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Abstract

Since modeling reflections in image processing is a difficult task, most computer vision
algorithms assume that objects are Lambertian and that no lighting change occurs. Some
photometric models can partly answer this issue by computing the illumination changes in
small areas of the image, but they often assume that the lighting changes are the same in each
point of a window of interest. Through a study based on specular reflection models, such as the
Phong and the Torrance-Sparrow ones, we explain explicitly the assumptions on which these
models are implicitly based and therefore the situations in which they fail.

In this report, we propose two photometric models, which compensate for specular high-
lights and lighting variations. They are based on the assumption that illumination changes
vary smoothly on the window of interest. The first one is more suitable when specular high-
lights occur and when small windows of interest are used, as in feature points tracking. The
second model compensates for more comprehensive changes such as specular highlights and
lighting changes, and can be used on larger areas of the image. Contrary to existing models,
the characteristics of the surface of the object and the lighting changes can vary in the area
being observed. A part of this report deals with the study on the validity of these modelings
with respect to the acquisition configuration: relative locations between the lighting source, the
camera and the object, properties of the surface (curvatures and roughness). These models are
used to improve feature points tracking in image sequences, by computing simultaneously the
photometric and geometric changes. The proposed methods are compared to tracking methods
with photometric normalization [34] and the technique proposed by Jin et al. [31]. Both of
them compensate for affine photometric changes. Since our approach corrects spatial photo-
metric variations, the robustness and the accuracy of the tracking are improved. Experimental
results on specular objects demonstrate the robustness of our approaches to specular highlights
and lighting changes, without increasing computation times. These procedures provide a good
accuracy of the points location during the sequence.
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Résumé

Puisque la modélisation précise des réflexions dans des images est une tache difficile, la
plupart des algorithmes de vision par ordinateur suppose que les objets sont lambertiens et
qu’aucun changement d’éclairage ne se produit. Des modéles photométriques répondent par-
tiellement & ce probléme en calculant les changements d’illumination dans de petites fenétres
d’intérét de 'image, mais ils font généralement ’hypothése que les changements d’intensité sont
identiques en tout point de la fenétre. A partir d’une étude basée sur des modéles de réflexion
spéculaires, comme les modéles de Phong ou de Torrance-Sparrow, nous décrivons explicite-
ment les hypothéses sur lesquelles ces modeéles sont implicitement basés, et donc les situations
pour lesquelles ils échouent.

Nous proposons ensuite de nouveaux modeéles photométriques locaux, qui peuvent com-
penser différents types de changements d’illumination, tels que des variations de réflexion
spéculaire et des changements d’éclairage. Ils sont basés sur I’hypothése selon laquelle les
changements d’illumination varient doucement dans la fenétre d’intérét considérée. Le premier
s’avere le plus adapté aux variations spéculaires sur de petites fenétres d’intérét, comme celles
utilisées dans le cadre du suivi de points d’intérét. Par contre, le second s’avére approprié a la
fois pour les changements spéculaires et les variations d’éclairage.

Nous nous attachons a analyser la validité de ces modélisations, en fonction de la configu-
ration d’acquisition : positions relatives entre la source d’éclairage, le capteur et la surface de
I’objet, ainsi que les propriétés de la surface. Ces modéles sont ensuite mis en oeuvre pour
ameéliorer le suivi de points caractéristiques et de zones d’intérét dans des séquences d’images.

Les méthodes proposées sont comparées a la méthode de suivi avec normalisation pho-
tométrique et la technique proposée par Jin et al. |31], qui sont robustes aux variations d’illu-
mination affines. Du fait que la modélisation photométrique proposée prend correctement en
compte les variations spatiales d’illumination, la robustesse du suivi et le calcul du modéle de
mouvement sont améliorés. Des résultats expérimentaux sur des objets spéculaires montrent
la bonne robustesse de ces approches vis-a-vis des réflexions et des changements d’éclairage.
Elles assurent également une bonne précision de la localisation des points au cours du suivi,
sans augmenter de maniére significative les temps de calcul.

Mots clé : Changements d’illumination, éclairage, réflexion spéculaire, modéles pho-
tométriques, suivi de points et de zones d’intérét.
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1 Introduction

Computer vision has recently emerged in many fields such as mobile robotics [9], visual in-
spection, in surgical, agricultural, spatial or underwater domains [11], i.e in various natural
environments. For such practical applications, one of the crucial problems lies in the robust-
ness of the low level algorithms with respect to some critical acquisition conditions: blurred
images, acquisition noise, illumination changes, reflections. High level algorithms such as 3D
reconstruction, active vision or visual servoing for example can be efficiently improved by in-
creasing the robustness of spatial and temporal matching process.

This paper addresses more precisely the problem of robust feature tracking with respect to
lighting changes and specular highlights.

When it is possible, the robustness of this procedure can be improved by extracting salient
features in the image, such as edges [36], corners [16], lines [6] since they almost only depend on
the objects shape or on the luminance gradients. It becomes far more complicated when no mark
can be extracted from the observed object, such as in natural environment. In such a context,
only points, among possible features, are likely to be easily detectable. However, tracking a
point in an image is not a trivial task since the only available information is the luminance
of the point and of its neighboring pixels. In such a context, the illumination variations are
problematic, since they often make processings fail.

The seminal works in the domain of feature points tracking are due to Lucas and Kanade
|23, 33| who assume the conservation of the point luminance during the image sequence [19].
The measure of a correlation function between two successive frames provides the translation
motion undergone by the point to track. This motion model theoretically assumes that each
point in the window centered around the point to track moves parallel to the image sensor at
constant depth. Therefore, this differential tracker assumes a high acquisition frequency and a
small motion between two successive frames. However, this technique is still considered to be
powerful |32].

Thereafter, the robustness of this tracking approach has been improved, by using some more
powerful motion models. For example, the literature has proposed several motion models:
affine [29]|, quadratic [26] and homographic [7,8]. More recently, [2] has compared several
implementations of the differential trackers. Since these formalims are quite more realistic than
the translational one, the correlation can be measured between the first and the current frame,
so that the tracking errors are not cumulated during the sequence. The accuracy of the tracking
can also be verified a posteriori, by detecting and rejecting outliers points automatically |34].
Moreover, it is possible to use a robust estimator [26], in order to weight the measurements by
an influence function and give less confidence to outliers. This type of methods has proved to
be efficient to overcome the problem of occlusions, and to avoid taking noise into account in
the correlation measure [28|. Using statistical filters |1,24| can also improve the robustness of
the process, when points trajectories are complex.

The tracking of planes can also be implemented by an efficient second order minimization
(ESM) [4].

However, these methods assume that the luminance remains constant between two successive



frames, which is not true. Indeed, most surfaces are not Lambertian and lighting conditions are
mostly variable during an image sequence. When color sensors are available, the measure of the
correlation function has proved to be more efficient by using color invariants, as in [13]. Under
a few assumptions, these attributes do not depend neither on the intensity of lighting, nor on
its direction. Nevertheless, their computation requires images with highly saturated colors.

Hager and Belhumeur |15] propose to acquire an image data base of the scene under several
illuminations and to use these data to improve the tracking. This method is efficient and no
salient feature is needed. Nevertheless, it requires a prior learning step, which can be seen as
too restrictive. Very often, one can prefer to achieve a simple local photometric normalization
as in [34].

[llumination changes can also be compensated by computing a photometric model which
properly fits the luminance variations in restricted areas of the image. Such models have been
used in several applications such as optical flow computation [5, 17,21, 25|, object recogni-
tion [12], image matching and indexing [14]. For instance in [31], the feature points tracking
procedure compensates for affine illumination changes by computing the contrast and illumi-
nation variations during the image sequence. Recently in [30], the authors have computed
arbitrary illumination changes on a large planar patch in a tracking context, by using an ESM
algorithm. However, the main difficulty of the illumination compensation is to balance the
trade-off between complexity, and thus computational cost, and adequacy of the model with
the real illumination changes.

Moreover, these illumination models are based on several assumptions, about the scene
geometry and the surface roughness, which have not been clearly defined yet. In general, the
spatial variations of illumination changes, such as contrast and intensity changes, are not taken
into account. However, the luminance results from a collection of interaction mechanisms
between the light, the matter and the sensor, which are difficult to compute in a computer
vision application. The first contribution of this report is to clearly explain the modeling of
illumination changes occurring when the relative position between the objects, the lighting and
the camera are modified or when the lighting conditions are changed. This analysis is based on
some widely used specular reflection models, such as the Phong [27] and the Torrance-Sparrow
ones [35]. In particular, we focus on two specific illumination models. The first one, which
uses three photometric parameters, is particularly well adapted to compensate for specular
highlights and lighting changes when small areas are concerned. The second model, based on
six parameters, is more relevant for larger windows. In particular, these models can compensate
for spatial variations of illumination changes. They correctly fit the real photometric changes,
while requiring a low algorithmic complexity.

Obviously, the validity of these models depends on the object surfaces (orientation, re-
flectance and roughness), on the location of the lighting sources but also on the viewer direc-
tion. Therefore, the second contribution of the paper consists in studying the validity of the
proposed models, by considering several simplified acquisition geometries. Finally, we compare
our approach to the most commonly used in the literature.

This report is organized as follows. Section [2] focuses on the general modeling of luminance
changes, especially in the case of specular reflections and lighting variations. Then, Section
Bl deals first with the local illumination models which are used in temporal correspondences



Figure 1: Vectors and angles involved in the reflections description.

matching, then details the two photometric models we propose.

The theoretical validity of the photometric models, and consequently of the tracking proce-
dures, is studied by considering several specific configurations on the viewing geometry and the
surface properties. This study is the aim of Section @l Section [l details some of the existing
trackers, regarding to the illumination model on which they are based. Then, the two proposed
trackers are detailed in Section 5.3l

The relevance of our approaches is proved through experimental results, in Section[6l More-
over, a comparison with the standard tracking techniques is also performed, in terms of robust-
ness, location accuracy and convergence of the tracking.

2 Modeling of luminance changes

In this section, we detail the description of the luminance, while referring to physical models
largely used in image synthesis and image analysis. Then, starting from this modeling, we
focus particularly on the luminance changes occurring between two images of the same scene,
acquired for example during an image sequence. Let us notice that we do not consider the
modeling of luminance changes caused by the acquisition process (for instance distortion due
to the objective, blur), but only on those due to illumination changes.

Let us first introduce our notations (see figure [l which sketches the vectors and the angles).
Let be P a point of the object. V and L are respectively the viewing and the lighting directions,
which form the angles 6, and 6; with the normal n in P. B is the bisecting line between V and
L, it forms an angle p with the normal n. Let f and f’ be respectively the images of an object
acquired at two different times. A point P of this object projects in image f in p of coordinates
(Zp, Yp) and in p’ of coordinates (z},y,) in the image f after a relative motion between the
camera and the scene. We call 0 the vectorial function which links p’ to p such that §(p, u) = p/
according to a parameterization described by pu.
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2.1 The luminance in the CCD plane

The relationship between the radiance £ of the observed object and the irradiance received by
the sensor Z., is given by [1§]

To(A) = KL(A). (1)

K, is a scalar which does not depend on the wavelength A but only on the geometry of the
camera such as the focal distance and the aperture. It is generally considered as a constant
scalar. Then, the luminance f(p) depends on the spectral sensitivity S(\) of the sensor

)\max )\max )\max
fp) = /A  SWL P)AA= K, A S(NL, P = K, A S(NEN, PYR(A, P)dA
(2)

min min

where R (A, P) is the reflectance of the material and £(\, P) the illuminant spectrum.

Several expressions of the radiance £(\, P) have been proposed according to the physical
properties of the material and to the scene geometry. Among them, the Lambertian model [22]
is undoubtedly the most widely used because of its simplicity and its relevance.

Lambertian model. It expresses the radiance as

Ka(P)E(N, PYRy(\, P) cosi(P) it 6;(P) € [—

L _ g> %]
LA, P) = { 0 otherwise (3)

In other words, the radiance in P is expressed as a function of the incident angle 6;(P), the
diffuse reflectance R,(A, P), most often called body reflection or albedo, and the illumination
spectrum E(A, P) in P.

Most surfaces also reflect light in a specular manner, not only in a diffuse one, and several
functions can be used to model this luminance. We describe here the most interesting one
according to our problem.

The Phong model. Phong [27] has described the radiance of specular surfaces in a heuristic
way. However, this model is simple to use. The radiance is given by

Kq(P)E(N, P)Ry(A, P) cos 0;(P) + Ks(X, P)cos™(p(P)) + K.(\, P) if 6;(P) € [-F, 5]

[NIE]

P\ P) =
{ 0 otherwise

(4)
It is composed of a diffuse and a specular component and assumes a point light source. The
scalar n is inversely proportional to the roughness of the surface and K is the specular coefficient
of the direct lighting, depending also on the gain of the camera. K, is the intensity of ambient
lighting in P. It is commonly admitted that it is an empirical model but it proves largely
interesting for its simplicity, and because it is appropriate for various types of materials, whether

they are rough or smooth.

The Torrance-Sparrow model [35]. Contrary to the previous models, this one is based on
the optical geometry. However, since it neglects the electromagnetic characteristics of light, it
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is valid only when the surface asperity is larger than the light wavelength. The radiance in P
is expressed as

Ks\P)  (apyay . o
Kq(P)E(N, P)Ry(\, P) cos@i(P)—i—me( Pi(PI2T)if g,(P) € [- %, 7]

LT\ P) = (5)

0 otherwise

where ¢ is the roughness parameter of the model. The Torrance-Sparrow model is viewed as
an interesting model because of the good adequacy between simplicity and accuracy compared
to physical reality. Let us remark in both cases, for Phong or Torrance models, that the
specular term reaches its maximum value for p(P) = 0, that is when B coincides with n. In
the remainder of the paper, we call A this specular term.

Some more advanced formalisms, such as the Beckmann model [3] based on the electromag-
netic waves theory can be found in the literature. Nevertheless, this model is difficult to use in
practice in computer vision because of the large number of parameters.

2.2 The luminance modeling in an image

Let us note M(A) = S(A)E(A, P) in ([2). When the sensor has a linear response and the color
of illuminant is constant during the time, M()\) can be expressed as the product of a gain
K,,, which does not depend of the wavelength, with a spectrum shape e(\). In that case, the
luminance becomes R
F0) = KeFp) [ eOORO P)AA ©)
Amin
According to the reflection models described previously, R(A, P) is composed of a diffuse
reflectance R, (A, P) and a specular term directly related to the illuminant. Let us write a(p)
the following term:

)\maz

a(p) :/ e(A)Rp(A, P)dA. (7)
)\min

Since it depends on the albedo Ry (A, P), it is also an intrinsic property of the material. Whatever

the photometric model is, the luminance f can be modeled as a sum of three terms which are

respectively related to the diffuse, specular and ambiant reflexions:

f(p) = Ka(p)a(p) cos 0;(P) + K(p)h(P) + Ka(p) (8)

where K,(p) = K.K,,(p) and hy refers to the specular reflection function which depends on
the photometric model (see 2.I)): it can be either a cosine fonction (Phong) or an exponential
one (Torrance-Sparrow). K(p) and K,(p) are the integration values respectively of K (A, P)
and K,(\, P) (see @) and (@) according to the wavelengths.

According to (8], the illumination changes occurring between two images of the same scene,
can be easily deduced.



2.3 The luminance changes between two images of a sequence

Let us first distinguish between the illumination variations due to specular reflection and the
illumination changes related to lighting conditions changes.

Specular reflections. They can occur due to a simple motion of the camera with respect
to the surface. Then, the incident angle 6; is constant in P during the time.

Moreover, if no lighting change occurs, the intensities K; and K, are also constant. In the
same way, a(d(p, u)) = a(p) since this term depends only on the location of P.

However, the specular component i, which depends on the viewing direction via the angle
p, varies strongly. In those conditions, the luminance f’ is given by

f'(6(p, w)) = Kaa(p) cos0;(P) + ' (d(p, ) + Ka (9)

where h' is the specular function. By subtracting (@) with (&), it yields to the following rela-
tionship between the two images

f'(6(p, ) = f(p) +(p) (10)

where

Y(p) = h((p, p)) — h(p). (11)

Lighting changes and specular highlights. Now, let us consider that some lighting
changes AK,, AK, are produced on K, and K, respectively. These variations can be due to a
shift of the camera gain or a variation of the lighting intensity. Moreover, the incident angle 6;
changes in P according to a function that we call Af;. Such variations occur when the object
moves according to the light source or when the light source moves. Then, the relative motion
between the camera, the surface and the lighting can make the specular term h'(d(p, p)) vary.
Thus, the luminance in image f’ is expressed as

F(6(p, ) = Ky(6(p, w)) alp) cos b (P)+ K (5(p, p)) + K, (12)
with:
Ky(0(p,p)) = Ka(6(p. ) + AKq(p)
g.(P) = 0;(P)+ Ab0;(P) (13)
K, = K, +AK,.

The specular term A/(d(p, p)) includes the intensity change of the specular coefficient K if
necessary.

Therefore, by using equations (8) and (I2)), the relationship between two images of the same
scene can be described by two different expressions.

First, it can be written as ([I0)), where the function v is given by the following relationship:

U(p) = alp)(Ky(0(p, p)) cos(b;(p) + Abi(p)) — Kqcosb;(p)) +
W ((p, ) — hip) + AK, (14)

In that case, the function ¥ (p) depends on a(p) and thus on the albedo of the material, closely
related to its reflectance.

10



Second, the luminance change can be expressed by the following relationship

f'0(p, ) = Xp) f(p) +n(p) (15)
where:
Mp) =  (Ka(d(p,p)) + AKa(6(p, p))) cos(05(P) + AG;(P))
K4cos0;(P)
(16)
np) = —(hp)+ K)Ap) + 1 (6(p, p)) + Ko + AK,.

In the remainder of the paper, it is important to notice that both functions A(p) and n(p) do
not depend on a(p), but only on the geometric parameters. Nevertheless, since this modeling
refers to a large number of parameters, their use in computer vision is not straightforward.
Indeed, since it depends on the material properties (the roughness of the surface by the means
of the specular terms), the functions A(p) and n(p) are not easy to compute. Therefore, some
simpler models are used in computer vision.

3 Local modeling of illumination changes

Generally speaking, the simplified photometric models rely on the local modeling of luminance
changes in small areas of the image, seldom in the whole image. Therefore they are available
for image matching or feature points tracking procedures. Let us see from (IHl), on which
assumptions these models are based. We will refer to W as a window of interest centered in p.
We call m an other point belonging to W.

3.1 The luminance constancy

In a large number of applications, it is assumed that the luminance of images from the same
scene remains constant during the time [19]. From the radiance models given in Section 2] it
can be true only for Lambertian objects under constant lighting. In that case, we simply have:

' (6(m, ) = f(m) for any m € W. (17)

3.2 The affine model
The affine model assumes that A(p) = A and n(p) = n leading to:

f'(6(m, w)) = Af(m) +n. (18)

According to (I6), this model assumes that the incident angles 6; and A#; are constant in each
point of the window of interest. This statement is rigorously true only if the normal n is the
same in each point of W, i.e if the surface is locally planar.

Moreover, both objects and lighting must be motionless. Second, the specular terms A’/
and h must be constant in W. According to the specular reflection models () or (I), this
statement is true if the angle p is the same in each point and the roughness is constant in W.

11



This statement is correct for all m, if the specular functions h and A’ are equal to zero in each
point of W, that is for Lambertian surfaces only.

Now, let us show that the affine model based on the photometric normalization [34]| does not
depend on the affine photometric changes. Let us recall that it is defined through the following
transformation of luminance f

f(m) — py
or 7

(19)

where py and oy are respectively the average and standard deviation of the luminance in a
window of interest W, of size N’ x N.

Indeed, from the affine photometric model, given by (I8)): we easily deduce a relationship
between the average of f’ in VW and the average of f:

pe = a2 ) ) = A(A%Zﬂm))H (20)

meWw meWw
frpr = A4

The standard deviation of f’ in W is also related to the standard deviation of f:
op = D (Mf(m)+n— g +n)’

meWw (21)
O'f/ = )\O’f

5 _
Therefore, the photometric normalization given by FO0m) =1y and the use of (I8)) yields:
af

f,(é(m> I‘l’)) — My _ )‘f(m) +1— ()‘:uf + 77) _ f(m) — My (22)
gy )\O’f or

This ratio does not depend on the affine photometric changes, under the different assumptions
that this model requires. Actually, by writing f’ as a function of f in (22]), we obtain:

£160m. ) = L) + e = =22 (23)
and therefore the photometric normalization model is an affine model with:
Ao o

af

Remark: each ratio of luminance difference only depends on the albedo. Let us
consider two points mqy and my in W. If the lighting parameters K,, AK,, 0;, A6;, and the
specular term A’ are constant on W, we can state from (I2) that the difference between the
luminance of two points my and m; in W does not depend on specular highlights variations:

f'(6(mo, w)) = f(6(ma, p)) = KG(a(mo) — a(ma)) cos(6; + Af;) (25)

12



but still involves the intensity (or camera gain) and the direction of the lighting. Let us now
consider a third point ms in W. The following ratio is invariant to every kind of illumination
change:

f/(8(mo, ) = f/(0(my, ) _ a(mo) — a(my) (26)

f'(6(mo, ) = f'(6(ma, ) almo) — a(mz)
since the ratio of luminance differences only depends on the albedo, which is an intrinsic charac-
teristic of the material. In the same way, any ratio of luminance differences in ¥V is invariant to
illumination changes but depends on the albedo only. f(m)— s, a(m) — p, and f'(6(m)) — puyp
are invariant to highlights occurrence.

As a conclusion, the photometric properties of (I8 are true and the relationships ([24]) are
correct only if the specular reflection and the lighting changes are the same in each point of W,
as mentioned above. In some cases, these assumptions are not realistic, particularly when W
is the projection of a large and non planar surface of the scene. In addition, the normalization
may get noisy for low standard deviation at denominator, that is when the intensities almost
saturate or more generally when they are almost homogeneous in W.

In order to reduce those limitations, we propose and validate two photometric models which
compensate for spatial illumination variations in W.

3.3 Some illumination models adapted for specular highlights occur-
rence and lighting changes

The previous illumination models rely on several restricting assumptions that are incorrect for
non-planar objets, for instance the constancy of the angle values. Here, we propose two models,
where illumination variations are assumed to be varying in the window of interest. The first
one is available for small windows of interest, whereas the second one can be used for larger
ones.

3.3.1 An illumination model adapted for small areas

It has been shown in section 2] how each kind of illumination changes can be expressed. When
only specular highlights occur, the luminance variations between two frames can properly be
described by ([I0J).

According to the most widely used reflection models (see (@) and (B])), the function 1, given
by () or (I4), is not constant in W since it depends on the viewing and lighting angles and
therefore on the normal n in each point of W. It also depends on the characteristics of the
material, such as the roughness of the surface. We admit that ¢/ can be correctly approximated
on W by a C¥, K > 1 function, that we call ¥,,,q. In that case, ¥,,,¢ can be approximated
by a Taylor series expansion, performed in a point m of coordinates (x,y), belonging to the
neighborhood of p and being the projection of a point M of the scene:

0 mo 0 mo
() = inaa(p) + 52| (@ = 3,) + 2 (=) (27)

p p
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Let us call a = &gzo‘i , B = a%ZOd and v = Ynea(p). We write a = (o, 3,7) and
p
u=(r—x,Y—ypl). By injecting (27) in (I0) we obtain
f'(o(m, p)) = f(m) + a'u (28)

Compared to the simpler illumination models described previously, this one relies on lower
assumptions about the scene. The surface projected onto W is not assumed to be planar, the
parameters K, and n (or ¢) can vary smoothly in the window of interest. Therefore, specular
highlights can be different in each point of W.

Nevertheless, this model is more appropriate to deal with specular highlights than to cope
with lighting changes. Indeed, when lighting changes are caused (equation (I4)) the albedo
may vary strongly in W according to the reflectance of the object, and thus (21) is not true.
The approximation of the albedo by a first order polynomial becomes more and more crude
for large and very textured surfaces. Therefore, the next section proposes a model which copes
with this issue.

3.3.2 An illumination model adapted for large areas

According to (I6)), the function A depends on the incident angle, which can highly vary when
W is large or when the object surface is not planar. Likewise, the function n depends on the
specular highlights variations, on the intensities and on the incident angle values. Thus, these
functions are not constant in each point of W.

However, it is possible to assume that these functions are continuous and derivable in each
point m. This statement implies that the surface varies in a smooth way. In addition, the
specular terms have to be continuous and derivable, so that the roughness of the material must
be continuous and derivable in WW. Then, A and 7 can be expanded in Taylor series around p.
By neglecting the coefficients of high order, these equations become

OA 0A
dz|,” dy
n

. an
n(m) n'u with n <8x p, 9

Am) = X'uwith A = ( oA

J(p)) (29)

: n(p)> (30)

leading to
FO(m.w) = ATuf(m)+n"u (31)
This model can take many kinds of illumination changes into account, due either to high-
lights or lighting changes. In contrast to the previous models, it supposes that these changes
can be different on the same window of interest V. Particularly, the surface involved in the
window of interest is not assumed to be planar, the parameters Ky, K, and the roughness n
(or <) can also vary. Therefore, specular highlights and lighting changes can be different in
each point of the window of interest. Nevertheless, the number of parameters which have to be
computed is increased. Now, let us study the conditions of validity of (3]).
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4 Validity of the photometric model

The purpose of this section is to analyze the validity of the photometric model described by
(I). First, we consider a quadratic object, of which the local shape is known. We assume
that this object is viewed under one lighting source of known location. We compute the real
corresponding photometric changes obtained when the lighting source has moved (7 and A given
by (@), for different acquisition conditions:

e the pose of the camera with regard to the object;

e the pose of the lighting source with regard to the object;

e the shape of the surface (value of the curvatures of a quadratic surface);

e the material properties of the object, that is to say its roughness parameter.

Second, we achieve a local approximation of these photometric changes by computing the Taylor
series at second order of n and A\. Our photometric model, which is a first order approximation,
will be the most adequate when the coefficients of second order of this latter approximation
will be null or approximately null. So this study consists in finding the configurations for which
these second order coefficient vanish.

4.1 Modeling of the scene geometry

We consider a frame F., linked to the camera. A point P of coordinates (X, Y, Zp) is located
at the center of a region of interest on the object. Let us also consider a point M, of coordinates
(X,Y, Z), which is located in the neighborhood of P (see the figure 2l). We assume that the
surface in P can be described as a fonction of class C? leading to the following approximation
of the depth in M

Z = Zp-+ Dx(X — Xp)+ Dy (Y~ Yp) 4 5 Dxx (X = Xp)>+ 5 Dyy (Y = ¥p)? + Dy (X Xp)(¥ ~ V)

(32)
where Dy, Dy are the first derivatives of the surface at the point P. These parameters describe
the orientation between the tangent plane of the surface at the point and the CCD plane:

0z 0z
Dy = — = — 33
YToax|, TV av, (33)
The values Dxx, Dyy and Dxy refer to the second order derivatives of the surface in P
0?7 0?7 0*Z
D - ——= D = — e —
XX T 533 ) YY = 5y ) XY = 5xoy ‘p (34)

From (32), we obtain the normal vector in P

0z 07
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Figure 2: Modeling of the scene geometry.

In addition, we suppose that ([B2]) is valid in every point of W.

Given S = (5., 5y,5,) (in the frame F.) the location of the lighting source, we write
L= (X-5,Y —S,,Z2) the vector linking the lighting source S to the point A/. Then, the
cosinus of the angle formed by S and n (i.e. cos#;) is written as the scalar product between
S and n. By perspective projection and by using Z given by ([B2), all the geometrical terms
(the angle 6; for example) and the real parameters A and 7 given by ([If]) can be expressed with
respect to the pixels coordinates m.

Therefore some approximations and Taylor series expansions are achieved according to the
acquisition configurations. In a first step, we study the validity of the approximation of the
function A by (29)), which depends on the intensity level and the incident angle of the lighting.
The proposed model approximates the variation of this function on W by a first order polyno-
mial. However, as soon as 1 is concerned, we have seen in B.3.1] that, when lighting changes
are considered, 1) depends on the albedo. In this section, we do not take this configuration into
account. In addition, in order to simplify this study, we focus on small windows of interest W
which are located near the optical axis of the camera.
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4.2 Validity of the modeling of A

Let be u =z —xp and v = y — yp. We consider the approximation of A (see equation (IG)) at
second order:
A(m) = A+ Av + Az + Aau® 4+ As0” + Aguv. (36)

In order to analyze the validity of (ZII), we study the configurations for which the terms of
second order (A4, A5, A\g) vanish. The lighting conditions for which they can be neglected are
those for which the photometric model fits the illumination changes at best.

We restrict the study to the case of a moving camera which observes a motionless object.
A small motion of the direct lighting source dS = (dSx, dSy, dSz) is caused with respect to its
initial position S. Several viewing and lighting locations as well as various surfaces curvatures
are also considered. Indeed, the only motion of the lighting source causes variations on both
terms A\ and 7. The motion of the lighting source is assumed to be small so that the coefficients
A; can be expanded in Taylor series around (dSx,dSy,dSz). The study is limited to the first
order to obtain some useful expressions. Moreover, the following most interesting cases are
studied

e the lighting vector coincides with the normal of the surface;
e the lighting source is close to the camera;

e the lighting source is close to the surface.

4.2.1 The lighting vector coincides with the normal of the surface

In this case, we assume that L = 7n. For small variations of the lighting angle around the
normal, one can show that A\, A5 and A¢ are null (their expansion in Taylor series according
to dS yields to null coefficients). Consequently, the approximation of the illumination changes
given by (BI)) is relevant.

4.2.2 The lighting source is close to the camera

In this case, we simply have S = O and thus V = L. First of all, we consider a planar object,
then a non-planar one.

PLANAR OBJECT. When the object is planar, the second order coefficients \; become:

1

)‘4(planar) - _P (2dSZ + 2DXde)
1

)‘5(planar) = _Z_P (ZDYdSY + QdSZ) (37)
1

)‘G(planar) = _Z_P (DXdSY + DYdSX) .

They are directly related to the error obtained between the photometric model (3I]) and a more
comprehensive approximation of the illumination changes by a second order approximation.
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Therefore, these terms vanish when the surface is nearly parallel to the CCD plane. This remark
is validated by the example given in the figureBl This figure shows the real variations of A (given
by ([I6])) caused locally in a small area W of a planar surface, without any approximation. The
lighting source is moving along dSx and dSy while dSz; = 0. As previously, when the surface
of the object is parallel to the camera, that is when Dy = Dy = 0 (figure Bl), the illumination
model is well adapted since the terms Ajanar) vanish. We clearly notice that the shape of the
photometric changes is almost planar. In the other hand, when Dx # 0 and Dy # 0 (see figure
Bb), the illumination changes can not be totally compensated by the photometric model and
the shape (figureBb) is not planar anymore. Only a motion dSy of the lighting source along the
optical axis (a backward or a forward motion of the camera with respect to the object) yields
inevitably some illumination changes which are not compensated by the model. In addition,
these latter changes are higher when the camera is close to the surface, as it is shown by the
presence of Zp at the denominator in (37).

NON PLANAR OBJECT. In the case of a non-planar object for which (B2]) is valid, the second
order terms of the surface appear in the second-order coefficients:

A = Mplan) +2(DyDxx + DxyDx)dSy —4DxxdSz +6Dx Dx xdSx
A5 = )‘5(plan) + 2(DyDxy + Dx.Dyy)dSx + 6Dy DyydSy — 4DyydSy (38)
)\6 = )‘G(plan) + Q(DnyX + DyDXy)dSy — 2nydSZ + Q(DXXDY + DxDXy)dSX.

The higher the terms (Dxx, Dxy, Dyy) are, the more the coefficients \; vary with respect to a
motion dS of the lighting source. Let us also point out that when the orientation of the tangent
plane of the surface in P is parallel to the sensor (Dx and Dy are close to zero), the motion
of the lighting source (dSx and dSy) has a weak influence. In contrast, motions of the camera
along the optical axis always cause an error on the second-order coefficients.

4.2.3 The lighting source is close to the surface

Now, let us consider that the lighting source is initially located at a small depth € of the surface
so that S = (X,,,Y),Z, — €). We consider that this distance is small enough to expand the
relationships around € = 0. Thus, we obtain the following expression of the coefficients \;:

2Zp(DxxZpD DxyD 27p(Z D%e — ZpD% 4+ 2ZpD
V- p(Dxx P€2Y+ XY XE)dSy— p(Zp + Dxe 63P x +24p XXG)dSZ+

2ZP(D)((€ - 1) + Dxx(2€2 + ZPE))

= dSx

2Zpr(DyyZPE + 2Dyy€2 —2Zp + E) 2Zp(2DyyZp€ — D%,Zp +Zp + D%E)

N = : dSy — - dSy
€
2ZP(DYYZPDX + nyDye)

+ 2 dSx

ZP(DYDXY(ZPE + 62) + DX (6 + 2Dyy62 — 2Zp)) 2Zp(DyDX (6 — Zp) + Zprye)
Ae = 3 dSy — 3 dSz+

Zp(DxDxy(Zpe+ €®) + Dy (e +2Dxxe? —2Zp))) "

X-
€3
(39)

Here again, if the orientation between the surface and the sensor vanishes (Dy = Dy =
0), a motion of the lighting source dSx and dSy does not affect the modeling errors. The
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Figure 3: Ezamples of illumination changes in W when the lighting source is close to the camera. (a)
Dx = Dy = 0, a motion of the lighting source along X orY axes is compensated by the photometric model,
which forms a plane in W. (b) Dx = Dy =5 cm, the illumination variations are not perfectly compensated

by the model. In each case, the object is planar and the model parameters are the following: Xp = Yp = 0,
Zp =100 em, dS = (0.1,0.1,0) ".

approximation of the illumination changes by a first order polynomial is well justified. Moreover,
it is more relevant when the depth of the lighting source from the object is higher (high €) than
the depth of the camera. In that condition, the contributions of the variations dSx, dSy,dSy
in the terms \; are minimal. However, since the lighting source is considered to be close to the
surface, the camera should also be close to the surface. If not, the photometric model is less
appropriate. As an example, the figures M, @b and [ show the illumination variations caused
by a motion of the lighting source with regard to the surface. In the first case, the depth of the
lighting is larger than the depth of the camera. In the second case, the source and the sensor
are located at the same distance, and finally in the third case, the source is closer to the surface
than the camera is. As a conclusion, the closer the lighting source is with regard to the sensor,
the less relevant the proposed photometric model.

To summarize, some conclusions arise from this study about the validity of the estimation
of A by a first order Taylor series expansion.

e [t is particularly well adapted when the lighting vector L coincides with the normal n in
the considered point (see section L.21]);

e The approximation is also valid when the orientation of the tangent plane of the surface
in P with regard to the sensor plane is low (V coincides with n), and the second order
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Figure 4: Ezamples of illumination variations caused in VW when the lighting source is close to the surface. (a)
The lighting source is farther from the surface in comparison with the sensor (Sz = 15, Zp = 10 m). (b) The
lighting source and the sensor are located at the same distance to the surface (Sz = Zp = 10m). (¢) The lighting
source is closer to the surface in comparison to the sensor (Sz = 2 c¢m, Zp = 10 m). In the three cases, the
parameters used are the following ones: € = 0,2m, Xp =Yp =0, Dy = Dxy =0, Dx = Dxx = Dyy =0.1,
dS=(1,1,-05)T.

terms of the surface of the object are weak, that is the object is quite planar (see section
122 for instance).

e When the lighting source is close to the surface, it is more appropriate when the camera
is even closer to the surface than the lighting source is (see section L.2.3]).

e The photometric model is more adapted when the depth of camera and lighting source
are high (see section L2.2).

However, this estimate turns out to be more adequate than an approximation by a constant,
which requires the cancellation of the second-order and first-order terms. Obviously, as it is
shown by the examples of the previous figures, the illumination changes are not constant.

4.3 Validity of the modeling of 7,

In order to study the validity of n, expressed by (I6), it is necessary to take the specular
highlights model into account. Consequently, the material properties of the object have to be
considered. For this purpose, we use the specular model of Phong (equation () of section
2.1). In order to simplify the equations, we assume a motionless object and constant intensity
lighting (K, and Kj), so that A\(m) = 1. Consequently, n gets equivalent to the function
described by (). Thus, we study the validity of the following expression:

n(m’) = hy(M) — hy(M) (40)
After an expansion in Taylor series at second order around p, n is approximated by:
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n(m) = mx + n2y + 13 + mr’ + nsy° + nery (41)

where the coefficients 7; depend on the geometry parameters explained in section LIl Since
the specular highlights function h reaches its maximum when p is null, it is interesting to study
the validity of the photometric models in this configuration. The initial location of the lighting
source is chosen so that the normal n of the surface coincide with B (see figure [).

Similarly to the previous sections, we assume a small motion of the lighting source dS
according to its initial location. This assumption allows us to achieve a Taylor series expansion
of ([@I]) around S. Some particular configurations of the scene geometry are studied in order to
obtain some simple conclusions about the validity of the models:

e the lighting, the viewing and the normal vectors coincide;

e there is a small orientation between the surface tangent plane and the camera.

Figure 5: The normal vector at the surface in point P is the bisecting vector between vectors L and V.

4.3.1 The lighting, viewing and normals vectors coincide

Initially, before any motion of the lighting source, L, V and n are equal. Consequently, the
tangent plane at the object surface is parallel to the sensor plane (Dxy = Dy = 0) and the
lighting angle 6; is null. Let us consider a non-planar object the surface of which can be
described by (B2]). Unfortunately, even in this simple case, the expressions of coefficients 7y,
75 and ng are far too complicated to deduce any useful information about the validity of the
photometric model. In that context we have to focus on some particular configurations, firstly
when the lighting source is close to the surface, secondly when the sensor is close to the surface.
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Figure 6: Ezample of variation of n when the sensor is close to the surface Zp = 10 c¢m. The object
is not planar, Dx =0, Dy =0, Dxx=0.1 ¢m, Dyy=0.1 ¢cm, Dxy=0. The motion of the lighting source is
dS = (1,-1,-1)T and e = 100.

1-The lighting source is close to the surface.

When the lighting source is close to the surface, i.e at a small distance Zg = Zp — €, the
parameters 7; can be expanded in Taylor series around ¢ = 0. All computations done, the
values 7); are expressed as follows:

M = -n ZDXX+Z—1P) dSZ
ns = —n|(2Dyy + Z_lp) dSZ (42)
ne = —-nDxydSZ

When the lighting source is close to the surface, a forward (or a backward) motion dSy of the
lighting source with respect to the surface always induces some variations of the parameters
7;, whether the surface is planar or not. On the other hand, the parameter 173 = 0 when
Dxy = 0, for example for surfaces of revolution (when still assuming that the lighting, viewing
and normal vectors coincide). A motion along the Z axis has less influence if the sensor is
sufficiently far from the surface and if the surface is rough (in other words when n is low) and
planar (DXX = Dyy = DXY = 0)

2-The sensor is close to the surface (Zp low). When the sensor is close to the surface, all
the coefficients vanish. Consequently, the approximation of the illumination changes by our
photometric model is well founded. Figure [f] illustrates this scenario when the surface is not
planar. As we can notice, the variations of 7 are well compensated by a Taylor expansion at
first order, since the shape of the function is similar to a plane.
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4.3.2 Small orientation of the surface with regard to the sensor plane

In the case of a small orientation between the surface and the sensor (small Dy and Dy), the
coefficients 7; can be expanded in Taylor series around Dx = Dy = 0. We still consider that
the normal at the surface n in P coincide with the bisecting vector B between L and V such
that the larger the viewing orientation is, the larger the incident angle 6; is. We only focus on
the case of planar objects, the case of non-planar objects is too complex. As previously, several
lighting conditions are analyzed.

1-The lighting source is located near the surface Zg = Zp. The expressions of 1y, ns and ng are
given by:

D D
mo= - —X(3n—|—7)dSX+—X(n+1)d5y+d52>
Zp \ 4 4
D D
ns = — _Y(n_|_1)dSX—|——Y(3n—|—7)d5y+dSZ> (43)
Zp \ 4 4
n (n+3
\ P

When Dy and Dy are not null, a motion of the lighting source (dSx, dSy) causes some
variations of the parameters 7;. These changes are higher when the material is smooth (high
value of n), when the camera is close (Zp low) to the surface, and when Dx and Dy are high.

This is illustrated by figures [fa and [fh, which show respectively two examples of variation
of n when the orientation of the tangent plane of the surface in P is low (figure [fu) or high
(figure [7h).

2-The sensor is close to the surface. When the tangent plane and the CCD plane of the sensor
are almost parallel and when the sensor is sufficiently close to the surface (low value of Zp),
then the approximation of n by a first order polynomial is perfectly founded. Indeed, the terms
N4, N5 and 7 are not significant. This point is illustrated by the figure [§ which shows an
example of the variation of 7 in a window of interest V. Indeed, the shape of the function is
clearly a plane.

To summarize, when A = 1, the approximation of the term 7 (equivalent to v in this
specific case), by a polynomial of first degree is the more appropriate when one or several of
the following conditions are observed:

e the second order terms of the surface are small and the tangent plane orientation is low
with regard to the sensor plane;

e the surface is rough;
e the sensor is close to the surface.
In those conditions, the specular highlights variations draw up a plane on the window

of interest V. Therefore, these photometric changes are well compensated by the proposed
illumination model.
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Figure 7: Ezamples of variations of n when the lighting source is close to the surface and when the tangent
plane at the surface in point P is weakly oriented (figure (a)) or strongly oriented (figure (b)) with respect to
the sensor plane.

4.4 Discussion

Table [ provides an overview of the configurations for which the proposed photometric model is
adapted (+) or not (), or when the configuration has no influence (=). Let us finally conclude
that the approximations of the photometric functions A and n by a Taylor expansion at second
order are adapted at best when the sensor is close to the surface, or when the lighting or the
viewing vectors coincide with the normal. On the other hand, the shape of the surface has to
be locally continuous and the surface must be rough enough.

However, the photometric model described in Section B2 relies on assumptions that are more
restrictive in comparision to our model. Indeed, functions A and n are assumed to be constant
at each point of the window of interest V. That means that not only Taylor’s coefficients at
second order in (B6) and (1)) are wrong, but also a part of the coefficients of the first order
since they are supposed to be null. The few examples of illumination changes (from figure B
to figure {) have confirmed these remarks. As a conclusion, the photometric model proposed
in section [3.3] is theoretically more accurate that the photometric normalization or the affine
model with constant parameters.

The different photometric models can be used in applications where temporal correspon-
dences have to be matched, in order to improve some higher level procedures: 3D reconstruction
or active vision for example.

In this report, we address the problem of robustifying feature points tracking with respect
to illumination changes. The idea is to correctly compensate for the illumination changes by
computing the photometric models, in order to obtain more accurately the geometric deforma-
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Figure 8: Ezample of the variation of n when the tangent plane to the surface and the sensor plane are almost
parallel, the camera being close to the surface.

tions of the windows of interest during the whole sequence. To our knowledge, the two proposed
models have not been implemented in such a context. Black et al. [5] have used [BII) withn =0
and (28)) in the context of image correction, without any justification.

5 Feature points tracking algorithms

Accurately computing correspondences between two frames or tracking features along an image
sequence are two key problems, even though many approaches are available. This section details
the tracking techniques involving a photometric model, and proposes two ways to improve them
by exploiting the photometric models defined previously in B.3.T] and B.3.2

5.1 Modeling of the geometric deformation

The geometric deformations induced by the relative motion between the camera and the scene
are described by a function which models the motion of all the points inside a window of interest
W centered around the point to be tracked p. Therefore, this function is called §(p, ). The
feature point tracking procedure consists in computing the parameters p such that

/

m' = d(m, p) (44)

according to a photometric model for m € W. We will show how to compute p for the
photometric models given in section [l

25



Table 1: Overview of the results about the validity of the approximations of A and n by a Taylor
series expansion at first order. +: good approximation. -: bad approximation. = : there is no
influence on the validity.

Configuration

Lighting vector coincide with the normal

Viewing vector coincides with the normal

Rough surface

Sensor close to the surface and lighting source far from the surface
Motion of the lighting source along the optical axis

High values of the second order coefficients of the surface

+l A+ >
+ 4+ + +|=

5.2 Commonly used tracking methods
5.2.1 The classical approach

The classical feature points tracker, i.e. the KLT technique (for Kanade-Tomasi-Lucas tracker
[23,33]) assumes a perfect conservation of luminance at a point during the sequence (see (7)),
so we have:

f(m) = f'(6(m, p)) (45)
However, as seen in section 2, the luminance assumption is not true. Besides, the motion
model is also an approximation. Thus, it is more judicious to minimize the following criterion:

alp) =Y (flm) = f'(5(m, n))’ (46)

In order to obtain g, we suppose that p = p + Ap, where Ap expresses a small variation
around an estimation g of p. In those conditions, f'(d(m, p)) can be expanded in Taylor series
of first order around p:

f/(8(m, ) = f'(3(m, @) + V' (3(m. @) 5 Aps (47)

where J5* is the Jacobian of § according to p, expressed in fi. We inject (@T) in (@6), leading
to a linear system in Ap, which can be solved iteratively:

(Z ve ch) Ap =3 (flm) = £/(5(m. ) ve (48)

meWw mew
with .
ve = (Js*) Vf(o(m, k). (49)
When considering an affine motion model, v. is the vector defined by:
Ve= ("0 ['yxf oaf oyt uf’,) (50)

where f’, and f’, are the derivatives of f’ with respect to x and y respectively.
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5.2.2 Tracking methods robust to affine photometric changes

These approaches are based on the photometric model described in section Therefore,
instead of minimizing (46), we minimize

(A n) = > (Mf(m)+n— f'(6(m, p)))*, (51)

meW

where A and 7 refer to the parameters of the affine illumination model given by (I8). There are
two ways to obtain A and 7, either by using (24]) or by computing them simultaneously with .

The photometric normalization.
Each photometric parameter A and 7 is computed from (24)). The tracking technique consists
in computing g as in section B.2.1l since A and 7 are constant. We have to solve:

(Z v. VJ> Ap= 3" (Afm) +7 - £/50m. @) v. (52)

meW mew

Estimation of A and 7 : the Jin’s technique. In [31], the authors propose to estimate the
contrast A and intensity 7 simultaneously with the motion model.

Let us call v the vector of photometric variations v = (\,7), and d the concatenation of p
and v. As previously, we suppose a small variation Ad = (A, Av) of d around its estimation
d so that d = d + Ad. Thus, by using [@T), we can write (5I) as

(Z v, vJ) Ad= Y~ (Mfm)+ii— f/6(m. @) v, (53)

meW meWw

where vy = (v¢,v). Unfortunately, as shown in appendix [A] the matrix > . v, v, ' is ill-
conditioned. Therefore, it is required to carry out a preconditioning of this matrix but it
depends on the image. That is a drawback of this technique.

On the other hand, this procedure provides a lower computational cost than the photometric
normalization, since the averages and standard deviations do not have to be computed in each
frame.

In this section, we have presented several feature points tracking techniques; the classical
one is based on the luminance constancy, whereas the tracking with normalization and the
method proposed by Jin et al. are robust to affine illumination variations. In each case, the
photometric parameters are supposed to be constant in each window of interest.

In the next section, we propose two tracking procedures which take the spatial variations
of illumination changes into account.

5.3 Proposed tracking procedures

The first technique has been defined to compensate for specular highlights and lighting changes
on small windows of interest, whereas the second one is its extension to wider windows of
interest,.
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5.3.1 A tracking approach robust to specular highlights

The first tracking method is based on the illumination model given by (28]).
Thus, in that case, we have to minimize the following criterion:

&) = > (f(m) = f(6(m.p) —u'ax)’ (54)

mew

Be d = (p, ). Let us suppose a small displacement Ad = (Ap, Aar) around an estimation

d of d, which is the solution of (B4). Similarly to the method B21], Ad is obtained by solving
the following linear system:

(Z v vJ) Ad = 37 (fm) = £/(30m, @) —u'&) v, (5)

meWw meWw

where the vector v, is written as:
vp = — (Ve,u) (56)

for an affine motion model.

Unlike the previous tracker, a preconditioning of the matrix (ZmEW v, VpT) is not necessary.
As shown in appendix [A] this matrix is well conditioned.

According to the assumptions of the photometric model (28)) described in[B.3.1], this tracking
method is appropriate to cope with specular highlights. For small windows of interest, it can also
compensate for lighting changes, as soon as the function given by (I4]) can be approximated by
a Taylor series expansion at first order. Since this assumption can be coarse for large windows,
the following section proposes a more appropriate algorithm.

5.3.2 A tracking approach robust to specular highlights and lighting changes

Section[B.3. 2 has detailed a comprehensive photometric model which compensates for the spatial
variations of specular highlights and lighting changes. Let us use this model in order to improve
the feature point tracking scheme.

The motion parameter g and the reflection parameters A and n are obtained by the mini-
mization of the following criterion

e(pAm) =3 (W Af(m) — f(3(m, p)) —u'n)" (57)

meW

The system can be linearized as in section B.3.1] with d = [p, A, n]. Thus, the tracking process
consists in solving the following system:

(Z Vin va> Ad=>" (uTX f(m) — f'(6(m, @) — uTﬁ> Vin (58)

meW mew

where

Vim = (_Vm f(m)u, —11) (59)
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The matrix Y,y Vin Vi | can be ill-conditioned (see appendix [A)), since the values of v,, are
much dissimilar. As for Jin’s approach, a preconditioning stage is required.

Moreover, the number of illumination parameters is quite large. Indeed, by using an affine
motion model, twelve parameters have to be computed. Obviously, the use of too small windows
of interest may alter the accuracy of both photometric and motion models.

The aim of the next section is to validate experimentally our trackers by comparing them
with the classical approaches.

6 Validation and experimental results

This section presents some tracking experiments, where the trackers detailed previously are
compared through sequences showing geometric and photometric changes simultaneously. First
of all, we detail the experimental setup and notations. Second, we analyze the validity of these
experimental conditions by comparing experiments on [ab sequences where ground-truth is
available. Finally, the tracking is carried out on real sequences.

6.1 Experimental setup

6.1.1 Notations

Throughout this section, we use the following notations:

C . the classical tracking approach (section B.2T]) which assumes that
f'(6(m, p)) = f(m)

N : the tracking with photometric normalization (section [1.2.2))
F'0(m, ) = Af(m) +n

J : the method proposed by Jin et al. (section [3.2.2])
f1(0(m, ) = Af(m) +1

Py : the tracker which uses three photometric parameters (section (.3.])
f'(0(m, ) = f(m) +u’

Py : the tracker which uses six photometric parameters (section [5.3.2))

f/(0(m, m)) =u"Xf(m)+u'n

Now, let us detail the setup: the choice of the window’s size, the points detection and
rejection procedures, the comparison criteria.

6.1.2 Size of the windows of interest

Usually, the choice of the window size N is based on a trade-off between robustness to noise,
computation duration and reliability of the assumptions on which the tracking method is based,
such as the planarity of the surface or the constancy of illumination changes. Naturally, it also
depends on the application. Here, we consider some sizes from N' = 9 to A/ = 35, since no
specific application is concerned.
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6.1.3 Rejection process

The points are selected in the first frame of the sequence by the Harris detector [16]. The
tracking process computes an affine motion model between the first frame and the current one,
as described in section [5.Il They integrate an outliers rejection module, based on the analysis
of the convergence of residuals ¢;, 7 = 1...4. A point is rejected as soon as its residuals become
greater than a threshold, S.,,, = N 2Efwe, where E,,. is the tolerated luminance variation for
each point in W between f and its modeling. In these experiments, F,,. = 15.

6.1.4 Comparison criteria

For each image sequence, we can compare the trackers by studying the following criteria:

1. The robustness of the tracking, that is to say the number of points that have been tracked
during the whole sequence.

2. The temporal evolution of the mean convergence residues obtained by the points that are
correctly tracked. These two first criteria have to be considered jointly. Indeed, when two
methods obtain similar average residues, the more relevant technique is the one which
tracks a larger number of points.

3. The temporal evolution of the reflection parameters computed by the proposed paramet-
ric methods.

As mentioned in[6.1.3] a point is rejected when its residuals become higher than a thresh-
old. Residuals are commonly used as a comparison criterion, when ground-truth is not
available (in [31] or [15] among others). Although some low residues are not an evidence
of the tracking correctness (because of potential ambiguities), section study their
relevance.

4. The location errors. In preliminary experiments, where ground-truth is available, a fourth
criterion is computed: the average distance (computed on all the points that are correctly
tracked by the technique) between the position of the points that is computed by the
tracker and the true position. Here again, this criterion has to be considered jointly with
the number of points correctly tracked. Indeed, for the same location error, the best
technique will be the most robust one.

Next section aims to analyze the relevance of residues as a comparison criterion and gives some
first comparison results.

6.2 Validation of the experimental setup on lab sequences

This section studies the validity of our experimental setup by considering lab sequences where
ground-truth can be evaluated. We discuss the relevance of criteria 1 and 2.
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6.2.1 Computation of the ground-truth

Two techniques of ground-truth extraction are implemented, depending on the shape of the
considered object.

Ground-truth for planar objects. When the points to track belong to a planar object,
their coordinates in two different images of the sequence are linked together by an homography
transformation H, which is described by a 3 x 3 matrix. Only four points are needed to
compute the coefficients of the matrix H in a linear manner for each frame. However, these
points have to be matched accurately between the two frames in order to properly evaluate the
tracking techniques, these four points must not depend on the tracking procedure. Thus, they
are chosen to be the centers of four white blobs located on the planar surface, which can be
easily segmented for each frame of the sequence.

So, on the one hand, the homography matrix is computed between the initial frame and
the current one by using four blobs. On the other hand, we estimate the current coordinates of
the feature points by applying the homography matrix on the points that have been selected
initially in the first frame. Since the homography is known, it becomes easy to obtain the true
location of m/ from its location m in the first image. Indeed, we have m’ = Hm (m and m' are
here homogeneous coordinates).

Ground-truth for non-planar objects. In the case of non-planar objects, we use the
pose between the camera and the object [10]. This method assumes that we can detect at least
four non coplanar points and that we know the 3D location of these points in the object frame.
In our context, the four points are four white blobs, which are easy to segment. The whole
algorithm is described as follows.

1. Detection of the four non-coplanar blobs p{,;, in the image;

2. Computation of the transformation matrix M, between the object and the camera co-
ordinate frames [10];

3. Intersection of the view line passing through p¢,;, with the object in order to obtain P?;
For each experiment, we assume that the object is motionless during the image sequence.
Therefore, the coordinates P° are constant for each frame;

4. After a motion of the camera, computation of the pose [10] and obtention of the transfor-
mation matrix “M, between the object and the camera coordinate frames. Consequently,
the coordinates P of a point expressed in the camera frame is given by P¢ = “M,P°.

5. Computation of the projection p© of P¢ on the CCD plane. Of course, the intrinsic camera
parameters are supposed to be known.

6. Comparison between p® and the estimate p¢ provided by the considered tracker. There-

fore, at each iteration, we compute the euclidean distance between p¢ and p¢, expressed
in pixels. When the tracking is perfectly accurate, this distance is null.
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6.2.2 Experiments on lab sequences

This section compares the behavior of the methods, in terms of residues, location errors and
robustness, for different window sizes, either for planar or non-planar surfaces. Moreover, it
is discussed the problem of evaluating the methods in the general case where no ground-truth
information is available.

6.2.2.1 Planar surfaces The image sequence depicted on the figure [@ shows a planar
surface of size 1 x 1 meter, on which four blobs have been put. The camera is located approxi-
mately 4 meters in front of the object and two lighting sources are located at 2 meters. During
the sequence, the camera is motionless and the object is moving with respect to the camera
and lightings. The lighting intensity being constant, only specular highlights appear. Because
of the low distance between lighting and surface, that is not optimum for the good validity of
the photometric models (see section [).

Robustness. Figure [[0] compares the temporal evolution of the number of points that are
correctly tracked during the sequence for each approach and for three window sizes: N = 9,
N =15 and N = 25. Simultaneously, table Rlu page Bfl shows the percentage of points correctly
tracked until the end of the sequence. Whatever the window size is, C' tracks less points than the
other approaches. For NV = 9, P3 tracks a larger number of points, which proves its relevance
for small window sizes. Unfortunately, for larger ones (N = 15), the performances of P are
reduced compared to the other techniques, it tracks correctly one point less than J (see figure
MI). On the other hand, for such windows sizes, Ps is the most competitive method since it
tracks around twice more points correctly.

Figure [[I] compares more precisely the behavior of each tracking technique, by analyzing
both the evolution of the residues during the sequence and the mean location error obtained
on the points correctly tracked (the classical method is not taken into account since a too large
number of points is lost).

Location errors. The location errors are quite satisfying. They reach only around 1 pixel
at the beginning of the sequence and then decrease significantly as soon as outliers points are
lost. Indeed, when points of high residuals are lost, the accuracy of the tracking is improved.
That shows the reliability of the rejection rule and put in evidence the correlation between
residues and accuracy.

Convergence residues. For N’ =9, P; obtains higher residues that the other approaches.
However, these residues are obtained (see figure[IQ) by averaging the residues of a larger number
of points compared to the N and J techniques. To go further in the comparison, figure [[2 shows
the same criteria as figure [[T] while considering only the points tracked simultaneously by each
method. Here, for N = 9, P; is more accurate. Thus, this method tracks a larger number of
points and is more accurate.

For wider windows (N = 15 and N = 25), Ps obtains the lowest residues, although it tracks
a larger number of points. The motion and photometric models are correctly computed.

These results illustrate the fact that the mean residues and the location errors are not always
significant without considering the number of points correctly tracked. A method can show low
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residues by correctly tracking only few points. This method is although less performant than
another one which tracks a hundred of points with slight higher residues.

However, we can also note that, in most cases, the convergence residues evolve roughly in
a similar way as location errors. In addition, when residues are low, the location error are also
low.

6.2.2.2 Non-planar surfaces In order to study the influence of the surface curvature on
the tracking algorithm, a cylinder of radius 7cm has been used. The object and the lighting
are motionless and the camera moves. As shown in Section ] the larger the curvatures are,
the less appropriate the photometric models are. The camera is approximately located at 1
meter from the surface and the lighting sources are less close to the surface than the camera is.
As noticed in section [L4] this is one of the favorable configurations for using the photometric
models (see table[Il). There is no lighting changes but the motion of the camera yields to small
specular variations.

Figure [[3] shows two images of the cylinder sequence and figure depicts the number of
points that are correctly tracked by the procedures versus the frame number (table [2(b) shows
the percentage of points which have been correctly tracked until the end of the sequence).

Robustness. Here also, P; correctly tracks the largest number of points for small windows

(see figure [4). In addition, it remains clearly the most relevant algorithm for N’ = 15 and
N = 25, which was not the case in the previous experiment. Previously the percentage of
points tracked was lower.
For N' = 9, the J technique obtains very poor performance results, since all the points are
lost, whereas even the classical KL'T procedure correctly tracks a few points. Obviously, these
points can been lost partly because of the ill-conditioning of this technique or because the
illumination model is not appropriate (A and 7 are constant on W). Since N also tracks a fewer
number of points, the latter assumption is quite plausible. These problems will be discussed
later in section For N/ = 35, Py correctly tracks a larger number of points than the other
techniques. Despite the bad conditioning of this method, it is more relevant than .J since it
better takes the specular changes into account.

Let us now consider the figure [[5] which shows the evolution of the convergence residues and
location errors.

Location errors. For small windows of interest, (see figure I3l for AV = 9) N yields poor
accuracy results. In contrast, the use of the P; or P photometric models provides an accurate
computation of the motion model, i.e a low average of location errors, despite the amount of
points tracked (table ). Thus, the use of an appropriate photometric model improves the
computation of the motion model and has yields better accuracy of the points locations during
the motion.

Convergence residues. As seen from the results with A/ = 9, N does not perform well,
since its convergence residues are really higher than P; and C residues. J loses the whole of
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Figure 9: Images of the sequence of a planar surface used to compute the positioning errors.
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Table 2: Ground-truth is available. Percentage of points which have been correctly tracked
during the sequence (occluded points or points going out of the image are not taken into
account).

(a) Planar surface (b) Cylinder
N 19 15 25 N |11 15 25 35
C |6 9 6 C |8 24 14 10
N |29 32 32 N |2 30 36 40
J |23 37 43 J 10 8 28 34
Ps; | 34 34 37 P3| 10 40 70 62
P |0 46 69 P |0 0 34 68

the points, which explains the vanishing of its residues at the 80*" frame. These procedures do
not prove to be appropriate for small windows, especially when the considered surface is not
planar as it is precisely the case here.

Here also, Ps provides quite satisfying results on large windows (N > 25). Its convergence
residues are globally lower: the geometric and photometric changes are computed more cor-
rectly. However, the results of table [2 show that it tracks a lower percentage of points than for
planar surfaces, which confirms that the model is more adapted to such kind of surface.

In this sequence, note that the residues assert the results on the location error. Indeed, the
lowest residues are obtained for the more accurate tracker (see figure [[3]).

6.2.2.3 Discussions. As seen in these first experiments, the convergence residues roughly
evolve similarly to the mean location error. Generally speaking, as shown on figure for
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Figure 13: Images of the sequence of a cylinder used to evaluate the accuracy of the tracking
procedures.
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example, the lowest residues are obtained for the most accurate techniques. Although the
convergence residues are not exactly an evidence of the good performance of the tracking, they
provide reliable information to compare several tracking techniques, especially when ground
truth is not available. Of course, this criterion has to be considered jointly with the robustness,
i.e the number of points tracked.

In addition, these first experiments have allowed to reach some conclusions concerning the
behavior of the tracking experiments.

e For small windows of interest (N < 15 ), P is more performant (lowest convergence
residues, more points tracked). In contrast, for larger ones (N > 15), Py is the most
relevant technique. Obviously, the photometric changes are better compensated for by P;
for small windows of interest, while they are better taken into account with Py on larger
windows of interest.

e N and J techniques, which are based on the computation of an affine photometric model
are not appropriate for small windows of interest, especially when the surface curvatures
are strong (Cylinder for example). This remark confirms the theoretical analysis on the
validity of the photometric models (see Section M) where it has been deduced that the
stronger the surface curvatures are, the less efficient these techniques are.

In this section, the ground truth has been obtained, either by computing the homography
matrix from markers for planar surfaces or by using the pose and a modeling of the object.
Unfortunately, these two approaches cannot be implemented when some real images sequences
are considered, residues and robustness are the only available criteria.

6.3 Experiments

Here, experiments are considered on images sequences where no ground-truth is available.
However, we have seen in the previous experiments that the convergence residues vary quite
similarly to the location error. In conjunction with the number of points correctly tracked, they
represent a satisfying way to compare the tracking methods.

Besides, the image sequences are played from the first frame to the last one and then from
the last one to the first one in order to qualitatively evaluate the behavior of the techniques
by verifying the symmetry of the computed parameters. We analyze successively the robust-
ness, the accuracy of the modeling and the evolution of the photometric parameters. The
computation times are also provided.

In order to properly compare the behavior of the trackers on real image sequences, each
of them is first tested on sequences where only specular highlights occur. Then, the lighting
changes are also taken into account.

6.3.1 Specular highlight occurrence

The two first sequences, Book (200 images) and Cylinder (150 images) (which are shown re-
spectively on figures [[6 and [[T) refer to specular objects, respectively a planar surface and a
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cylinder. In each case, the scene is motionless and the lighting conditions do not change but the
camera moves, which causes some specular highlights variations at the surface of the objects. In
the Book sequence, specular highlights disappear during the motion, whereas some other ones
appear in different regions of the object. In the case of the cylinder, (figure [Tk), two lighting
sources are taken into account, which causes the appearance of two highly saturated areas.
During the motion of the camera, the specular highlights variations are particularly strong in
the neighborhood of these two regions.

Robustness. A total number of 97 points is selected initially in the sequence Book and
137 in the sequence Cylinder. Tables Bln and Bb report respectively the percentage of points
correctly tracked (with respect to the points that are not occluded or those which go out of the
image) with respect to A/, for each tracking technique.

In sequence Book, P; tracks the largest number of points for NV < 15, and for sequence
Cylinder, it remains the most robust up to N’ = 25. Consequently, the contribution of Pj is
more significant for non-planar surfaces. Indeed, that is the condition when the illumination
changes are the most likely to be different in each point of the window of interest. Besides, this
result corroborates the theoretical study of the modelings of section [ page

Ps does not converge for small windows of interest, the number of parameters to estimate
is too large with respect to the pixels available in ¥V and the amount of noise.

In the two sequences, J is not more robust than C for A” < 13. Consequently, this procedure
is not adapted for small window sizes, especially when sequences show specular highlights
variations.

N is more robust than the classical technique C' when the object is planar (sequence Book).
If not, C' provides better results for N < 25. Thus, using an affine photometric model is more
appropriate for planar surface, as mentioned in section Ml

Convergence residues. Figures and [ compare the average convergence residues
obtained respectively during the sequences Book and Cylinder, for small windows of interest
(N =9). When the object is planar (sequence Book), N obtains lower convergence residues
than Pj (figure[I6h). Nevertheless, the comparison is not fair since the average of the residues is
computed on 68 points when Pj is used and only 33 points when NV is carried out. Therefore, in
order to obtain a more accurate analysis, figure [[6F compares the average residues obtained on
the same points, i.e the points which have been correctly tracked by N and P; simultaneously.
These residues are lower for P3, which confirms the relevance of the photometric model in case
of specular highlights occurrence.

In the Cylinder sequence, P3 obtains the lowest residues for N' = 9. The residues of N
are high at the beginning of the sequence (before the 50 frame) and then decrease when the
outliers points are lost. Then, figures [[61d and [[7c show the convergence residues obtained
with A =35. In such a context, Ps proves to be the most accurate technique. Indeed, its
mean residues (computed on 71 points for the sequence Book and 105 points for the sequence
Cylinder) are lower than those obtained by Pj (respectively computed on 65 and on 92 points).
Not only Fj tracks a larger number of points, but their location is more accurate.

Photometric model. In order to analyze the illumination variations, we have selected the
point A (see figure[IGh) since it is located on an area of high specular highlights. The first row of
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figure [[6 shows the luminance values in the window of interest centered around A, whereas the
second row refers to the same window after a photometric compensation by the use of Py, with
N = 35. Particularly, let us notice on the first row, that the last image is less luminous than
the previous ones, whereas the use of the illumination model has compensated for these changes
(the geometric correction has not been achieved here). The spatial changes of the illumination
model (pu' and Au') are shown on the figure I6lf, where the intensity level is proportional
to the correction. We notice that the illumination changes are not constant on V. In order
to understand the temporal evolution of the photometric models, let us refer to the figure [16ly,
which displays the parameters A\; and 7; for ¢ = 1..3. The symmetry of the curves attests that for
two occurrences of the same image (let us recall that the sequence is played from the first image
to the last one and then from the last one to the first one), the photometric parameters remain
the same, which asserts the correct convergence of the algorithm. In the sequence Cylinder,
the evolution of the parameters computed on the point A (which is visible on the image [[7a) is
shown on the figure [7d. Similarly to the previous experiment, the curves obtained prove the
good convergence of the approach. Note that the parameters A also compensates for a part
of the specular variations. That may be due to the weakness of the modeling of photometric
changes by a first order polynomial.

Computation times. Let us consider a point which is correctly tracked by each procedure
for different values of /. The computation times of the techniques are reported in table [ for
N=9, 15 and 35. N and P; are the most time-consuming techniques (either because of the com-
putation of the photometric normalization or because of the large number of parameters which
have to be approximated). These high values can also be explained by the bad convergence of
these techniques when small windows of interest are used. Since the algorithms are iterative,
they require a larger number of iterations to converge. For N'—9 and 15, the techniques C, J
and P; obtain some similar computation times.

Up to now, the experiments have been achieved on sequences where specular highlights
occur. The next section deals with the comparison of the tracking procedures when lighting
changes are also involved.

6.3.2 Lighting variations and specular highlights changes

Let us consider several image sequences showing lighting changes, and for some of them, specular
highlights changes.

The sequences Planar object and Marylin show several textured objects (see the figures [[8n
and [[9) consisting of several materials (glossy paper, ceramic, metal, cardboard, glass) and
lighted by an ambient lightning (the daylight and the fluorescent lamps located at the ceiling)
and a direct light source. Then, the sequences Hill (figure 20k) and Cornerﬂ(ﬁgure 21l) show
two outdoor scenes a priori acquired at different moments of the day. In each case, the camera
is moving and the scene is motionless.

!These sequences can be found in the image data base CMU/VASC : http://vasc.ri.cmu.edu/idb/html/-
motion/index.html
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Figure 16: Experiment Book (97 points are selected). (a) Frames 1, 100 and 200 in the sequence. (b) Average
convergence residues for A = 9. (c¢) Comparison of the convergence residues obtained on the points that have
been tracked simultaneously by N and Ps, for N' = 9. (d) Average convergence residues for N=35. (e) Images
of the windows of interest centered around the point A : before (first row) and after (second row) a photometric
correction by Ps. (f) Illumination parameters of Ps. (g) Evolution of the illumination parameters of Ps.
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Table 3: Percentage of the points that have been tracked up to the end of the sequence with
respect to the points which were initially selected, with regard to N, in the case of specular
highlights occurrence.

(a) Book (97 points selected)

N 19 11 13 15 25 35
C 273 307 23 186 11.8 94
N 375 534 609 651 635 50.6
J |17 284 552 651 776 81.2
Py | 773 773 793 779 788 76.5
s | - - 345 54.7 90.6 83.5
(b) Cylinder (137 points selected)
N |9 11 13 15 25 35
C 8.5 835 8l.1 802 714 605
N | 406 549 621 695 833 714
J | 76.7 80.5 818 8.5 8.7 739
P;]96.2 94 93.9 93.1 87.3 773
Ps | - - 51.5 64.8 81.7 88.2

Table 4: Computation times (in ms) of the tracking of one point in the sequence Book, for
N=9, 15 et 35.

Method | N=9 N=15 N=35
C 1.3 2.7 21
N 4.6 6.8 31.2
J 1.7 3.1 21.7
Py 14 32 12.3
Ps 9 8.5 25

In the sequence Planar object, the intensity of the direct lighting varies strongly and pe-
riodically, with a period of about 20 frames, from a maximum value to a minimal one. The
sequence Marylin is particularly complicated because of the large motion of the camera and
some occlusions. In addition, some intensity variations of the lighting source are deliberately
caused: around the iteration 135, the direct light is switched off, which induces some strong
illumination changes. To finish, the sequences Hill and Corner show some lighting changes
which are not homogeneous in the image. Here also, we focus both on the robustness of the
tracking and on the accuracy of the modeling.

Robustness. We select 58 points in the first frame of the sequence Planar object, 156 in
Hill, 56 points in Marylin and 44 in Corner. These values are reported respectively in the tables
Bla, Bb, B, Bd. For small windows of interest (A< 15) and whatever the image sequence is, Ps
loses less points than the other techniques. For larger windows, most technique are robust (C'
is an exception). Nevertheless, for N' > 25 Py is the most robust.

Compared to the previous experiments where only specular highlights changes were caused,
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methods N and J appear to be more robust. Indeed, they are always more relevant than C,
whereas it was not the case for small windows of interest when only highlights appeared. As a
conclusion, these techniques are more appropriate to compensate for lighting changes than to
take specular highlights into account.

Convergence residues. The convergence residues obtained with A/ = 9 by the trackers
are shown on figures [I8p, 19D, and 2TIb. Here again, these residues evolve in the same way as
the illumination changes. This can be clearly seen on figure [[8b, where they vary periodically
with the same frequency as the intensity changes that have been caused.

In the sequence Marylin, P3 tracks a larger number of points (figure I) from N =9 up to
N = 13. As regards the other sequences, the average residues of .J, N and P; are comparable,
although Pj residues are computed with a larger number of points than J and N (refer to tables
B, Bk and B1).

For sake of clarity, figures [[8c and R0k compare the residues obtained by P3;, N and J on
the few points that are correctly tracked by each of these three trackers simultaneously. For
the sequence Planar Object, P3 obtains lower residues than N. However, in Hill, it is more
difficult to reach a conclusion since the residues are almost similar. In Marylin sequence, with
N =15 (see the figure[I9k), the residues of Ps are the highest. As a first conclusion, Pj is more
appropriate for tracking small windows of interest, especially when only specular highlights are
caused (see the previous experiments).

Now, for wider windows (from A = 15 to N' = 35), whatever the image sequence is (see
the evolution of the residues on the figures [8d, [, 20K and 2Ik) the procedure Py yields the
lowest convergence residues and tracks the largest number of points.

In contrast, for sequences Planar Object, Marylin and Corner, P3 obtains worse residues
than J, N and Fs;. On the other hand, it yields the lowest residues in the Hill sequence.
Indeed, the three first sequences represent scenes which are strongly structured, and where
reflectance is likely to show strong edges, whereas the Hill sequence is more textured and shows
few strong variations of reflectance. Yet, when lighting changes are caused, the performances
of P; depend on the reflectance changes of the considered surface. Because of the assumption
formulated about the smooth illumination changes (in section B3.1]), the more the reflectance
varies the less the proposed modeling compensates for these changes.

Consequently, P3; proves to be more relevant to take specular highlights into account than
to compensate for lighting intensity variations, since the model must compensate for variations
which depend on the parameter a depending on the reflectance. More precisely, P3 approximates
a by a plane. Unlike P;, FPs procedure does not have to compensate for reflectance changes
and can deal with the spatial variations of the illumination changes. However, it is relevant for
large windows of interest since a higher number of parameters has to be taken into account.

Photometric parameters. The first row of the figure [[8¢ shows the intensities of the
window of interest centered around one of the tracked points, which has been selected in an
area of high illumination change (point A is visible in the first image of figure [[8n). The coarse
lighting changes are noticeable. The second row is associated to the intensities that have been
corrected by the photometric model of Fs. The illumination changes are not visible anymore.
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The components of pu' and Au' are shown on figure I8f, respectively on the first and second
rows. They compensate for the spatial variations of the contrast and for the specular reflection
changes (as it can be seen, they are not constant). The evolution of these parameters during
the sequence is shown on the figure [8)g. It really corresponds to the lighting variations which
have been caused. Indeed, we recognize the frequency of 20 iterations between a maximum
intensity value and a minimum one.

Computation time. According to the computation times written in the table[6l the tech-
niques N and Py are the most time-consuming. For small windows of interest, the computation
times of Py are high, since this technique does not converge efficiently on small windows of in-
terest. Let us also notice that P; obtains larger computation times than in the case of specular
highlights (see tabled). This fact shows that, even if this approach is robust it is more adapted
to specular highlights than to lighting changes.

6.3.3 Tracking experiments on large windows of interest.

Due to the adequacy of the considered motion model in the differential techniques, such
approaches can be extended to track wider windows of interest, as it is done for instance
in [4,8,15,20]. Let us notice that the lighting changes are taken into account in [15|, where the
authors use an image data base acquired offline under various illumination conditions, in order
to cope with each possible appearance change. This technique is quite efficient but it requires
a prior learning stage, which can be seen as too restrictive.

In section B.3.2] a comprehensive illumination model has been introduced, which compen-
sates spatial variations of specular and lighting variations. We use this model to track large
windows of interest.

Specular reflection. Figure P2 shows an image sequence of a non-planar specular object.
An area of the image has been selected by hand in the neighborhood of the areas of high
saturation (specular highlights). With E,,. = 25, only P3 et Py are able to track the window of
interest from the beginning to the end of the sequence. In addition, figure 22b, which displays
the convergence residues, shows that Fs; models more accurately the specular changes compared
to Py, since it yields lower residues. Let us also notice that C' loses the area of interest very
quickly compared to N and J.

Lighting changes (Sequence Planar Object). Figure23k represents an image sequence
with shows the scene of the Planar object sequence. An area of the image is selected, and the
tracking is achieved with E,,. = 15. Figure 23p refers to the convergence residues obtained.
They show that Fs models more accurately the specular changes which have been caused in
comparison to the other techniques, since it yields lowest convergence residues. We have not
displayed the residues obtained by C| since this technique was not able to track the area during
the whole sequence. Fj is more adapted to compensate the illumination changes on wide areas
of the image.

Tracking of a road sign (lighting changes). The sequence of figure 24(a) has been
acquired from a moving caid. This sequence is of poor quality, because of noise, gain changes,

2This sequence is available on http://vasc.ri.cmu.edu/idb/html/jisct /index.html.
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Table 5: Lighting changes. Percentage of points which have been correctly tracked during the
sequence (the occluded points or points which go out of the image are not taken into account).

(a) Planar object (58 points are selected)
9 11 13 15 25 35
63.8 50 39.7 36.2 8.6 6.9
776 879 914 914 96.6 93.1
67.2 828 879 51 87.9 89.7
100 100 100 100 96.6 96.6
483 759 879 948 100 100

FFS=2ax

(b) Hill (156 points are selected)
9 11 13 15 25 35
496 31.1 23.7 20 112 9.6
459 60 63.7 63.7 737 75
55.6 56.3 63.7 704 85.6 93.3
74.8 T74.8 T4.8 756 864 952
- 674 704 77.8 89 97.1

e

(¢) Marylin (56 points are selected)

11 13 15 25 35

0 0 0 0 0
3.6 3.6 214 179 179
3.6 3.6 7.2 10.7 179
46.4 28.6 21.4 143 7.2 3.6

- - - 14.3 42,9 39.3

o O O

IFSz2Qx

(d) Corner (44 points are selected)

9 11 13 15 25 35
909 864 886 88.6 84.1 674
72.7 63.6 909 955 864 S81.8
100 100 100 100 97.7 88.6
100 100 100 100 100 100
34.1 50 72.7 864 100 100

e
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Figure 18: Experiment Planar object. (a) Three images of the sequence. (b) Average residues obtained
with A'=9. (c¢) Residues obtained with N'=9 on the points which are tracked simultaneously by N
and P3. (d) Average residues obtained with N'=35. (e) Images of the window of interest centered on
A: before (first row) and after (second row) correction by the six parameters of the photometric model
Ps. (f) Hlumination parameters computed with Ps on the window of interest. (g) Evolution of the
photometric parameters computed with Fg.
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Figure 19: Experiment Marilyn. (a) Images of the sequence. (b) Average residues obtained with N'=9. (c)
Average residues obtained with N'=15. (d) Average residues obtained with N'=29.

Table 6: Computation times (in ms) used to track one point in the Planar object sequence,

with A'=9, 15 and 35.

Method | N=9 N=15 N=35
C 1.3 2.9 11.4
N 4.3 3.5 14.1
J 1.6 3.2 11.5
Py 2 3.5 13.8
Fs 32 5.9 18.4
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Figure 20: Experiment Hill. (a) Images of the sequence. (b) Average residues with N'=9. (c)
: residues with N' = 15 obtained on the points that have been tracked simultaneously with Ps,
N and J. (c) Average residues with N = 35.
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Figure 21: Experiment Corner. (a) A few images of the sequence. (b) Average residues for

N = 9. (c) Average residues for N = 35. -0
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Figure 22: Tracking of large regions of interest (N = 151), specular highlights occur. (a)
Images of the sequence and region tracked with Ps. (b) Evolution of the convergence residues.
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75t frame 200" frame
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Figure 23: Tracking of large regions of interest (N = 151): lighting and specular highlights
changes. (a) Images of the sequence with the region tracked by Fs. (b) Evolution of the
convergence residues versus the number of the frame.
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Figure 24: Tracking of a road sign. (a) Images of the sequence. (b) Convergence residues versus
the number of frame.

darkness. Around the 11" frame, a wide motion is caused, because of the vehicle vibrations.
The road sign is selected by hand in the first frame with a window size 81 x 81. The tracking of
this road sign has been achieved correctly and the convergence residues of figure 24[(b) show that,
here again, Py compensates more comprehensively for the illumination changes, in comparison
to J.

6.4 Discussion

First, the experimental results have shown that the classical tracking technique C'is not robust
neither to the specular highlights variations nor to ilumination changes since it is based on the
assumption of luminance constancy.

In contrast, using an affine photometric model (methods J or N) provides a better robust-
ness, except when the window of interest is small. It can be partly explained by their sensivity
to noise. Indeed, when a pixel is noisy in W, the values of u¢, oy, pg, 04, and A become also
noisy, since they depend on each luminance in W. For the J approach, A is multiplied by each
value of f. Consequently, an error caused on A can have a huge influence. The minimization
of €5 can finally lead to an incorrect value of p. On the other hand, for wider windows of
interest, the contribution of one noisy pixel in the computation of these parameters becomes
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less significant. Consequently, the computation of pf, p4, 05, 04, A is more accurate leading
to a more precise value of . This remark has been illustrated by the convergence residues
obtained by these approaches on small windows of interest.

For small windows of interest, P; tracks a larger number of points than N and J. It cor-
rectly compensates for the specular highlights and lighting changes on W and is quite accurate.
On the other hand, its performances are reduced when lighting changes have to be modelled,
particularly on very large windows of interest. Indeed, in such a context, the modeling has to
approximate the albedo of the object by a first order polynomial on V. This assumption can
be seen as a strong assumption on large windows of interest, where the reflectance may vary
drastically. On the other hand, N and J cannot cope correctly with the photometric modeling
on non-planar surfaces.

Let us also notice that, from the computation time point of view, even if P; requires the com-
putation of an additional parameter with regard to J and consequently the inversion of a wider
matrix, the computation times of these techniques are similar, due to a better convergence of Ps.

On the other hand, Fg is more accurate for large windows, whatever the illumination changes
are. Indeed, using a comprehensive photometric model improve the estimation of the motion
model during the sequence. In contrast, using it on small windows does not allow the compu-
tation of the true photometric and motion parameters.

7 Conclusions

Since the use of specular reflectance models implies the handling of a large number of param-
eters, most computer vision algorithms assume that the objects in the scene are Lambertian
and that no lighting change occurs. However, that is a coarse assumption.

Nevertheless, the use of local simplified photometric models can significantly robustify the
processings, by considering the luminance changes occurring between images. Through the
analysis of specular reflection models, we have explained explicitly on which assumptions the
most widely used photometric models are implicitly based. Then, we propose some new photo-
metric models, which rely on the precise analysis of the reflection, and on the assumption that
each kind of illumination change can be approximated by a continuous and derivable function
in a local are of the image. The first model, which uses three parameters, is well appropriate
to compensate for specular highlights occurrence. The second one uses six parameters and
takes each kind of illumination changes into account: specular highlights occurrence, lighting
variations or changes of the gain of the camera.

The validity of these photometric models has been theoretically studied, by considering some
particular configurations of the scene. First of all, it appears that the photometric models are
more appropriate than the affine photometric model and the photometric normalization, since
they allow some spatial variations of illumination changes. Our models are quite close to the
real illumination changes when surfaces projected in the windows of interest show some low
curvature discontinuities, and when the surface is rough enough. Moreover, the photometric
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models are more relevant when the sensor is sufficiently close to the surface, and when the
lights are sufficiently far from the surfaces.

The two proposed photometric models can be useful in many computer vision applications,
where lightning is not perfectly controlled, especially in outdoor experiments.

In this paper, we implemented them in two feature points tracking procedures. The aim
of these approaches was to efficiently compensate for the photometric changes caused during
an image sequence, in order to obtain a more accurate estimation of the motion model. These
procedures have been compared, theoretically and experimentally, to some widely used feature
points tracking methods: the classical approach, the tracking with photometric normalization
and the tracker proposed by Jin et al., in their simple implementation.

By compensating for the spatial variations of illumination changes, the proposed methods
have proved to be more robust than the existing approaches. The first tracker is well adapted for
small windows of interest, whereas the second one is applicable for larger windows of interest.
Experimental results obtained from several images sequences have shown a good convergence
and a good accuracy of these procedures. In this paper, we have deliberately focused on the
specific problem of illumination changes, without considering the problem of occlusions, which
is an other difficult subject.

A Conditioning

The conditioning of the trackers detailed in that report can be compared. Indeed, each linear
equation system envolved in the tracking procedure (see equations (8], (52), (B3J), (GI) and
(58)) can be written as Ax =y and more precisely

(e am)(e)=(0) (60)

Consequently, the inversion of A is given by

I 0 vt o0 I; —AiAz !
-1 3 (1 1222
A= < —Apn A I ) ( 0 Ap! ) - ( 0 Is ) (61)

where V is the Schur complement V = Ay — A13A5 'Ago". The inversion of V can be
achieved in the following way:

v!= A11_1 + A11_1A12(A22 - A12TA11_1A12)_1A12TA11_1 (62)

. _ 4T .
Since (A12A2; )T =As"" Ajp" we can introduce :

(I3 —A A"
Mo (G e

so that

v-! 0
Al'=M" 1M
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Consequently, the inversion of A succeeds if A1; and Ags are well-conditioned and can be
correctly inverted.

In the tracking techniques, for each approach the matrix Ay is the same. Therefore, the
comparison of the conditioning of the method only depends on the conditioning of Ass. The
matrices associated to the methods which approximate the photometric parameters Ago” (for
the Jin’s technique), Aos’® and Agy™ are written as:

J o A’ = 3 (f(m), )(f(m),1)7
Py Ag™ = 3 uu' (63)

Ps: Ayt = >, (uf(m), —u)(uf(m),—ua)"

The matrix Ags’™ is the best well-conditioned. In addition, its terms are constant, therefore
they can be computed off-line. On the contrary, the matrix Ay’ and Ay’ are ill-conditioned
and their terms depend on the image.
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