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ABSTRACT

Image retrieval over a network is the focus of this paper, as

being a major challenge of content based image retrieval. We

present a system that gathers feedbacks given by the users in

order to learn the location of the searched images. As a re-

sult, the active learning of a content based relevance function

is enhanced by the selection of hosts containing relevant ex-

amples. We achieve a long term merging of feedbacks over

many sessions, without any knowledge about the category be-

ing searched at any session. Our system is based on mobile

agents crawling the network in an ant-like behavior. Mark-

ers are used to learn a routing of the agent leading them to

the relevant images. The benefits of the ant-like agents sys-

tem is a natural parallelization of the processing as well as

a distributed approach to the routing learning. We made ex-

periments on the trecvid’05 key-frame dataset showing that

the location of the categories were efficiently learned. Fur-

thermore, the long-term learning of categories improves the

interaction by reducing the number of labels needed during

the interaction to obtain satisfying results.

1. INTRODUCTION

As multimedia devices (such as mobile phones, digital cam-

eras, etc.) are becoming very usual, huge collections of digi-

tal images are available today. Finding images belonging to a

specific category in these ever growing collections is a diffi-

cult task since searching within by hand has become impossi-

ble. Content Based Image Retrieval (CBIR) has been success-

fully proposed to answer this problem [1]. The main idea is

to build a description based on the images content, and to find

similarities between descriptions [2]. The problem of such

techniques is the well known semantic gap between the nu-

merical values attached to images and the semantical concepts

they belong to. In order to reduce the gap, machine learning

techniques have been successfully adapted to train a similarity

function in interaction with the user (using her labeling of the

results) leading to the so called “relevance feedback” [3, 4].

The best improvement has been done with the introduction

of active learning, which aims at proposing for labeling the

image that will at most enhance the similarity function when

added to the training set [5].

With the expansion of networks such as the Internet, peer-

to-peer networks or even personal networks, image retrieval

has become a difficult task. As images are split into many

collections over the web, the problem of CBIR is not only to

find the most relevant images, but also to find the localization

of relevant collections. The major part of CBIR computation

being dedicated to the processing of the image descriptors,

the fact that images are distributed over many sources should

be more an advantage than a drawback since it means a pos-

sible paralleling. Moreover, we can assume that collections

may be coherent in semantics, in other words, that images be-

longing to a specific concept may be encountered in only few

well localized collections. For instance, a site can mostly con-

tain touristic photographs (landscapes, buildings, etc.), while

an other can mainly contain photographs of manufactured ob-

jects, and a third can only contain old paintings. Although

CBIR in a distributed context has been noted as an interest-

ing improvement [6], it has been, to our knowledge, the focus

of a few works. Chen presented a system for image retrieval

in p2p network in CBMI’07 [7]. In their system, the links

between peers of the network are optimized in order to propa-

gate the query to relevant hosts. We have proposed in a previ-

ous work [8] to learn the location of relevant images from the

interaction with the user. We carried out a smart cooperation

between the interactive CBIR and a localization learning in a

global architecture based on mobile agents.

However, all the labels gathered during the interaction are

forgotten at the end of the session of a classical CBIR system.

The major challenge of a widely used CBIR system is to re-

use these labels for later sessions in order to benefit from the

previous interactive learning [9]. In a single-user CBIR sys-

tem, the resulting long-term learning is possible but very slow

due to the few labels available. The real interest is in our dis-

tributed context since we can gather labels over sessions from

many users in parallel as the network is shared between users.

In that sense, the knowledge given to the system through the



relevance feedback can be gathered from all users. In this pa-

per, we present a generalization for long-term optimization of

our previous CBIR over networks system. The localization

of the categories are learned over several sessions, enabling

a routing of the mobile agents specific to the searched con-

cept. We assume that the categories one might search of are

well localized on the networks. Such specialized collections

are already available, as for example collections of medical

images or aerial images. Based on this assumption, we will

learn a category dependent routing of the networks in order to

retrieve images from relevant locations.

In the next section, an overview of our system is exposed.

The section 3 contains the description of the routing learning

algorithm during a session. Section 4 describes the long-term

optimization. Finally, we present and discuss the experiments

and results we obtained using our system on the trecvid2005

key-frame dataset1 in section 5.

2. RETRIEVAL SCHEME

Our system is based on mobile agent technology. A mobile

agent is an autonomous computer software with the ability to

migrate from one computer to another and to continue its ex-

ecution there. There are good reasons for using mobile agents

in the distributed CBIR context, such as the reduction of the

network load (the processing code of the agent being very

small in comparison to the feature vector indexes) and the

massive paralleling of the computation [10].
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Fig. 1. Functional description of our system showing the user

in interaction with the relevance feedback loop (launching of

agents, retrieval, display and labeling).

As described in Fig. 1, the user starts his query by giv-

ing an example or a set of examples to an interface (1). A

similarity function based on these examples is built (2). Mo-

bile agents are then launched with a copy of this similarity

1see http://www-nlpir.nist.gov/projects/tv2005/

function (3). Every host of the network contains an agent

platform in order to be able to receive and execute incoming

mobile agents. The agent movements are influenced by mark-

ers (a numerical value locally stored on the host) following an

ant-like behavior [11, 12], as described in section 3

On each platform, an agent indexing the local images is

run, and retrieves the relevant images for the incoming agents.

As soon as they receive the answer of the index agent, the mo-

bile agents return to the user’s computer (5) and the results

are displayed on the interface (6). The user can label these re-

sults (1: relevant, −1: irrelevant), and the similarity function

is updated consequently (7a) as well as the relevant paths of

the network (7b). As the similarity function we use is based

on SVM analysis [13], the update only consists in adding the

results and their labels to the training set and to train a new

SVM.

Mobile agents are then relaunched with the improved sim-

ilarity function. To tackle the semantic gap problem, an inter-

active loop consisting in several launching of mobile agents

and labeling of the results is set (8). At the end of the interac-

tion, mobile agents are launched for a very last time in order

to retrieve the best results from each host (9). The number

of retrieved images is proportional to the level of the markers

leading to this host, assuring that most of the best retrieved

images are provided by relevant hosts.

3. ROUTING LEARNING

We give here a rapid overview of our learning algorithm de-

scribed in [8]. During a session, the similarity function is

learned as well as a routing of the agents leading them to host

containing relevant images. This routing is done by the ant-

like behavior of the agents. While moving from one host to

another, agents are influenced by markers regarding the fol-

lowing rule :

Pi =
phi∑

k∈S

phk

(1)

Where Pi is the probability of an agent to move to host i,
phi being the value of marker of the host i, and S the possible

destinations. We use an ant-like algorithm [14, 15] following

the model of the ethologist J. L. Deneubourg [16] to reinforce

the markers. The markers act like pheromones for ants, in the

sense that ants tend to follow the path containing the highest

quantity of pheromone while searching for food. Once they

have found food, they go back to the nest laying a trail of

pheromone on the path they followed. This trail will influence

later ants so as to reflect the direction of the found sources. In

our system, the level of markers shall reflect the relevance

of the host regarding the searched category. Each time an

agent moves towards a host, the selected marker is decreased

as follows:



∆phi = −α · phi (2)

This rule models the evaporation of the pheromones for

real ants. The paths that are not positively reinforced will

have their markers level very low due to this rule. Each time

the user labels an image, the selected markers on the pathway

taken by the agents to retrieve this image are increased:

∆phi = +γ · u (3)

With u being 1 if the label is positive, 0 otherwise. This

rule models the deposit of pheromone by real ants once they

have found food. Hosts containing relevant images will be

reinforced by this rule, and thus, their markers will have a

high level. Using these rules, the estimation of the marker
ˆphi is dependant on the estimation of û the labels given by

the user:

ˆphi =
γ · û

α
(4)

Thus the higher levels of marker will be obtained for the

hosts that gave the greatest number of positive labeling, lead-

ing to a routing associated with the session’s category.

We ran experiments on the Trecvid’05 keyframes dataset

to evaluate the quality of the routing learning. In a network

consisting of four hosts plus the computer of the user, we

hosted the searched category on the fourth host. The remain-

ing images were equally distributed on the four hosts. We

then ran a session consisting of 100 labels given by the user.

The Fig. 2 shows the mean probability to visit each of the

four hosts at the end of the session.
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Fig. 2. Results of the routing learning system : final proba-

bility score Pi of an agent to move to each host at the end of

a retrieval session depending on the category being searched.

In our experiment, fourth host of the four destinations avail-

able contained the relevant category. At the end of a session,

its probability P4 of being visited is the highest.

As one can see, the fourth host has always the highest

probability of being visited by the agents, showing that the

learning of the relevant destination is succesfull. Moreover,

some categories were more difficult to localize with the ant-

algorithm. This phenomenon can be explained by the mean

reinforcement û being lower for difficult categories (where

more negative examples are found by the active strategy) than

for easy categories (where more positive examples are found

by the active strategy).

4. LONG TERM MERGING OF SESSIONS

The main contribution of this paper is the generalization of

our previous system to long term leaning. We propose an ar-

chitecture to merge all the information registered during past

retrieval sessions. After several sessions, we dispose of sev-

eral category related routings as explained in section 3. In

order to re-use the routings in sessions concerning an already

learned category, we put on each host i of the network N
markers {phi,j}1≤j≤N , each of them being related to a spe-

cific category. Les us denote Phi the vector concatenating

the phi,j available on the host i.

Fig. 3. Long-term system architecture before learning: in this

example, the user’s computer is linked to three target hosts a,

b and c. There are four planes available to catch the distri-

bution of the categories. The probabilities to visit a host are

uniform for each plane. For instance, the probability to visit

a is 1/3 on all of the four planes.

The use of the markers {Phi[j]}, j being fixed, for all

host i of the network leads to a routing relevant for the as-



Fig. 4. Example of the long-term system after learning: Some

of the planes have specialized into one category. For instance,

the fourth plane has specialized to the category contained on

host a and therefore its probability of being visited using this

plane is 0.8.

sociated category. Let us denote a plane such a routing (see

Fig. 3 and 4). The association between a plane and the re-

lated category is not known, since the system is not aware of

which category is being searched at any session (users do not

give a label to the session, for instance). The goal of a long

term learning is to find, based on the interaction with the user,

if the current category has already been searched, and if so

to reuse the information obtained from previous correspond-

ing sessions. In order to benefit from these previously learned

routings, we build a function ψ selecting the marker phi[j]
corresponding to the searched category. The goal of ψ is to

select a plane related to the searched category. This plane is

used by the agents to move. The function ψ is obtained from a

vector Ψ containing 1 for the relevant plane, and 0 otherwise

:

ψ(Phi) = Ψ⊤ · Phi (5)

As we do not have any a priori about the category being

currently searched and about the categories associated with

the available planes, we build the vector Ψ in interaction with

the user. We associate with each plane j a probability Wj of

being related to the currently searched category. We sample

the plane to be used by an agent regarding these propabilities

using a multinomial law M(1;W1, . . . ,WN ). Ψ is obtained

as the projection on the selected plane:

Ψ = {δj,m}1≤j≤N , m being the selected plane (6)

Each time the user labels an image, the Wj correspond-

ing to the markers that have been used to retrieve this image

evolves regarding the following rule:

∆Wj = ε(u−Wj) (7)

Where u = 1 if the label is positive, 0 otherwise. Thus,

planes that gave a lot of positive labels will have a higher

weight, which means a higher chance of being selected.

Ψ is reset each time an agent is launched. A new vector

is sampled thanks to M(1,W1, . . . ,WN ) with the updated

weights. All the dimensions are explored until the weights

converge to the relevant plane.

As both the function ψ and the markers level are learned

at the same time (using the same reinforcement u given by

the user), the dynamics of the markers evolution is set slower

than the one of ψ. Consequently, a set of marker is chosen (by

convergence of the weights) before the markers are evolved.

5. EXPERIMENTS

We used the trecvid2005 key-frame dataset to test the influ-

ence of our category dependent routing on the retrieval. We

put the three categories we tested (namely airplane, explosion-

fire and maps) on three different hosts, and added about 4000

randomly chosen images from the category entertainment to

each host (simulating the various content a real host contains).

These were the possible destinations of our mobile agents.

We ran one hundred of retrieval sessions which consist of

launching of agents and displaying of results until 100 labels

where obtained. At any session, the searched category was

randomly chosen within the three hosted categories.

As shown on Fig. 5, each host had some of the markers

specializing in it. For instance, the third host has been routed

by the second and last planes, which means that a function ψ
choosing one of these two planes will lead the agents to host

3.

To illustrate the evolution of the Phi[j] during the learn-

ing, Fig. 6 shows the distribution of the markers for all ses-

sions. In this diagram, the marker coordinates (xj , yj) are a

projection of their values on each of the 3 host on a 2D space

at each of their updates:

(xj , yj) = (

2∑

i=0

Phi[j] · cos(
i · 2π

3
),

2∑

i=0

Phi[j] · sin(
i · 2π

3
))

(8)

The hosts where a marker has the highest probability are

sectors delimited by lines. Some of the markers specialized

very quickly and remained specialized for a single category

during all the sessions (like the first plane), while others did
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Fig. 5. Relative values of each marker on the three hosts.

Each of the six planes has been specialized for one host. For

example, the first plane has a higher probability to lead to the

first host, while the second plane has a higher probability to

lead to the third host.

move from one category to another (like the third plane). At

least one plane keeps the relevant routing for each category

(the first plane for the first category, the fifth plane for the sec-

ond category, and the last plane for the third category) during

all the sessions. In that sense, the system is stable.
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Fig. 6. Distribution of markers on the three hosts for all ses-

sion. Some markers (for example markers of the first plane)

stay in the zone a one host for almost all sessions, conse-

quently routing the agents to this host.

The markers that were used for each category are shown

on Fig. 7. As we can see, all categories used a subset of the

markers available, meaning that the markers did specialized

for a category. We can clearly see the correlation between

this specialization and the Fig. 5. The markers used for a

session concerning a category where exactly those leading to

the host which contained it.
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Fig. 7. Percentage of markers that were used for each cat-

egory. Markers have been at most used for the category to-

wards which destination they routed. For example, for the

third category, the most used markers where the second and

the sixth, which are leading to the host containing the third

category as seen on Fig. 5

Fig. 8 shows the recall obtained for 500 images retrieved

for each category. In order to see the benefit of our distributed

over classical CBIR system, we ran the same experiments

with all the images localized on a single system. In this cen-

tralized setup, there is no network, and thus no routing learn-

ing. Our system performs slightly better, although it is not

very pronounced. As discussed in the next figure, the max-

imum performance is obtained for all categories with both

systems, which can explain the small gain obtained after the

long-term optimization. The main advantage our distributed

system over the classical CBIR setup is the time to perform

the retrieval, which was about four time less.
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Fig. 8. Recall for each category for 500 images retrieved,

compared to a classical CBIR system. The distributed system

performs a little better on more difficult categories as airplane

or explosion-fire.

The improvement of the mean average precision (MAP)



due to long-term learning is shown on Fig. 9, Fig. 10 and

Fig. 11. As one can see, the long-term optimization leads

to an improvement of the MAP between 5% and 10%. For a

difficult category like airplane, the gain is about 5%, whereas

for an easy category like explosion-fire, the gain is about 8%.

The main consequence is that an equivalent MAP can be ob-

tained with fewer labels after the long-term optimization. For

instance, to obtain the same MAP as with 100 labels before

long-term optimization, about 40 were needed for the maps

category, about 50 for the explosion category and about 70

for the airplane category after the long-term optimization.
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Fig. 9. MAP for the category airplane before and after learn-

ing. With the long-term optimization, the gain is about 5%
and the speed-up is about 30 labels.

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

Number of labels

M
A

P

 

 

maps after long−term

maps before long−term

Fig. 10. MAP for the category maps before and after learn-

ing. With the long-term optimization, the gain is 5% and the

speed-up is about 50 labels.
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Fig. 11. MAP for the category explosion-fire before and after

learning. With the long-term optimization, the gain is about

8% and the speed-up is about 60 labels.

6. CONCLUSION

In this paper we have presented a CBIR system based on mo-

bile agent technology with an ant-like behavior. Agents crawl

the network in search of images using a relevance function

learned in interaction with the user. The locations from where

the images are retrieved depend on a set of markers. The

higher the level of a marker, the higher the probability of the

agents to move to this host. Markers are reinforced unsing the

labels given by the user. Host containing positively labeled

images have their markers increased, whereas host containing

more negatively labeled images have their markers level very

low. We use several markers on each host, each being associ-

ated to a category. Thus, agents using a specific markers set

will be routed towards the host containing the associated im-

ages. The association between these markers and categories

is learned in interaction with the user, resulting into a cate-

gory dependent routing. Our system carries out a smart co-

operation between this routing and the active learning of the

similarity function used for the retrieval, leading to an im-

provement of the recall.

While markers can be naturally shared between users, our

system builds an user oriented semantic map of the network

that can be used efficiently to improve the retrieval. As shown

on the experiments, the association learned between a set of

markers and a category improves the retrieval. While the re-

call gain is little compared to a classical CBIR system, the

speed up in learning obtained through the long-term is high.

For instance, for the category maps, only 40 labels were needed

to obtained about the same MAP as with 100 labels without

the long-term optimization.
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