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Abstract - In this paper we introduce the notion of pro-

tein interaction network. This is a graph whose vertices are

the protein’s amino acids and whose edges are the inter-

actions between them. Using a graph theory approach, we

identify a number of properties of these networks. Some of

them are common to all proteins, while others depend on the

structure arrangement. The last group of properties allows to

characterize structural classes, defined by CATH or SCOP,

in the terms of interaction network properties.
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1 Introduction

Proteins are biological macromolecules participating in
the large majority of processes which govern organisms.
The roles played by proteins are varied and complex.
Certain proteins, called enzymes, act as catalysts and
increase several orders of magnitude, with a remarkable
specificity, the speed of multiple chemical reactions es-
sential to the organism survival. Proteins are also used
for storage and transport of small molecules or ions,
control the passage of molecules through the cell mem-
branes, etc. Hormones, which transmit information and
allow the regulation of complex cellular processes, are
also proteins.

Genome sequencing projects generate an ever in-
creasing number of protein sequences. For example, the
Human Genome Project has identified over 30,000 genes
which may encode about 100,000 proteins. One of the
first tasks when annotating a new genome, is to assign
functions to the proteins produced by the genes. To
fully understand the biological functions of proteins, the
knowledge of their structure is essential.

In their natural environment, proteins adopt a na-
tive compact three-dimensional form. This process is
called folding and is not fully understood. The process
is a result of interactions between the protein’s amino
acids which form chemical bonds. In this paper we iden-

tify some of the properties of the network of interacting
amino acids. We believe that understanding these net-
works can help to better understand the folding process.

There exist different classifications of proteins ac-
cording to their structure, such as CATH [15] and SCOP
[12]. Proteins from the same class have similar struc-
tures and most often, similar functions. In this paper
we show that structure classes can also be defined in the
terms of the properties of amino acid networks.

2 Protein Structure

Unlike other biological macromolecules (e.g., DNA),
proteins have complex, irregular structures. They are
built up by amino acids that are linked by peptide bonds
to form a polypeptide chain. We distinguish four levels
of protein structure:

• The amino acid sequence of a protein’s polypep-
tide chain is called its primary or one-dimensional
(1D) structure. It can be considered as a world
over the 20-letter amino acid alphabet.

• Different elements of the sequence form local reg-
ular secondary (2D) structures, such as α-helices
or β-strands.

• The tertiary (3D) structure is formed by packing
such structural elements into one or several com-
pact globular units called domains.

• The final protein may contain several polypeptide
chains arranged in a quaternary structure.

By formation of such tertiary and quaternary struc-
ture, amino acids far apart in the sequence are brought
close together to form functional regions (active sites).
The reader can find more on protein structure in [5].

Based on the local organization of the secondary
structure elements (SSE), proteins are divided in the
following four classes [11]:



• All α, proteins have only α-helix secondary struc-
ture.

• All β, proteins have only β-strand secondary
structure.

• α/β, proteins have mixed α-helix and β-strand
secondary structure.

• α+β, proteins have separated α-helix and β-
strand secondary structure.

From this first division, a more detailed classification
can be done. The most frequently used ones are SCOP,
Structural Classification Of Proteins [12], and CATH,
Class Architecture Topology Homology [15]. They are
hierarchical classifications of proteins’ structural do-
mains. A domain corresponds to a part of a protein
which has a hydrophobic core and not much interaction
with other parts of the protein.

2.1 SCOP

The SCOP classification is built manually from struc-
tural information. The process of classification starts
by the division into domains of a protein. The protein
is then classified on four levels, from the more general
to the more specific :

1. Class : There are 4 main classes (see above) and
7 others with very small number of members. A
class regroups proteins whose the secondary struc-
ture composition is similar.

2. Fold : The secondary structure composition, the
spatial arrangement and the connexions are simi-
lar.

3. Superfamily: The structures and the functions
tend to be similar.

4. Family: Proteins have at least 30% of their se-
quence identical or have very similar functions and
structures.

In 2007, the SCOP classification has identified 971 fold
classes.

2.2 CATH

The CATH classification is maintained by both manual
and automatic methods. Like SCOP, it is hierarchical
and has 4 main levels and three additional levels con-
cerning the similarity of protein sequences. The first 4
levels are the following :

1. Class : Proteins are grouped according to sec-
ondary structure composition and interaction be-
tween them. There are four classes: mainly α,
mainly β, mixed α-β and all the rest.

2. Architecture: The secondary structure organiza-
tion is the same.

3. Topology: Regroups structures whose foldings in
terms of numbers, order and connexions of sec-
ondary structure are similar.

4. Homologous surperfamily: Domains which have
structure and function very similar.

In 2007, CATH contained 1084 topology families.

3 Models and methods

The 3D structure of a protein is determined by the co-
ordinates of its atoms. This information is available in
Protein Data Bank (PDB) [4], which regroups all ex-
perimentally solved protein structures. Using the coor-
dinates of two atoms, one can compute the distance be-
tween them. We define the distance between two amino
acids as the distance between their Cα atoms. Con-
sidering the Cα atom as a “center” of the amino acid
is an approximation, but it works well enough for our
purposes. Let us denote by N the number of amino
acids in the protein. A contact map matrix is a N × N
0-1 matrix, whose element (i, j) is one if there is a con-
tact between amino acids i and j and zero otherwise.
It provides useful information about the protein. For
example, the secondary structure elements can be iden-
tified using this matrix. Indeed, α-helices spread along
the main diagonal, while β-sheets appear as bands par-
allel or perpendicular to the main diagonal. There are
different ways to define the contact between two amino
acids. Our notion is based on spacial proximity, so that
the contact map can consider non-covalent interactions.
We say that two amino acids are in contact iff the dis-
tance between them is below a given threshold. A com-
monly used threshold is 7 Å and this is the value we
use.

Consider a graph with N vertices (each vertex cor-
responds to an amino acid) and the contact map matrix
as incidence matrix. It is called contact map graph.
The contact map graph is an abstract description of the
protein structure taking into account only the interac-
tions between the amino acids. Now let us consider the
subgraph induced by the set of amino acids participat-
ing in SSE. We call this graph SSE interaction network
(SSE-IN) and this is the object we study in the present
paper. The reason of ignoring the amino acids not par-
ticipating in SSE is simple. Evolution tends to preserve



the structural core of proteins composed from SSE. In
the other hand, the loops (regions between SSE) are not
so important to the structure and hence, are subject to
more mutations. That is why homologous proteins tend
to have relatively preserved structural cores and vari-
able loop regions. Fig. 1 gives an example of a protein
and its SSE-IN. Note that the positions of the vertices
in the graph do not correspond to the amino acid posi-
tions in the space. The graph is presented in this way
only for visualization purposes.

Fig. 1. Protein 1COY and its SSE-IN

The purpose of our work is to offer a graph theory
interpretation of the hierarchical protein classifications.
Consequently, when a protein belongs to a hierarchical
level according to its biological properties then one can
say also that the protein SSE-IN belongs to the same
level. The SSE-IN is then characterized by graph the-
ory properties to understand its behavior and the way
is has formed. Thanks to this point of view, the protein
folding problem can be tackled by the study of interac-
tion networks.

4 Interaction networks

Many systems, both natural and artificial, can be rep-
resented by networks, that is, by sites or vertices bound
by links [18]. The study of these networks is inter-
disciplinary because they appear in scientific fields like
physics, biology, computer science or information tech-
nology. These studies are lead with the aim to explain
how elements interact with each other inside the net-
work and what are the general laws which govern the
observed network properties.

From physics and computer science to biology and
the social sciences, researchers have found that a broad
variety of systems can be represented as networks, and
that there is much to be learned by studing these net-
works [1]. Indeed, the study of the Web [16], of so-
cial networks [17] or of metabolic networks [10] are con-
tribute to put in light common non-trivial properties to
these networks which have a priori nothing in common.
The ambition is to understand how the large networks
are structured, how they evolve and what are the phe-
nomena acting on their constitution and formation [20].

In this section we present some measures that we use
to describe proteins’ SSE-IN. Among these measures,
there are simple ones, the most frequently used, but also
more subtle, which allow a more precise discrimination
between interaction networks.

4.1 Diameter and mean distance

The distance in a graph G = (V, E) between two ver-
tices u, v ∈ V , denoted by d(u, v), is the length of the
shortest path connecting u and v [7]. If there is no path
between u and v, we suppose that d(u, v) is undefined.

A graph diameter, D, is the longest shortest path
between any two vertices of a graph [7]:

D = max{d(u, v) : u, v ∈ V }

The mean distance is defined as the average distance
between each couple of vertices:

dG =
2

n(n − 1)

∑

u,v∈V

d(u, v)

4.2 Density and mean degree

A degree of a vertex u, ku, is the number of edges inci-
dent to u. The mean degree, kG, of a graph G is definied
as follows:

kG =
1

n

∑

u∈V

ku =
2m

n

The density, denoted δ, is defined as the ratio be-
tween the number of edges in a graph and the maximum
number of edges which it could have:



δ(G) =
2m

n(n − 1)
∼

2m

n2

The density of a graph is a number between 0 and 1.
When the density is close to one, the graph is called
dense, when it is close to zero, the graph is called sparse
[6].

4.3 Degree distribution

If nk is the number of vertices having degree k, then the
degree distribution is given by the next formula:

pk =
nk

n

The cumulative degree distribution [2, 8] is defined
as follows:

Pk =

∞∑

k′=k

pk′

The power law distribution is defined as follows [14]:

Pk ∼

∞∑

k′=k

k′−α ∼ k−(α−1)

This distribution decreases in a polynomial way so
that the number of vertices with weak degree is impor-
tant, while a small number of vertices have high degree
(see Fig. 2). The last are called “hubs”, that is, sites
which have a large connectivity through the network.

The degree distribution can also follow a Poisson law
meaning that a small number of vertices have few links,
a large number of vertices have a moderate number of
incident edges, and a small number of vertices have a
large number of incident edges (see Fig. 3). The Poisson
distribution law is expressed as following:

pk ∼ e−λ λk

k!

Fig. 2. Cumulative distribution following power law

Fig. 3. Poisson distribution. Each curve has a peak
close to k = λ near the mean degree kG

The degree distribution analysis is an important
characteristic of networks because it involves their in-
ternal organisation [2]. According to the kind of dis-
tribution followed, particularly if it’s a power law, an
interaction network can belong to a general model like
scale-free model [3, 9] or small-world model [20].

4.4 Clustering coefficients

Watts and Strogatz proposed a measure of clustering
[19] and defined it as a measure of local vertices den-
sity, thus for each node v, the local clustering around
its neighbourhood is defined in the following way:

Cv =
1

2
kv(kv − 1)

The clustering coefficient is a ratio between the num-
ber of edges and the maximum number of possible edges
in the vertice neighbourhood. If we extend the previous
defintion to the entire graph, the clustering is given by
the expression:

Clocal =
1

n

∑

v∈V

number of connected neighbour pairs

Cv

The last defintion is mainly local because for each
node, it involves only its neighbourhood.

The global clustering was studied by Newman et al.
[13] and can be mesuared by the following formula:

Cglobal =
3 × number of triangles in the graph

number of connected triplets of vertices

A triangle is formed by three vertices which are all
connected and a triplet is constituted by three nodes and
two edges. The global clustering coefficient Cglobal is the
mean probability that two vertices that are neighbors of
the same other vertex will themselves be neighbors.



5 Experimental results

The first step before studying the proteins SSE-IN is to
select them according to their SSE arrangements. Thus,
a protein belongs to a CATH topology level or a SCOP
fold level iff all its domains are the same. We have
worked with the CATH v3.1.0 and SCOP 1.7.1 files.
We have computed the measures from the previous sec-
tion for three families of each hierarchical classification,
namely SCOP and CATH (see Table 1). We have cho-
sen these three families by classification, in particular
because of their huge protein number. Thus, each fam-
ily provides a broad sample guarantying more general
results and avoiding fluctuations. Moreover, these six
families contain proteins of very different sizes, varying
from several dozens to several thousands amino acids in
SSE.

Name Type Class Proteins
Rossmann fold CATH α β 2576

TIM Barrel CATH α β 1051
Lysozyme CATH Mainly α 871

Globin-like SCOP All α 733
TIM β/α-barrel SCOP α/β 896
Lysozyme-like SCOP α + β 819

Table 1. Families studied, mainly
due to their protein number

5.1 Diameter and mean distance

Table 2 shows the average diameter for each one of the
studied families. We observe very close diameters be-
tween TIM Barrel and TIM beta/alpha-barrel and also
between Lysozyme and Lysozyme-like families. This is
explained by the fact that each pair of families contains
almost the same proteins, in other worlds, Lysozyme
topology in CATH is the equivalent of Lysozyme-like
fold level in SCOP.

Name D
Rossmann fold 18.84
TIM Barrel 19.83
Lysozyme 12.81

Globin-like 15.65
TIM beta/alpha-barrel 20.09
Lysozyme-like 12.85

Table 2. Average diameter for each family

Figure 4 shows the distribution of the diameter val-
ues for two of the studied families. We observe that the
distribution follows roughly a Poisson law. These results

confirm that the mean diameter is a suitable property
to discriminate families between them.

The diameter being an upper bound of distances
in interaction networks, we expect that the mean dis-
tance dG will be lower than D. Table 3 confirms this.
Again, we observe very close values between the equiva-
lent SCOP and CATH families for the reasons discussed
above. But we can also see that different families have
values which allow discrimination between them based
on this parameter. It is interesting to note that the ratio
D/dG is about 2.5 for all the families. The last property
is a characterization of all proteins’ SSE-IN.

Name dG

Rossmann fold 7.26
TIM Barrel 7.79
Lysozyme 4.99

Globin-like 6.64
TIM beta/alpha-barrel 7.86
Lysozyme-like 5.03

Table 3. Average of mean distances for each family

5.2 Density and mean degree

As defined earlier, the density measures the ratio be-
tween the number of available edges and the number of
all possible edges. Results presented in Table 4 show
that the two families TIM Barrel and TIM beta/alpha-
barrel have the minimum density. It has a consequence
on their SSE-IN topology. When the density is low, the
network is less connected and consequently, the diam-
eter and the average distance are higher. Comparing
these results to Tables 1 and 2 one can see the inversely
proportional relation between density in one hand, and
diameter and average distance on the other.

Name δ(G)
Rossmann fold 0.033
TIM Barrel 0.030
Lysozyme 0.038

Globin-like 0.034
TIM beta/alpha-barrel 0.029
Lysozyme-like 0.042

Table 4. Average density for each family

The mean degree, kG is presented in Table 5. The
observed values are close enough from one family to an-
other. That is why the mean degree is not discriminat-
ing property, but rather a property characterizing all
proteins’ SSE-IN.



Name kG

Rossmann fold 7.20
TIM Barrel 7.17
Lysozyme 6.82

Globin-like 7.69
TIM beta/alpha-barrel 7.15
Lysozyme-like 6.81

Table 5. Average of mean degrees for each family

5.3 Degree distribution

We compute the cumulative degree distribution for all
proteins SSE-IN of studied families. A sample of our
results is presented on Figure 5. We can remark that
the curves follow a power law distribution and can be
approximated by the following power-law function:

p(k) = 141.29k−α, where α = 2.99 ± 0.6
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Fig. 5. Cumulative degree distribution for 1RXC from
Rossman fold, top, and 1HV4 from TIM

beta/alpha-barrel, bottom.

We observe the same results for all studied proteins.
To explain this phenomenon, we have to rely on two
facts. First, the mean degree of all proteins SSE-IN is
nearly constant (see Table 5). Second, the degree dis-
tribution, see Figure 6, follows a Poisson distribution

whose peak is reached for a degree near kG. These two
facts imply that for degree lower than the peak the cu-
mulative degree distribution decreases slowly and after
the peak its decrease is fast compared to an exponential
one. Consequently, all proteins SSE-IN studied have
a similar cumulative degree distribution which can be
approximated by a unique power-law function.
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Fig. 6. Degree distribution for 1RXC from Rossman
fold, top, and 1HV4 from TIM beta/alpha-barrel,

bottom.

5.4 Clustering coefficients

The local clustering Clocal measures the fraction of pairs
of a vertex’s neighbors and the global clustering Cglobal

gives the probability that among three vertices at least
two are connected. The results presented in Table 6
show that the clustering coefficients are close for differ-
ent families and cannot be correlated to density values.
Consequently, the neighbour density remains indepen-
dent of the previously studied properties.



Name Clocal Cglobal

Rossmann fold 0.63 0.56
TIM Barrel 0.64 0.57
Lysozyme 0.65 0.58

Globin-like 0.63 0.57
TIM beta/alpha-barrel 0.64 0.57
Lysozyme-like 0.66 0.58

Table 6. Clustering coefficients for each family

6 Conclusion and perspectives

In this paper we introduce the notion of interaction net-
work of amino acids of a protein (SSE-IN) and study
some of the properties of these networks. We give dif-
ferent means to describe a protein structural family by
characterizing their SSE-IN. Some of the properties, like
diameter and density, allow to discriminate two distinct
families, while others, like mean degree and power law
degree distribution, are general properties of all SSE-
IN. Thus, proteins having similar structural properties
and biological functions will also have similar SSE-IN
properties. In this way our model allows us to draw a
parallel between biology and graph theory.

The characterization we propose constitutes a first
step of a new approach to the protein folding problem.
The properties we identified, both general and specific,
can give us an insight on the folding process. They can
be used to guide a folding simulation in the topological
pathway from unfolded to folded state.

Another perspective is to study more deeply the gen-
eral properties of SSE-IN, in particular degree distribu-
tion, and associate them to more general models, such
as scale-free or small-world networks, whose behavior
and evolution are well known.
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