫ − ZP ) + ZP DXY ǫ)

ǫ3
dSZ+

ZP (DXDXY (ZP ǫ + ǫ2) + DY (ǫ + 2DXXǫ2 − 2ZP )))

ǫ3
dSX . (39)Here again, if the orientation between the surfa
e and the sensor vanishes (DX = DY =

0), a motion of the lighting sour
e dSX and dSY does not a�e
t the modeling errors. The18



(a) (b)Figure 3: Examples of illumination 
hanges in W when the lighting sour
e is 
lose to the 
amera. (a)
DX = DY = 0, a motion of the lighting sour
e along X or Y axes is 
ompensated by the photometri
 model,whi
h forms a plane in W. (b) DX = DY = 5 
m, the illumination variations are not perfe
tly 
ompensatedby the model. In ea
h 
ase, the obje
t is planar and the model parameters are the following: XP = YP = 0,
ZP = 100 
m, dS = (0.1, 0.1, 0)⊤.approximation of the illumination 
hanges by a �rst order polynomial is well justi�ed. Moreover,it is more relevant when the depth of the lighting sour
e from the obje
t is higher (high ǫ) thanthe depth of the 
amera. In that 
ondition, the 
ontributions of the variations dSX , dSY , dSZin the terms λi are minimal. However, sin
e the lighting sour
e is 
onsidered to be 
lose to thesurfa
e, the 
amera should also be 
lose to the surfa
e. If not, the photometri
 model is lessappropriate. As an example, the �gures 4a, 4b and 4c show the illumination variations 
ausedby a motion of the lighting sour
e with regard to the surfa
e. In the �rst 
ase, the depth of thelighting is larger than the depth of the 
amera. In the se
ond 
ase, the sour
e and the sensorare lo
ated at the same distan
e, and �nally in the third 
ase, the sour
e is 
loser to the surfa
ethan the 
amera is. As a 
on
lusion, the 
loser the lighting sour
e is with regard to the sensor,the less relevant the proposed photometri
 model.To summarize, some 
on
lusions arise from this study about the validity of the estimationof λ by a �rst order Taylor series expansion.

• It is parti
ularly well adapted when the lighting ve
tor L 
oin
ides with the normal n inthe 
onsidered point (see se
tion 4.2.1);
• The approximation is also valid when the orientation of the tangent plane of the surfa
ein P with regard to the sensor plane is low (V 
oin
ides with n), and the se
ond order19



(a) (b) (c)Figure 4: Examples of illumination variations 
aused in W when the lighting sour
e is 
lose to the surfa
e. (a)The lighting sour
e is farther from the surfa
e in 
omparison with the sensor (SZ = 15, ZP = 10 m). (b) Thelighting sour
e and the sensor are lo
ated at the same distan
e to the surfa
e (SZ = ZP = 10m). (
) The lightingsour
e is 
loser to the surfa
e in 
omparison to the sensor (SZ = 2 
m, ZP = 10 m). In the three 
ases, theparameters used are the following ones: ǫ = 0, 2m, XP = YP = 0, DY = DXY = 0, DX = DXX = DY Y = 0.1,
dS = (1,1,−0.5)T.terms of the surfa
e of the obje
t are weak, that is the obje
t is quite planar (see se
tion4.2.2 for instan
e).

• When the lighting sour
e is 
lose to the surfa
e, it is more appropriate when the 
amerais even 
loser to the surfa
e than the lighting sour
e is (see se
tion 4.2.3).
• The photometri
 model is more adapted when the depth of 
amera and lighting sour
eare high (see se
tion 4.2.2).However, this estimate turns out to be more adequate than an approximation by a 
onstant,whi
h requires the 
an
ellation of the se
ond-order and �rst-order terms. Obviously, as it isshown by the examples of the previous �gures, the illumination 
hanges are not 
onstant.4.3 Validity of the modeling of ηIn order to study the validity of η, expressed by (16), it is ne
essary to take the spe
ularhighlights model into a

ount. Consequently, the material properties of the obje
t have to be
onsidered. For this purpose, we use the spe
ular model of Phong (equation (4) of se
tion2.1). In order to simplify the equations, we assume a motionless obje
t and 
onstant intensitylighting (Ka and Kd), so that λ(m) = 1. Consequently, η gets equivalent to the fun
tion ψdes
ribed by (11). Thus, we study the validity of the following expression:

η(m′) = hg(M) − hf(M) (40)After an expansion in Taylor series at se
ond order around p, η is approximated by:20



η(m) = η1x+ η2y + η3 + η4x
2 + η5y

2 + η6xy (41)where the 
oe�
ients ηi depend on the geometry parameters explained in se
tion 4.1. Sin
ethe spe
ular highlights fun
tion h rea
hes its maximum when ρ is null, it is interesting to studythe validity of the photometri
 models in this 
on�guration. The initial lo
ation of the lightingsour
e is 
hosen so that the normal n of the surfa
e 
oin
ide with B (see �gure 5).Similarly to the previous se
tions, we assume a small motion of the lighting sour
e dSa

ording to its initial lo
ation. This assumption allows us to a
hieve a Taylor series expansionof (41) around S. Some parti
ular 
on�gurations of the s
ene geometry are studied in order toobtain some simple 
on
lusions about the validity of the models:
• the lighting, the viewing and the normal ve
tors 
oin
ide;
• there is a small orientation between the surfa
e tangent plane and the 
amera.

Y

Z

X

S

n
V θr θi L

Π

PFigure 5: The normal ve
tor at the surfa
e in point P is the bise
ting ve
tor between ve
tors L and V.
4.3.1 The lighting, viewing and normals ve
tors 
oin
ideInitially, before any motion of the lighting sour
e, L, V and n are equal. Consequently, thetangent plane at the obje
t surfa
e is parallel to the sensor plane (DX = DY = 0) and thelighting angle θi is null. Let us 
onsider a non-planar obje
t the surfa
e of whi
h 
an bedes
ribed by (32). Unfortunately, even in this simple 
ase, the expressions of 
oe�
ients η4,
η5 and η6 are far too 
ompli
ated to dedu
e any useful information about the validity of thephotometri
 model. In that 
ontext we have to fo
us on some parti
ular 
on�gurations, �rstlywhen the lighting sour
e is 
lose to the surfa
e, se
ondly when the sensor is 
lose to the surfa
e.21



Figure 6: Example of variation of η when the sensor is 
lose to the surfa
e ZP = 10 
m. The obje
tis not planar, DX=0, DY =0, DXX=0.1 
m, DY Y =0.1 
m, DXY =0. The motion of the lighting sour
e is
dS = (1,−1,−1)T and ǫ = 100.
1-The lighting sour
e is 
lose to the surfa
e.When the lighting sour
e is 
lose to the surfa
e, i.e at a small distan
e ZS = ZP − ǫ, theparameters ηi 
an be expanded in Taylor series around ǫ = 0. All 
omputations done, thevalues ηi are expressed as follows:






η4 = −n
(
2DXX + 1

ZP

)
dSZ

η5 = −n
(
2DY Y + 1

ZP

)
dSZ

η6 = −nDXY dSZ

(42)When the lighting sour
e is 
lose to the surfa
e, a forward (or a ba
kward) motion dSZ of thelighting sour
e with respe
t to the surfa
e always indu
es some variations of the parameters
ηi, whether the surfa
e is planar or not. On the other hand, the parameter η6 = 0 when
DXY = 0, for example for surfa
es of revolution (when still assuming that the lighting, viewingand normal ve
tors 
oin
ide). A motion along the Z axis has less in�uen
e if the sensor issu�
iently far from the surfa
e and if the surfa
e is rough (in other words when n is low) andplanar (DXX = DY Y = DXY = 0).2-The sensor is 
lose to the surfa
e (ZP low). When the sensor is 
lose to the surfa
e, allthe 
oe�
ients vanish. Consequently, the approximation of the illumination 
hanges by ourphotometri
 model is well founded. Figure 6 illustrates this s
enario when the surfa
e is notplanar. As we 
an noti
e, the variations of η are well 
ompensated by a Taylor expansion at�rst order, sin
e the shape of the fun
tion is similar to a plane.22



4.3.2 Small orientation of the surfa
e with regard to the sensor planeIn the 
ase of a small orientation between the surfa
e and the sensor (small DX and DY ), the
oe�
ients ηi 
an be expanded in Taylor series around DX = DY = 0. We still 
onsider thatthe normal at the surfa
e n in P 
oin
ide with the bise
ting ve
tor B between L and V su
hthat the larger the viewing orientation is, the larger the in
ident angle θi is. We only fo
us onthe 
ase of planar obje
ts, the 
ase of non-planar obje
ts is too 
omplex. As previously, severallighting 
onditions are analyzed.1-The lighting sour
e is lo
ated near the surfa
e ZS = ZP . The expressions of η4, η5 and η6 aregiven by: 




η4 = −
n

ZP

(
DX

4
(3n + 7)dSX +

DX

4
(n + 1) dSY + dSZ

)

η5 = −
n

ZP

(
DY

4
(n + 1) dSX +

DY

4
(3n + 7) dSY + dSZ

)

η6 =
n

ZP

(n + 3)

4
(DXdSX + DY dSY )

(43)When DX and DY are not null, a motion of the lighting sour
e (dSX , dSY ) 
auses somevariations of the parameters ηi. These 
hanges are higher when the material is smooth (highvalue of n), when the 
amera is 
lose (ZP low) to the surfa
e, and when DX and DY are high.This is illustrated by �gures 7a and 7b, whi
h show respe
tively two examples of variationof η when the orientation of the tangent plane of the surfa
e in P is low (�gure 7a) or high(�gure 7b).2-The sensor is 
lose to the surfa
e. When the tangent plane and the CCD plane of the sensorare almost parallel and when the sensor is su�
iently 
lose to the surfa
e (low value of ZP ),then the approximation of η by a �rst order polynomial is perfe
tly founded. Indeed, the terms
η4, η5 and η6 are not signi�
ant. This point is illustrated by the �gure 8, whi
h shows anexample of the variation of η in a window of interest W. Indeed, the shape of the fun
tion is
learly a plane.To summarize, when λ = 1, the approximation of the term η (equivalent to ψ in thisspe
i�
 
ase), by a polynomial of �rst degree is the more appropriate when one or several ofthe following 
onditions are observed:

• the se
ond order terms of the surfa
e are small and the tangent plane orientation is lowwith regard to the sensor plane;
• the surfa
e is rough;
• the sensor is 
lose to the surfa
e.In those 
onditions, the spe
ular highlights variations draw up a plane on the windowof interest W. Therefore, these photometri
 
hanges are well 
ompensated by the proposedillumination model. 23



(a) (b)Figure 7: Examples of variations of η when the lighting sour
e is 
lose to the surfa
e and when the tangentplane at the surfa
e in point P is weakly oriented (�gure (a)) or strongly oriented (�gure (b)) with respe
t tothe sensor plane.4.4 Dis
ussionTable 1 provides an overview of the 
on�gurations for whi
h the proposed photometri
 model isadapted (+) or not (-), or when the 
on�guration has no in�uen
e (=). Let us �nally 
on
ludethat the approximations of the photometri
 fun
tions λ and η by a Taylor expansion at se
ondorder are adapted at best when the sensor is 
lose to the surfa
e, or when the lighting or theviewing ve
tors 
oin
ide with the normal. On the other hand, the shape of the surfa
e has tobe lo
ally 
ontinuous and the surfa
e must be rough enough.However, the photometri
 model des
ribed in Se
tion 3.2 relies on assumptions that are morerestri
tive in 
omparision to our model. Indeed, fun
tions λ and η are assumed to be 
onstantat ea
h point of the window of interest W. That means that not only Taylor's 
oe�
ients atse
ond order in (36) and (41) are wrong, but also a part of the 
oe�
ients of the �rst ordersin
e they are supposed to be null. The few examples of illumination 
hanges (from �gure 3ato �gure 8) have 
on�rmed these remarks. As a 
on
lusion, the photometri
 model proposedin se
tion 3.3 is theoreti
ally more a

urate that the photometri
 normalization or the a�nemodel with 
onstant parameters.The di�erent photometri
 models 
an be used in appli
ations where temporal 
orrespon-den
es have to be mat
hed, in order to improve some higher level pro
edures: 3D re
onstru
tionor a
tive vision for example.In this report, we address the problem of robustifying feature points tra
king with respe
tto illumination 
hanges. The idea is to 
orre
tly 
ompensate for the illumination 
hanges by
omputing the photometri
 models, in order to obtain more a

urately the geometri
 deforma-24



Figure 8: Example of the variation of η when the tangent plane to the surfa
e and the sensor plane are almostparallel, the 
amera being 
lose to the surfa
e.tions of the windows of interest during the whole sequen
e. To our knowledge, the two proposedmodels have not been implemented in su
h a 
ontext. Bla
k et al. [5℄ have used (31) with η = 0and (28) in the 
ontext of image 
orre
tion, without any justi�
ation.5 Feature points tra
king algorithmsA

urately 
omputing 
orresponden
es between two frames or tra
king features along an imagesequen
e are two key problems, even though many approa
hes are available. This se
tion detailsthe tra
king te
hniques involving a photometri
 model, and proposes two ways to improve themby exploiting the photometri
 models de�ned previously in 3.3.1 and 3.3.2.5.1 Modeling of the geometri
 deformationThe geometri
 deformations indu
ed by the relative motion between the 
amera and the s
eneare des
ribed by a fun
tion whi
h models the motion of all the points inside a window of interest
W 
entered around the point to be tra
ked p. Therefore, this fun
tion is 
alled δ(p,µ). Thefeature point tra
king pro
edure 
onsists in 
omputing the parameters µ su
h that

m′ = δ(m,µ) (44)a

ording to a photometri
 model for m ∈ W. We will show how to 
ompute µ for thephotometri
 models given in se
tion 3. 25



Table 1: Overview of the results about the validity of the approximations of λ and η by a Taylorseries expansion at �rst order. +: good approximation. -: bad approximation. = : there is noin�uen
e on the validity.Con�guration λ ηLighting ve
tor 
oin
ide with the normal + +Viewing ve
tor 
oin
ides with the normal + +Rough surfa
e = +Sensor 
lose to the surfa
e and lighting sour
e far from the surfa
e + +Motion of the lighting sour
e along the opti
al axis - -High values of the se
ond order 
oe�
ients of the surfa
e - -5.2 Commonly used tra
king methods5.2.1 The 
lassi
al approa
hThe 
lassi
al feature points tra
ker, i.e. the KLT te
hnique (for Kanade-Tomasi-Lu
as tra
ker[23,33℄) assumes a perfe
t 
onservation of luminan
e at a point during the sequen
e (see (17)),so we have:
f(m) = f ′(δ(m,µ)) (45)However, as seen in se
tion 2, the luminan
e assumption is not true. Besides, the motionmodel is also an approximation. Thus, it is more judi
ious to minimize the following 
riterion:

ǫ1(µ) =
∑

m∈W

(f(m) − f ′(δ(m,µ)))
2 (46)In order to obtain µ, we suppose that µ = µ̂ + ∆µ, where ∆µ expresses a small variationaround an estimation µ̂ of µ. In those 
onditions, f ′(δ(m,µ)) 
an be expanded in Taylor seriesof �rst order around µ̂:

f ′(δ(m,µ)) = f ′(δ(m, µ̂)) + ∇f ′⊤(δ(m, µ̂)) Jδ
µ̂ ∆µ (47)where Jδ

µ̂ is the Ja
obian of δ a

ording to µ, expressed in µ̂. We inje
t (47) in (46), leadingto a linear system in ∆µ, whi
h 
an be solved iteratively:
(
∑

m∈W

vc vc
T

)

∆µ =
∑

m∈W

(f(m) − f ′(δ(m, µ̂)))vc (48)with
vc = (Jδ

µ̂)
⊤

∇f ′(δ(m, µ̂)). (49)When 
onsidering an a�ne motion model, vc is the ve
tor de�ned by:
vc =

(
f ′

x, f
′

y, xf
′

x, xf
′

y, yf
′

x, yf
′

y

) (50)where f ′
x and f ′

y are the derivatives of f ′ with respe
t to x and y respe
tively.26



5.2.2 Tra
king methods robust to a�ne photometri
 
hangesThese approa
hes are based on the photometri
 model des
ribed in se
tion 3.2. Therefore,instead of minimizing (46), we minimize
ǫ2(µ, λ, η) =

∑

m∈W

(λf(m) + η − f ′(δ(m,µ)))
2
, (51)where λ and η refer to the parameters of the a�ne illumination model given by (18). There aretwo ways to obtain λ and η, either by using (24) or by 
omputing them simultaneously with µ.The photometri
 normalization.Ea
h photometri
 parameter λ and η is 
omputed from (24). The tra
king te
hnique 
onsistsin 
omputing µ as in se
tion 5.2.1 sin
e λ and η are 
onstant. We have to solve:

(
∑

m∈W

vc vc
⊤

)

∆µ =
∑

m∈W

(
λ̂f(m) + η̂ − f ′(δ(m, µ̂))

)
vc (52)Estimation of λ and η : the Jin's te
hnique. In [31℄, the authors propose to estimate the
ontrast λ and intensity η simultaneously with the motion model.Let us 
all ν the ve
tor of photometri
 variations ν = (λ, η), and d the 
on
atenation of µand ν. As previously, we suppose a small variation ∆d = (∆µ,∆ν) of d around its estimation

d̂ so that d = d̂ + ∆d. Thus, by using (47), we 
an write (51) as
(
∑

m∈W

vs vs
⊤

)
∆d =

∑

m∈W

(
λ̂f(m) + η̂ − f ′(δ(m, µ̂))

)
vs (53)where vs = (vc,ν). Unfortunately, as shown in appendix A, the matrix ∑m∈W vs vs

⊤ is ill-
onditioned. Therefore, it is required to 
arry out a pre
onditioning of this matrix but itdepends on the image. That is a drawba
k of this te
hnique.On the other hand, this pro
edure provides a lower 
omputational 
ost than the photometri
normalization, sin
e the averages and standard deviations do not have to be 
omputed in ea
hframe.In this se
tion, we have presented several feature points tra
king te
hniques; the 
lassi
alone is based on the luminan
e 
onstan
y, whereas the tra
king with normalization and themethod proposed by Jin et al. are robust to a�ne illumination variations. In ea
h 
ase, thephotometri
 parameters are supposed to be 
onstant in ea
h window of interest.In the next se
tion, we propose two tra
king pro
edures whi
h take the spatial variationsof illumination 
hanges into a

ount.5.3 Proposed tra
king pro
eduresThe �rst te
hnique has been de�ned to 
ompensate for spe
ular highlights and lighting 
hangeson small windows of interest, whereas the se
ond one is its extension to wider windows ofinterest. 27



5.3.1 A tra
king approa
h robust to spe
ular highlightsThe �rst tra
king method is based on the illumination model given by (28).Thus, in that 
ase, we have to minimize the following 
riterion:
ǫ3(µ,α) =

∑

m∈W

(
f(m) − f ′(δ(m,µ)) − u⊤α

)2 (54)Be d = (µ,α). Let us suppose a small displa
ement ∆d = (∆µ,∆α) around an estimation
d̂ of d, whi
h is the solution of (54). Similarly to the method 5.2.1, ∆d is obtained by solvingthe following linear system:

(
∑

m∈W

vp vp
⊤

)
∆d =

∑

m∈W

(
f(m) − f ′(δ(m, µ̂)) − u⊤α̂

)
vp (55)where the ve
tor vp is written as:

vp = − (vc,u) (56)for an a�ne motion model.Unlike the previous tra
ker, a pre
onditioning of the matrix (∑m∈W
vp vp

T
) is not ne
essary.As shown in appendix A, this matrix is well 
onditioned.A

ording to the assumptions of the photometri
 model (28) des
ribed in 3.3.1, this tra
kingmethod is appropriate to 
ope with spe
ular highlights. For small windows of interest, it 
an also
ompensate for lighting 
hanges, as soon as the fun
tion given by (14) 
an be approximated bya Taylor series expansion at �rst order. Sin
e this assumption 
an be 
oarse for large windows,the following se
tion proposes a more appropriate algorithm.5.3.2 A tra
king approa
h robust to spe
ular highlights and lighting 
hangesSe
tion 3.3.2 has detailed a 
omprehensive photometri
 model whi
h 
ompensates for the spatialvariations of spe
ular highlights and lighting 
hanges. Let us use this model in order to improvethe feature point tra
king s
heme.The motion parameter µ and the re�e
tion parameters λ and η are obtained by the mini-mization of the following 
riterion

ǫ4(µ,λ,η) =
∑

m∈W

(
u⊤λf(m) − f ′(δ(m,µ)) − u⊤η

)2 (57)The system 
an be linearized as in se
tion 5.3.1, with d = [µ,λ,η]. Thus, the tra
king pro
ess
onsists in solving the following system:
(
∑

m∈W

vm vm
⊤

)

∆d =
∑

m∈W

(
u⊤λ̂f(m) − f ′(δ(m, µ̂)) − u⊤η̂

)
vm (58)where

vm = (−vc, f(m)u,−u) (59)28



The matrix∑m∈W
vm vm

⊤ 
an be ill-
onditioned (see appendix A), sin
e the values of vm aremu
h dissimilar. As for Jin's approa
h, a pre
onditioning stage is required.Moreover, the number of illumination parameters is quite large. Indeed, by using an a�nemotion model, twelve parameters have to be 
omputed. Obviously, the use of too small windowsof interest may alter the a

ura
y of both photometri
 and motion models.The aim of the next se
tion is to validate experimentally our tra
kers by 
omparing themwith the 
lassi
al approa
hes.6 Validation and experimental resultsThis se
tion presents some tra
king experiments, where the tra
kers detailed previously are
ompared through sequen
es showing geometri
 and photometri
 
hanges simultaneously. Firstof all, we detail the experimental setup and notations. Se
ond, we analyze the validity of theseexperimental 
onditions by 
omparing experiments on lab sequen
es where ground-truth isavailable. Finally, the tra
king is 
arried out on real sequen
es.6.1 Experimental setup6.1.1 NotationsThroughout this se
tion, we use the following notations:C : the 
lassi
al tra
king approa
h (se
tion 5.2.1) whi
h assumes that
f ′(δ(m,µ)) = f(m)N : the tra
king with photometri
 normalization (se
tion 5.2.2)
f ′(δ(m,µ)) = λf(m) + ηJ : the method proposed by Jin et al. (se
tion 5.2.2)
f ′(δ(m,µ)) = λf(m) + η

P3 : the tra
ker whi
h uses three photometri
 parameters (se
tion 5.3.1)
f ′(δ(m,µ)) = f(m) + u⊤α

P6 : the tra
ker whi
h uses six photometri
 parameters (se
tion 5.3.2)
f ′(δ(m,µ)) = u⊤λf(m) + u⊤ηNow, let us detail the setup: the 
hoi
e of the window's size, the points dete
tion andreje
tion pro
edures, the 
omparison 
riteria.6.1.2 Size of the windows of interestUsually, the 
hoi
e of the window size N is based on a trade-o� between robustness to noise,
omputation duration and reliability of the assumptions on whi
h the tra
king method is based,su
h as the planarity of the surfa
e or the 
onstan
y of illumination 
hanges. Naturally, it alsodepends on the appli
ation. Here, we 
onsider some sizes from N = 9 to N = 35, sin
e nospe
i�
 appli
ation is 
on
erned. 29



6.1.3 Reje
tion pro
essThe points are sele
ted in the �rst frame of the sequen
e by the Harris dete
tor [16℄. Thetra
king pro
ess 
omputes an a�ne motion model between the �rst frame and the 
urrent one,as des
ribed in se
tion 5.1. They integrate an outliers reje
tion module, based on the analysisof the 
onvergen
e of residuals ǫi, i = 1 . . . 4. A point is reje
ted as soon as its residuals be
omegreater than a threshold, Sconv = N 2E2
ave, where Eave is the tolerated luminan
e variation forea
h point in W between f and its modeling. In these experiments, Eave = 15.6.1.4 Comparison 
riteriaFor ea
h image sequen
e, we 
an 
ompare the tra
kers by studying the following 
riteria:1. The robustness of the tra
king, that is to say the number of points that have been tra
kedduring the whole sequen
e.2. The temporal evolution of the mean 
onvergen
e residues obtained by the points that are
orre
tly tra
ked. These two �rst 
riteria have to be 
onsidered jointly. Indeed, when twomethods obtain similar average residues, the more relevant te
hnique is the one whi
htra
ks a larger number of points.3. The temporal evolution of the re�e
tion parameters 
omputed by the proposed paramet-ri
 methods.As mentioned in 6.1.3, a point is reje
ted when its residuals be
ome higher than a thresh-old. Residuals are 
ommonly used as a 
omparison 
riterion, when ground-truth is notavailable (in [31℄ or [15℄ among others). Although some low residues are not an eviden
eof the tra
king 
orre
tness (be
ause of potential ambiguities), se
tion 6.2 study theirrelevan
e.4. The lo
ation errors. In preliminary experiments, where ground-truth is available, a fourth
riterion is 
omputed: the average distan
e (
omputed on all the points that are 
orre
tlytra
ked by the te
hnique) between the position of the points that is 
omputed by thetra
ker and the true position. Here again, this 
riterion has to be 
onsidered jointly withthe number of points 
orre
tly tra
ked. Indeed, for the same lo
ation error, the bestte
hnique will be the most robust one.Next se
tion aims to analyze the relevan
e of residues as a 
omparison 
riterion and gives some�rst 
omparison results.6.2 Validation of the experimental setup on lab sequen
esThis se
tion studies the validity of our experimental setup by 
onsidering lab sequen
es whereground-truth 
an be evaluated. We dis
uss the relevan
e of 
riteria 1 and 2.30



6.2.1 Computation of the ground-truthTwo te
hniques of ground-truth extra
tion are implemented, depending on the shape of the
onsidered obje
t.Ground-truth for planar obje
ts. When the points to tra
k belong to a planar obje
t,their 
oordinates in two di�erent images of the sequen
e are linked together by an homographytransformation H, whi
h is des
ribed by a 3 × 3 matrix. Only four points are needed to
ompute the 
oe�
ients of the matrix H in a linear manner for ea
h frame. However, thesepoints have to be mat
hed a

urately between the two frames in order to properly evaluate thetra
king te
hniques, these four points must not depend on the tra
king pro
edure. Thus, theyare 
hosen to be the 
enters of four white blobs lo
ated on the planar surfa
e, whi
h 
an beeasily segmented for ea
h frame of the sequen
e.So, on the one hand, the homography matrix is 
omputed between the initial frame andthe 
urrent one by using four blobs. On the other hand, we estimate the 
urrent 
oordinates ofthe feature points by applying the homography matrix on the points that have been sele
tedinitially in the �rst frame. Sin
e the homography is known, it be
omes easy to obtain the truelo
ation of m′ from its lo
ation m in the �rst image. Indeed, we have m′ = Hm (m and m′ arehere homogeneous 
oordinates).Ground-truth for non-planar obje
ts. In the 
ase of non-planar obje
ts, we use thepose between the 
amera and the obje
t [10℄. This method assumes that we 
an dete
t at leastfour non 
oplanar points and that we know the 3D lo
ation of these points in the obje
t frame.In our 
ontext, the four points are four white blobs, whi
h are easy to segment. The wholealgorithm is des
ribed as follows.1. Dete
tion of the four non-
oplanar blobs pc
init in the image;2. Computation of the transformation matrix cMo between the obje
t and the 
amera 
o-ordinate frames [10℄;3. Interse
tion of the view line passing through pc

init with the obje
t in order to obtain Po;For ea
h experiment, we assume that the obje
t is motionless during the image sequen
e.Therefore, the 
oordinates Po are 
onstant for ea
h frame;4. After a motion of the 
amera, 
omputation of the pose [10℄ and obtention of the transfor-mation matrix cMo between the obje
t and the 
amera 
oordinate frames. Consequently,the 
oordinates Pc of a point expressed in the 
amera frame is given by Pc = cMoP
o.5. Computation of the proje
tion pc of Pc on the CCD plane. Of 
ourse, the intrinsi
 
ameraparameters are supposed to be known.6. Comparison between pc and the estimate p̂c provided by the 
onsidered tra
ker. There-fore, at ea
h iteration, we 
ompute the eu
lidean distan
e between pc and p̂c, expressedin pixels. When the tra
king is perfe
tly a

urate, this distan
e is null.31



6.2.2 Experiments on lab sequen
esThis se
tion 
ompares the behavior of the methods, in terms of residues, lo
ation errors androbustness, for di�erent window sizes, either for planar or non-planar surfa
es. Moreover, itis dis
ussed the problem of evaluating the methods in the general 
ase where no ground-truthinformation is available.6.2.2.1 Planar surfa
es The image sequen
e depi
ted on the �gure 9 shows a planarsurfa
e of size 1 × 1 meter, on whi
h four blobs have been put. The 
amera is lo
ated approxi-mately 4 meters in front of the obje
t and two lighting sour
es are lo
ated at 2 meters. Duringthe sequen
e, the 
amera is motionless and the obje
t is moving with respe
t to the 
ameraand lightings. The lighting intensity being 
onstant, only spe
ular highlights appear. Be
auseof the low distan
e between lighting and surfa
e, that is not optimum for the good validity ofthe photometri
 models (see se
tion 4).Robustness. Figure 10 
ompares the temporal evolution of the number of points that are
orre
tly tra
ked during the sequen
e for ea
h approa
h and for three window sizes: N = 9,
N = 15 and N = 25. Simultaneously, table 2a page 36 shows the per
entage of points 
orre
tlytra
ked until the end of the sequen
e. Whatever the window size is, C tra
ks less points than theother approa
hes. For N = 9, P3 tra
ks a larger number of points, whi
h proves its relevan
efor small window sizes. Unfortunately, for larger ones (N = 15), the performan
es of P3 areredu
ed 
ompared to the other te
hniques, it tra
ks 
orre
tly one point less than J (see �gure11). On the other hand, for su
h windows sizes, P6 is the most 
ompetitive method sin
e ittra
ks around twi
e more points 
orre
tly.Figure 11 
ompares more pre
isely the behavior of ea
h tra
king te
hnique, by analyzingboth the evolution of the residues during the sequen
e and the mean lo
ation error obtainedon the points 
orre
tly tra
ked (the 
lassi
al method is not taken into a

ount sin
e a too largenumber of points is lost).Lo
ation errors. The lo
ation errors are quite satisfying. They rea
h only around 1 pixelat the beginning of the sequen
e and then de
rease signi�
antly as soon as outliers points arelost. Indeed, when points of high residuals are lost, the a

ura
y of the tra
king is improved.That shows the reliability of the reje
tion rule and put in eviden
e the 
orrelation betweenresidues and a

ura
y.Convergen
e residues. For N = 9, P3 obtains higher residues that the other approa
hes.However, these residues are obtained (see �gure 10) by averaging the residues of a larger numberof points 
ompared to the N and J te
hniques. To go further in the 
omparison, �gure 12 showsthe same 
riteria as �gure 11 while 
onsidering only the points tra
ked simultaneously by ea
hmethod. Here, for N = 9, P3 is more a

urate. Thus, this method tra
ks a larger number ofpoints and is more a

urate.For wider windows (N = 15 and N = 25), P6 obtains the lowest residues, although it tra
ksa larger number of points. The motion and photometri
 models are 
orre
tly 
omputed.These results illustrate the fa
t that the mean residues and the lo
ation errors are not alwayssigni�
ant without 
onsidering the number of points 
orre
tly tra
ked. A method 
an show low32



residues by 
orre
tly tra
king only few points. This method is although less performant thananother one whi
h tra
ks a hundred of points with slight higher residues.However, we 
an also note that, in most 
ases, the 
onvergen
e residues evolve roughly ina similar way as lo
ation errors. In addition, when residues are low, the lo
ation error are alsolow.6.2.2.2 Non-planar surfa
es In order to study the in�uen
e of the surfa
e 
urvature onthe tra
king algorithm, a 
ylinder of radius 7
m has been used. The obje
t and the lightingare motionless and the 
amera moves. As shown in Se
tion 4, the larger the 
urvatures are,the less appropriate the photometri
 models are. The 
amera is approximately lo
ated at 1meter from the surfa
e and the lighting sour
es are less 
lose to the surfa
e than the 
amera is.As noti
ed in se
tion 4.4, this is one of the favorable 
on�gurations for using the photometri
models (see table 1). There is no lighting 
hanges but the motion of the 
amera yields to smallspe
ular variations.Figure 13 shows two images of the 
ylinder sequen
e and �gure 14 depi
ts the number ofpoints that are 
orre
tly tra
ked by the pro
edures versus the frame number (table 2(b) showsthe per
entage of points whi
h have been 
orre
tly tra
ked until the end of the sequen
e).Robustness. Here also, P3 
orre
tly tra
ks the largest number of points for small windows(see �gure 14). In addition, it remains 
learly the most relevant algorithm for N = 15 and
N = 25, whi
h was not the 
ase in the previous experiment. Previously the per
entage ofpoints tra
ked was lower.For N = 9, the J te
hnique obtains very poor performan
e results, sin
e all the points arelost, whereas even the 
lassi
al KLT pro
edure 
orre
tly tra
ks a few points. Obviously, thesepoints 
an been lost partly be
ause of the ill-
onditioning of this te
hnique or be
ause theillumination model is not appropriate (λ and η are 
onstant on W). Sin
e N also tra
ks a fewernumber of points, the latter assumption is quite plausible. These problems will be dis
ussedlater in se
tion 6.4. For N = 35, P6 
orre
tly tra
ks a larger number of points than the otherte
hniques. Despite the bad 
onditioning of this method, it is more relevant than J sin
e itbetter takes the spe
ular 
hanges into a

ount.Let us now 
onsider the �gure 15 whi
h shows the evolution of the 
onvergen
e residues andlo
ation errors.Lo
ation errors. For small windows of interest, (see �gure 15 for N = 9) N yields poora

ura
y results. In 
ontrast, the use of the P3 or P6 photometri
 models provides an a

urate
omputation of the motion model, i.e a low average of lo
ation errors, despite the amount ofpoints tra
ked (table 2). Thus, the use of an appropriate photometri
 model improves the
omputation of the motion model and has yields better a

ura
y of the points lo
ations duringthe motion.Convergen
e residues. As seen from the results with N = 9, N does not perform well,sin
e its 
onvergen
e residues are really higher than P3 and C residues. J loses the whole of33



Figure 9: Images of the sequen
e of a planar surfa
e used to 
ompute the positioning errors.
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h method simultaneously.Table 2: Ground-truth is available. Per
entage of points whi
h have been 
orre
tly tra
kedduring the sequen
e (o

luded points or points going out of the image are not taken intoa

ount).
(a) Planar surfa
e (b) Cylinder

N 9 15 25
C 6 9 6
N 29 32 32
J 23 37 43
P3 34 34 37
P6 0 46 69

N 11 15 25 35
C 8 24 14 10
N 2 30 36 40
J 0 8 28 34
P3 10 40 70 62
P6 0 0 34 68

the points, whi
h explains the vanishing of its residues at the 80th frame. These pro
edures donot prove to be appropriate for small windows, espe
ially when the 
onsidered surfa
e is notplanar as it is pre
isely the 
ase here.Here also, P6 provides quite satisfying results on large windows (N > 25). Its 
onvergen
eresidues are globally lower: the geometri
 and photometri
 
hanges are 
omputed more 
or-re
tly. However, the results of table 2 show that it tra
ks a lower per
entage of points than forplanar surfa
es, whi
h 
on�rms that the model is more adapted to su
h kind of surfa
e.In this sequen
e, note that the residues assert the results on the lo
ation error. Indeed, thelowest residues are obtained for the more a

urate tra
ker (see �gure 15).6.2.2.3 Dis
ussions. As seen in these �rst experiments, the 
onvergen
e residues roughlyevolve similarly to the mean lo
ation error. Generally speaking, as shown on �gure 15 for36



Figure 13: Images of the sequen
e of a 
ylinder used to evaluate the a

ura
y of the tra
kingpro
edures.
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example, the lowest residues are obtained for the most a

urate te
hniques. Although the
onvergen
e residues are not exa
tly an eviden
e of the good performan
e of the tra
king, theyprovide reliable information to 
ompare several tra
king te
hniques, espe
ially when groundtruth is not available. Of 
ourse, this 
riterion has to be 
onsidered jointly with the robustness,i.e the number of points tra
ked.In addition, these �rst experiments have allowed to rea
h some 
on
lusions 
on
erning thebehavior of the tra
king experiments.
• For small windows of interest (N ≤ 15 ), P3 is more performant (lowest 
onvergen
eresidues, more points tra
ked). In 
ontrast, for larger ones (N > 15), P6 is the mostrelevant te
hnique. Obviously, the photometri
 
hanges are better 
ompensated for by P3for small windows of interest, while they are better taken into a

ount with P6 on largerwindows of interest.
• N and J te
hniques, whi
h are based on the 
omputation of an a�ne photometri
 modelare not appropriate for small windows of interest, espe
ially when the surfa
e 
urvaturesare strong (Cylinder for example). This remark 
on�rms the theoreti
al analysis on thevalidity of the photometri
 models (see Se
tion 4) where it has been dedu
ed that thestronger the surfa
e 
urvatures are, the less e�
ient these te
hniques are.In this se
tion, the ground truth has been obtained, either by 
omputing the homographymatrix from markers for planar surfa
es or by using the pose and a modeling of the obje
t.Unfortunately, these two approa
hes 
annot be implemented when some real images sequen
esare 
onsidered, residues and robustness are the only available 
riteria.6.3 ExperimentsHere, experiments are 
onsidered on images sequen
es where no ground-truth is available.However, we have seen in the previous experiments that the 
onvergen
e residues vary quitesimilarly to the lo
ation error. In 
onjun
tion with the number of points 
orre
tly tra
ked, theyrepresent a satisfying way to 
ompare the tra
king methods.Besides, the image sequen
es are played from the �rst frame to the last one and then fromthe last one to the �rst one in order to qualitatively evaluate the behavior of the te
hniquesby verifying the symmetry of the 
omputed parameters. We analyze su

essively the robust-ness, the a

ura
y of the modeling and the evolution of the photometri
 parameters. The
omputation times are also provided.In order to properly 
ompare the behavior of the tra
kers on real image sequen
es, ea
hof them is �rst tested on sequen
es where only spe
ular highlights o

ur. Then, the lighting
hanges are also taken into a

ount.6.3.1 Spe
ular highlight o

urren
eThe two �rst sequen
es, Book (200 images) and Cylinder (150 images) (whi
h are shown re-spe
tively on �gures 16a and 17a) refer to spe
ular obje
ts, respe
tively a planar surfa
e and a39




ylinder. In ea
h 
ase, the s
ene is motionless and the lighting 
onditions do not 
hange but the
amera moves, whi
h 
auses some spe
ular highlights variations at the surfa
e of the obje
ts. Inthe Book sequen
e, spe
ular highlights disappear during the motion, whereas some other onesappear in di�erent regions of the obje
t. In the 
ase of the 
ylinder, (�gure 17a), two lightingsour
es are taken into a

ount, whi
h 
auses the appearan
e of two highly saturated areas.During the motion of the 
amera, the spe
ular highlights variations are parti
ularly strong inthe neighborhood of these two regions.Robustness. A total number of 97 points is sele
ted initially in the sequen
e Book and137 in the sequen
e Cylinder. Tables 3a and 3b report respe
tively the per
entage of points
orre
tly tra
ked (with respe
t to the points that are not o

luded or those whi
h go out of theimage) with respe
t to N , for ea
h tra
king te
hnique.In sequen
e Book, P3 tra
ks the largest number of points for N ≤ 15, and for sequen
eCylinder, it remains the most robust up to N = 25. Consequently, the 
ontribution of P3 ismore signi�
ant for non-planar surfa
es. Indeed, that is the 
ondition when the illumination
hanges are the most likely to be di�erent in ea
h point of the window of interest. Besides, thisresult 
orroborates the theoreti
al study of the modelings of se
tion 4 page 15.
P6 does not 
onverge for small windows of interest, the number of parameters to estimateis too large with respe
t to the pixels available in W and the amount of noise.In the two sequen
es, J is not more robust than C forN ≤ 13. Consequently, this pro
edureis not adapted for small window sizes, espe
ially when sequen
es show spe
ular highlightsvariations.
N is more robust than the 
lassi
al te
hnique C when the obje
t is planar (sequen
e Book).If not, C provides better results for N < 25. Thus, using an a�ne photometri
 model is moreappropriate for planar surfa
e, as mentioned in se
tion 4.Convergen
e residues. Figures 16b and 17b 
ompare the average 
onvergen
e residuesobtained respe
tively during the sequen
es Book and Cylinder, for small windows of interest(N = 9). When the obje
t is planar (sequen
e Book), N obtains lower 
onvergen
e residuesthan P3 (�gure 16b). Nevertheless, the 
omparison is not fair sin
e the average of the residues is
omputed on 68 points when P3 is used and only 33 points when N is 
arried out. Therefore, inorder to obtain a more a

urate analysis, �gure 16c 
ompares the average residues obtained onthe same points, i.e the points whi
h have been 
orre
tly tra
ked by N and P3 simultaneously.These residues are lower for P3, whi
h 
on�rms the relevan
e of the photometri
 model in 
aseof spe
ular highlights o

urren
e.In the Cylinder sequen
e, P3 obtains the lowest residues for N = 9. The residues of Nare high at the beginning of the sequen
e (before the 50th frame) and then de
rease when theoutliers points are lost. Then, �gures 16d and 17c show the 
onvergen
e residues obtainedwith N=35. In su
h a 
ontext, P6 proves to be the most a

urate te
hnique. Indeed, itsmean residues (
omputed on 71 points for the sequen
e Book and 105 points for the sequen
eCylinder) are lower than those obtained by P3 (respe
tively 
omputed on 65 and on 92 points).Not only P6 tra
ks a larger number of points, but their lo
ation is more a

urate.Photometri
 model. In order to analyze the illumination variations, we have sele
ted thepoint A (see �gure 16a) sin
e it is lo
ated on an area of high spe
ular highlights. The �rst row of40



�gure 16e shows the luminan
e values in the window of interest 
entered around A, whereas these
ond row refers to the same window after a photometri
 
ompensation by the use of P6, with
N = 35. Parti
ularly, let us noti
e on the �rst row, that the last image is less luminous thanthe previous ones, whereas the use of the illumination model has 
ompensated for these 
hanges(the geometri
 
orre
tion has not been a
hieved here). The spatial 
hanges of the illuminationmodel (ηu⊤ and λu⊤) are shown on the �gure 16f , where the intensity level is proportionalto the 
orre
tion. We noti
e that the illumination 
hanges are not 
onstant on W. In orderto understand the temporal evolution of the photometri
 models, let us refer to the �gure 16g,whi
h displays the parameters λi and ηi for i = 1..3. The symmetry of the 
urves attests that fortwo o

urren
es of the same image (let us re
all that the sequen
e is played from the �rst imageto the last one and then from the last one to the �rst one), the photometri
 parameters remainthe same, whi
h asserts the 
orre
t 
onvergen
e of the algorithm. In the sequen
e Cylinder,the evolution of the parameters 
omputed on the point A (whi
h is visible on the image 17a) isshown on the �gure 17d. Similarly to the previous experiment, the 
urves obtained prove thegood 
onvergen
e of the approa
h. Note that the parameters λ also 
ompensates for a partof the spe
ular variations. That may be due to the weakness of the modeling of photometri

hanges by a �rst order polynomial.Computation times. Let us 
onsider a point whi
h is 
orre
tly tra
ked by ea
h pro
edurefor di�erent values of N . The 
omputation times of the te
hniques are reported in table 4, for
N=9, 15 and 35. N and P6 are the most time-
onsuming te
hniques (either be
ause of the 
om-putation of the photometri
 normalization or be
ause of the large number of parameters whi
hhave to be approximated). These high values 
an also be explained by the bad 
onvergen
e ofthese te
hniques when small windows of interest are used. Sin
e the algorithms are iterative,they require a larger number of iterations to 
onverge. For N=9 and 15, the te
hniques C, Jand P3 obtain some similar 
omputation times.Up to now, the experiments have been a
hieved on sequen
es where spe
ular highlightso

ur. The next se
tion deals with the 
omparison of the tra
king pro
edures when lighting
hanges are also involved.6.3.2 Lighting variations and spe
ular highlights 
hangesLet us 
onsider several image sequen
es showing lighting 
hanges, and for some of them, spe
ularhighlights 
hanges.The sequen
es Planar obje
t and Marylin show several textured obje
ts (see the �gures 18aand 19a) 
onsisting of several materials (glossy paper, 
erami
, metal, 
ardboard, glass) andlighted by an ambient lightning (the daylight and the �uores
ent lamps lo
ated at the 
eiling)and a dire
t light sour
e. Then, the sequen
es Hill (�gure 20a) and Corner 1(�gure 21a) showtwo outdoor s
enes a priori a
quired at di�erent moments of the day. In ea
h 
ase, the 
amerais moving and the s
ene is motionless.1These sequen
es 
an be found in the image data base CMU/VASC : http://vas
.ri.
mu.edu/idb/html/-motion/index.html 41
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Figure 16: Experiment Book (97 points are sele
ted). (a) Frames 1, 100 and 200 in the sequen
e. (b) Average
onvergen
e residues for N = 9. (
) Comparison of the 
onvergen
e residues obtained on the points that havebeen tra
ked simultaneously by N and P3, for N = 9. (d) Average 
onvergen
e residues for N=35. (e) Imagesof the windows of interest 
entered around the point A : before (�rst row) and after (se
ond row) a photometri

orre
tion by P6. (f) Illumination parameters of P3. (g) Evolution of the illumination parameters of P6.
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(d)Figure 17: Sequen
e Cylinder. (a) Images of the sequen
e (137 points have been sele
ted). (b) Evolution ofthe average of the residues for N = 9. (
) Evolution of the average residues for N = 35. (d) Evolution of thephotometri
 parameters 
omputed at point A by P6.
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Table 3: Per
entage of the points that have been tra
ked up to the end of the sequen
e withrespe
t to the points whi
h were initially sele
ted, with regard to N , in the 
ase of spe
ularhighlights o

urren
e.
(a) Book (97 points sele
ted)

N 9 11 13 15 25 35
C 27.3 30.7 23 18.6 11.8 9.4
N 37.5 53.4 60.9 65.1 63.5 50.6
J 17 28.4 55.2 65.1 77.6 81.2
P3 77.3 77.3 79.3 77.9 78.8 76.5
P6 - - 34.5 54.7 90.6 83.5

(b) Cylinder (137 points sele
ted)
N 9 11 13 15 25 35
C 86.5 83.5 81.1 80.2 71.4 60.5
N 40.6 54.9 62.1 69.5 83.3 71.4
J 76.7 80.5 81.8 85.5 85.7 73.9
P3 96.2 94 93.9 93.1 87.3 77.3
P6 - - 51.5 64.8 81.7 88.2Table 4: Computation times (in ms) of the tra
king of one point in the sequen
e Book, for

N=9, 15 et 35. Method N=9 N=15 N=35
C 1.3 2.7 21
N 4.6 6.8 31.2
J 1.7 3.1 21.7
P3 1.4 3.2 12.3
P6 9 8.5 25In the sequen
e Planar obje
t, the intensity of the dire
t lighting varies strongly and pe-riodi
ally, with a period of about 20 frames, from a maximum value to a minimal one. Thesequen
e Marylin is parti
ularly 
ompli
ated be
ause of the large motion of the 
amera andsome o

lusions. In addition, some intensity variations of the lighting sour
e are deliberately
aused: around the iteration 135, the dire
t light is swit
hed o�, whi
h indu
es some strongillumination 
hanges. To �nish, the sequen
es Hill and Corner show some lighting 
hangeswhi
h are not homogeneous in the image. Here also, we fo
us both on the robustness of thetra
king and on the a

ura
y of the modeling.Robustness. We sele
t 58 points in the �rst frame of the sequen
e Planar obje
t, 156 inHill, 56 points inMarylin and 44 in Corner. These values are reported respe
tively in the tables5a, 5b, 5c, 5d. For small windows of interest (N<15) and whatever the image sequen
e is, P3loses less points than the other te
hniques. For larger windows, most te
hnique are robust (Cis an ex
eption). Nevertheless, for N ≥ 25 P6 is the most robust.Compared to the previous experiments where only spe
ular highlights 
hanges were 
aused,44



methods N and J appear to be more robust. Indeed, they are always more relevant than C,whereas it was not the 
ase for small windows of interest when only highlights appeared. As a
on
lusion, these te
hniques are more appropriate to 
ompensate for lighting 
hanges than totake spe
ular highlights into a

ount.Convergen
e residues. The 
onvergen
e residues obtained with N = 9 by the tra
kersare shown on �gures 18b, 19b, 20b and 21b. Here again, these residues evolve in the same way asthe illumination 
hanges. This 
an be 
learly seen on �gure 18b, where they vary periodi
allywith the same frequen
y as the intensity 
hanges that have been 
aused.In the sequen
e Marylin, P3 tra
ks a larger number of points (�gure 19b) from N = 9 up to
N = 13. As regards the other sequen
es, the average residues of J , N and P3 are 
omparable,although P3 residues are 
omputed with a larger number of points than J and N (refer to tables5a, 5c and 5d).For sake of 
larity, �gures 18c and 20c 
ompare the residues obtained by P3, N and J onthe few points that are 
orre
tly tra
ked by ea
h of these three tra
kers simultaneously. Forthe sequen
e Planar Obje
t, P3 obtains lower residues than N . However, in Hill, it is moredi�
ult to rea
h a 
on
lusion sin
e the residues are almost similar. In Marylin sequen
e, with
N = 15 (see the �gure 19c), the residues of P3 are the highest. As a �rst 
on
lusion, P3 is moreappropriate for tra
king small windows of interest, espe
ially when only spe
ular highlights are
aused (see the previous experiments).Now, for wider windows (from N = 15 to N = 35), whatever the image sequen
e is (seethe evolution of the residues on the �gures 18d, 19d, 20d and 21c) the pro
edure P6 yields thelowest 
onvergen
e residues and tra
ks the largest number of points.In 
ontrast, for sequen
es Planar Obje
t, Marylin and Corner, P3 obtains worse residuesthan J , N and P6. On the other hand, it yields the lowest residues in the Hill sequen
e.Indeed, the three �rst sequen
es represent s
enes whi
h are strongly stru
tured, and wherere�e
tan
e is likely to show strong edges, whereas the Hill sequen
e is more textured and showsfew strong variations of re�e
tan
e. Yet, when lighting 
hanges are 
aused, the performan
esof P3 depend on the re�e
tan
e 
hanges of the 
onsidered surfa
e. Be
ause of the assumptionformulated about the smooth illumination 
hanges (in se
tion 3.3.1), the more the re�e
tan
evaries the less the proposed modeling 
ompensates for these 
hanges.Consequently, P3 proves to be more relevant to take spe
ular highlights into a

ount thanto 
ompensate for lighting intensity variations, sin
e the model must 
ompensate for variationswhi
h depend on the parameter a depending on the re�e
tan
e. More pre
isely, P3 approximates
a by a plane. Unlike P3, P6 pro
edure does not have to 
ompensate for re�e
tan
e 
hangesand 
an deal with the spatial variations of the illumination 
hanges. However, it is relevant forlarge windows of interest sin
e a higher number of parameters has to be taken into a

ount.Photometri
 parameters. The �rst row of the �gure 18e shows the intensities of thewindow of interest 
entered around one of the tra
ked points, whi
h has been sele
ted in anarea of high illumination 
hange (point A is visible in the �rst image of �gure 18a). The 
oarselighting 
hanges are noti
eable. The se
ond row is asso
iated to the intensities that have been
orre
ted by the photometri
 model of P6. The illumination 
hanges are not visible anymore.45



The 
omponents of ηu⊤ and λu⊤ are shown on �gure 18f , respe
tively on the �rst and se
ondrows. They 
ompensate for the spatial variations of the 
ontrast and for the spe
ular re�e
tion
hanges (as it 
an be seen, they are not 
onstant). The evolution of these parameters duringthe sequen
e is shown on the �gure 18g. It really 
orresponds to the lighting variations whi
hhave been 
aused. Indeed, we re
ognize the frequen
y of 20 iterations between a maximumintensity value and a minimum one.Computation time. A

ording to the 
omputation times written in the table 6, the te
h-niques N and P6 are the most time-
onsuming. For small windows of interest, the 
omputationtimes of P6 are high, sin
e this te
hnique does not 
onverge e�
iently on small windows of in-terest. Let us also noti
e that P3 obtains larger 
omputation times than in the 
ase of spe
ularhighlights (see table 4). This fa
t shows that, even if this approa
h is robust it is more adaptedto spe
ular highlights than to lighting 
hanges.6.3.3 Tra
king experiments on large windows of interest.Due to the adequa
y of the 
onsidered motion model in the di�erential te
hniques, su
happroa
hes 
an be extended to tra
k wider windows of interest, as it is done for instan
ein [4,8,15,20℄. Let us noti
e that the lighting 
hanges are taken into a

ount in [15℄, where theauthors use an image data base a
quired o�ine under various illumination 
onditions, in orderto 
ope with ea
h possible appearan
e 
hange. This te
hnique is quite e�
ient but it requiresa prior learning stage, whi
h 
an be seen as too restri
tive.In se
tion 3.3.2, a 
omprehensive illumination model has been introdu
ed, whi
h 
ompen-sates spatial variations of spe
ular and lighting variations. We use this model to tra
k largewindows of interest.Spe
ular re�e
tion. Figure 22a shows an image sequen
e of a non-planar spe
ular obje
t.An area of the image has been sele
ted by hand in the neighborhood of the areas of highsaturation (spe
ular highlights). With Eave = 25, only P3 et P6 are able to tra
k the window ofinterest from the beginning to the end of the sequen
e. In addition, �gure 22b, whi
h displaysthe 
onvergen
e residues, shows that P6 models more a

urately the spe
ular 
hanges 
omparedto P3, sin
e it yields lower residues. Let us also noti
e that C loses the area of interest veryqui
kly 
ompared to N and J .Lighting 
hanges (Sequen
e Planar Obje
t). Figure 23a represents an image sequen
ewith shows the s
ene of the Planar obje
t sequen
e. An area of the image is sele
ted, and thetra
king is a
hieved with Eave = 15. Figure 23b refers to the 
onvergen
e residues obtained.They show that P6 models more a

urately the spe
ular 
hanges whi
h have been 
aused in
omparison to the other te
hniques, sin
e it yields lowest 
onvergen
e residues. We have notdisplayed the residues obtained by C, sin
e this te
hnique was not able to tra
k the area duringthe whole sequen
e. P6 is more adapted to 
ompensate the illumination 
hanges on wide areasof the image.Tra
king of a road sign (lighting 
hanges). The sequen
e of �gure 24(a) has beena
quired from a moving 
ar2. This sequen
e is of poor quality, be
ause of noise, gain 
hanges,2This sequen
e is available on http://vas
.ri.
mu.edu/idb/html/jis
t/index.html.46



Table 5: Lighting 
hanges. Per
entage of points whi
h have been 
orre
tly tra
ked during thesequen
e (the o

luded points or points whi
h go out of the image are not taken into a

ount).
(a) Planar obje
t (58 points are sele
ted)

N 9 11 13 15 25 35
C 63.8 50 39.7 36.2 8.6 6.9
N 77.6 87.9 91.4 91.4 96.6 93.1
J 67.2 82.8 87.9 51 87.9 89.7
P3 100 100 100 100 96.6 96.6
P6 48.3 75.9 87.9 94.8 100 100

(b) Hill (156 points are sele
ted)
N 9 11 13 15 25 35
C 49.6 31.1 23.7 20 11.2 9.6
N 45.9 60 63.7 63.7 73.7 75
J 55.6 56.3 63.7 70.4 85.6 93.3
P3 74.8 74.8 74.8 75.6 86.4 95.2
P6 - 67.4 70.4 77.8 89 97.1

(c) Marylin (56 points are sele
ted)
N 9 11 13 15 25 35
C 0 0 0 0 0 0
N 0 3.6 3.6 21.4 17.9 17.9
J 0 3.6 3.6 7.2 10.7 17.9
P3 46.4 28.6 21.4 14.3 7.2 3.6
P6 - - - 14.3 42.9 39.3

(d) Corner (44 points are sele
ted)
N 9 11 13 15 25 35
C 90.9 86.4 88.6 88.6 84.1 67.4
N 72.7 63.6 90.9 95.5 86.4 81.8
J 100 100 100 100 97.7 88.6
P3 100 100 100 100 100 100
P6 34.1 50 72.7 86.4 100 100
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1rst frame 75th frame 150th frame
(a)

(b) N = 9 (c) N = 9 (d) N = 35
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Figure 18: Experiment Planar obje
t. (a) Three images of the sequen
e. (b) Average residues obtainedwith N=9. (
) Residues obtained with N=9 on the points whi
h are tra
ked simultaneously by Nand P3. (d) Average residues obtained with N=35. (e) Images of the window of interest 
entered onA: before (�rst row) and after (se
ond row) 
orre
tion by the six parameters of the photometri
 model
P6. (f) Illumination parameters 
omputed with P6 on the window of interest. (g) Evolution of thephotometri
 parameters 
omputed with P6. 48



1rst frame 145th frame 215th frame 299th frame (a)

(b) N = 9 (c) N = 15 (d) N = 35Figure 19: Experiment Marilyn. (a) Images of the sequen
e. (b) Average residues obtained with N=9. (
)Average residues obtained with N=15. (d) Average residues obtained with N=29.
Table 6: Computation times (in ms) used to tra
k one point in the Planar obje
t sequen
e,with N=9, 15 and 35. Method N=9 N=15 N=35

C 1.3 2.9 11.4
N 4.3 3.5 14.1
J 1.6 3.2 11.5
P3 2 3.5 13.8
P6 32 5.9 18.4
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2nd frame 4th frame 9th frame 13th frame
(a)

(b) (c) (d)Figure 20: Experiment Hill. (a) Images of the sequen
e. (b) Average residues with N = 9. (
): residues with N = 15 obtained on the points that have been tra
ked simultaneously with P3,
N and J . (
) Average residues with N = 35.

2nd frame 13th frame 21th frame 24th frame
(a)

(b) (c)Figure 21: Experiment Corner. (a) A few images of the sequen
e. (b) Average residues for
N = 9. (
) Average residues for N = 35. 50



1rst frame 25th frame 50th frame
75th frame 99th frame 200th frame

(a)

(b)Figure 22: Tra
king of large regions of interest (N = 151), spe
ular highlights o

ur. (a)Images of the sequen
e and region tra
ked with P6. (b) Evolution of the 
onvergen
e residues.
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1rst frame 25th frame 50 th frame
75th frame 99th frame 200th frame

(a)

(b)Figure 23: Tra
king of large regions of interest (N = 151): lighting and spe
ular highlights
hanges. (a) Images of the sequen
e with the region tra
ked by P6. (b) Evolution of the
onvergen
e residues versus the number of the frame.
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1rst frame 11th frame 54th frame
(a)

(b)Figure 24: Tra
king of a road sign. (a) Images of the sequen
e. (b) Convergen
e residues versusthe number of frame.darkness. Around the 11th frame, a wide motion is 
aused, be
ause of the vehi
le vibrations.The road sign is sele
ted by hand in the �rst frame with a window size 81×81. The tra
king ofthis road sign has been a
hieved 
orre
tly and the 
onvergen
e residues of �gure 24(b) show that,here again, P6 
ompensates more 
omprehensively for the illumination 
hanges, in 
omparisonto J .6.4 Dis
ussionFirst, the experimental results have shown that the 
lassi
al tra
king te
hnique C is not robustneither to the spe
ular highlights variations nor to ilumination 
hanges sin
e it is based on theassumption of luminan
e 
onstan
y.In 
ontrast, using an a�ne photometri
 model (methods J or N) provides a better robust-ness, ex
ept when the window of interest is small. It 
an be partly explained by their sensivityto noise. Indeed, when a pixel is noisy in W, the values of µf , σf , µg, σg, and λ be
ome alsonoisy, sin
e they depend on ea
h luminan
e in W. For the J approa
h, λ is multiplied by ea
hvalue of f . Consequently, an error 
aused on λ 
an have a huge in�uen
e. The minimizationof ǫ2 
an �nally lead to an in
orre
t value of µ. On the other hand, for wider windows ofinterest, the 
ontribution of one noisy pixel in the 
omputation of these parameters be
omes53



less signi�
ant. Consequently, the 
omputation of µf , µg, σf , σg, λ is more a

urate leadingto a more pre
ise value of µ. This remark has been illustrated by the 
onvergen
e residuesobtained by these approa
hes on small windows of interest.For small windows of interest, P3 tra
ks a larger number of points than N and J . It 
or-re
tly 
ompensates for the spe
ular highlights and lighting 
hanges on W and is quite a

urate.On the other hand, its performan
es are redu
ed when lighting 
hanges have to be modelled,parti
ularly on very large windows of interest. Indeed, in su
h a 
ontext, the modeling has toapproximate the albedo of the obje
t by a �rst order polynomial on W. This assumption 
anbe seen as a strong assumption on large windows of interest, where the re�e
tan
e may varydrasti
ally. On the other hand, N and J 
annot 
ope 
orre
tly with the photometri
 modelingon non-planar surfa
es.Let us also noti
e that, from the 
omputation time point of view, even if P3 requires the 
om-putation of an additional parameter with regard to J and 
onsequently the inversion of a widermatrix, the 
omputation times of these te
hniques are similar, due to a better 
onvergen
e of P3.On the other hand, P6 is more a

urate for large windows, whatever the illumination 
hangesare. Indeed, using a 
omprehensive photometri
 model improve the estimation of the motionmodel during the sequen
e. In 
ontrast, using it on small windows does not allow the 
ompu-tation of the true photometri
 and motion parameters.7 Con
lusionsSin
e the use of spe
ular re�e
tan
e models implies the handling of a large number of param-eters, most 
omputer vision algorithms assume that the obje
ts in the s
ene are Lambertianand that no lighting 
hange o

urs. However, that is a 
oarse assumption.Nevertheless, the use of lo
al simpli�ed photometri
 models 
an signi�
antly robustify thepro
essings, by 
onsidering the luminan
e 
hanges o

urring between images. Through theanalysis of spe
ular re�e
tion models, we have explained expli
itly on whi
h assumptions themost widely used photometri
 models are impli
itly based. Then, we propose some new photo-metri
 models, whi
h rely on the pre
ise analysis of the re�e
tion, and on the assumption thatea
h kind of illumination 
hange 
an be approximated by a 
ontinuous and derivable fun
tionin a lo
al are of the image. The �rst model, whi
h uses three parameters, is well appropriateto 
ompensate for spe
ular highlights o

urren
e. The se
ond one uses six parameters andtakes ea
h kind of illumination 
hanges into a

ount: spe
ular highlights o

urren
e, lightingvariations or 
hanges of the gain of the 
amera.The validity of these photometri
 models has been theoreti
ally studied, by 
onsidering someparti
ular 
on�gurations of the s
ene. First of all, it appears that the photometri
 models aremore appropriate than the a�ne photometri
 model and the photometri
 normalization, sin
ethey allow some spatial variations of illumination 
hanges. Our models are quite 
lose to thereal illumination 
hanges when surfa
es proje
ted in the windows of interest show some low
urvature dis
ontinuities, and when the surfa
e is rough enough. Moreover, the photometri
54



models are more relevant when the sensor is su�
iently 
lose to the surfa
e, and when thelights are su�
iently far from the surfa
es.The two proposed photometri
 models 
an be useful in many 
omputer vision appli
ations,where lightning is not perfe
tly 
ontrolled, espe
ially in outdoor experiments.In this paper, we implemented them in two feature points tra
king pro
edures. The aimof these approa
hes was to e�
iently 
ompensate for the photometri
 
hanges 
aused duringan image sequen
e, in order to obtain a more a

urate estimation of the motion model. Thesepro
edures have been 
ompared, theoreti
ally and experimentally, to some widely used featurepoints tra
king methods: the 
lassi
al approa
h, the tra
king with photometri
 normalizationand the tra
ker proposed by Jin et al., in their simple implementation.By 
ompensating for the spatial variations of illumination 
hanges, the proposed methodshave proved to be more robust than the existing approa
hes. The �rst tra
ker is well adapted forsmall windows of interest, whereas the se
ond one is appli
able for larger windows of interest.Experimental results obtained from several images sequen
es have shown a good 
onvergen
eand a good a

ura
y of these pro
edures. In this paper, we have deliberately fo
used on thespe
i�
 problem of illumination 
hanges, without 
onsidering the problem of o

lusions, whi
his an other di�
ult subje
t.A ConditioningThe 
onditioning of the tra
kers detailed in that report 
an be 
ompared. Indeed, ea
h linearequation system envolved in the tra
king pro
edure (see equations (48), (52), (53), (55) and(58)) 
an be written as Ax = y and more pre
isely
(

A11 A12

A12
⊤ A22

)(
x1

x2

)
=

(
y1

y2

) (60)Consequently, the inversion of A is given by
A−1 =

(
I3 0

−A22
−1A12

⊤ I3

)(
∇

−1 0
0 A22

−1

)
=

(
I3 −A12A22

−1

0 I3

) (61)where ∇ is the S
hur 
omplement ∇ = A11 − A12A22
−1A12

⊤. The inversion of ∇ 
an bea
hieved in the following way:
∇

−1 = A11
−1 + A11

−1A12(A22 −A12
⊤A11

−1A12)
−1A12

⊤A11
−1 (62)Sin
e (A12A22

−1)⊤=A22
−1⊤A12

⊤ we 
an introdu
e :
M =

(
I3 −A12A22

−1

0 I3

)so that
A−1 = M⊤

(
∇

−1 0
0 A22

−1

)
M55



Consequently, the inversion of A su

eeds if A11 and A22 are well-
onditioned and 
an be
orre
tly inverted.In the tra
king te
hniques, for ea
h approa
h the matrix A11 is the same. Therefore, the
omparison of the 
onditioning of the method only depends on the 
onditioning of A22. Thematri
es asso
iated to the methods whi
h approximate the photometri
 parameters A22
J (forthe Jin's te
hnique), A22

P3 and A22
P6 are written as:

J A22
J =

∑
m(f(m), 1)(f(m), 1)⊤

P3 : A22
P3 =

∑
m uu⊤

P6 : A22
P6 =

∑
m(uf(m),−u)(uf(m),−u)⊤

(63)The matrix A22
P3 is the best well-
onditioned. In addition, its terms are 
onstant, thereforethey 
an be 
omputed o�-line. On the 
ontrary, the matrix A22

J and A22
P6 are ill-
onditionedand their terms depend on the image.Referen
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