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DEVIATION INEQUALITIES FOR SUMS OF WEAKLY DEPENDENT TIME

SERIES

OLIVIER WINTENBERGER

Abstract. In this paper we give new deviation inequalities of Bernstein’s type for the partial
sums of weakly dependent time series. The loss from the independent case is studied carefully.
We give non mixing examples such that dynamical systems and Bernoulli shifts for whom our
deviation inequalities hold. The proofs are based on the blocks technique and different coupling
arguments.
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1. Introduction

The aim of this paper is to extend the deviation inequality of Bernstein’s type from the inde-
pendent case to some weakly dependent ones. We consider a sample (X1, . . . ,Xn) of a stationary
process (Xt) in a metric space (X , d). Considering the set F of 1-Lipschitz functions from X to
[−1/2, 1/2], we are interested by the deviation of the partial sum S(f) =

∑n
i=1 f(Xi) for any f ∈ F

assuming that E(f(Xi)) = 0. If the Xi are independent and if σ2
k(f) = k−1 Var(

∑k
i=1 f(Xi)), the

classical Bernstein inequality gives the deviation estimate, see Bennett [3]:

(1.1) P

(

S(f) ≥
√

2nσ2
1(f)x + x/6

)

≤ e−x for all x ≥ 0.

This inequality reflects the gaussian approximation of the tail of S(f) for small values x. And
for large values of x, it reflects the exponential approximation of the tail of S(f). This deviation
inequality is very useful in statistics, see for example the monographs of Catoni [5] and of Massart
[18].

To extend such deviation inequality to the dependent cases, a tradeoff between the sharpness
of the estimates and the generality of the context has to be done. Estimates as sharp as in
the independent cases (up to constants) are obtained for Markov chains in Lezaud [17], Joulin
and Ollivier [16] under granularity. Bertail and Clemenon [4] obtain a deviation inequality for
recurrent Markov chains. There exists C > 0 such that for all M > 0 and all x > 0:

P(S(f) ≥ C(
√

nσ2(f)T x + Mx)) ≤ e−x + nP(T1 ≥ M),

where the Ti are the iid regeneration times and σ2
T (f) = E(T )−1 Var(

∑T1
i=1 f(Xi)). Up to a

constant, it is the limit variance in the CLT of S(f), more natural than σ2
1(f) in (1.1). This

primitive estimate of the tail is natural as, through the splitting technique of Nummelin [21], the
partial sums S(f) are sums of iid sequences of blocks of size Ti. If the regeneration times are
bounded, then up to different constants the same estimate than in the iid case is obtained. If
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the regeneration times admit finite exponential moments, fixing M ≈ ln n Adamczak [1] obtains
estimates of the deviations with a constant C > 0:

P

(

S(f) ≥ C
(
√

nσ2
T (f)x + ln nx

))

≤ e−x for all x ≥ 0.

A loss of rate lnn, that cannot be reduced, appears in the exponential approximation compared
with the iid case, see Adamczak [1] for more details.

In all these works, the strong Markov property is crucial. To bypass the Markov assump-
tion, one way is to use dependent coefficients. Ibragimov [14] introduced the uniformly φ-mixing
coefficients. In this settings, Samson [24] achieves the deviation inequality (1.1) with different
constants as soon as

∑√
φr < ∞. Less accurate results have been obtained for more general mix-

ing coefficients than the φ-mixing ones: Viennet [25] for absolutely regular mixing and Merlevede
et al. [19] for geometrically strongly mixing. Recently, mixing coefficients have been extended to
weakly dependent ones, see Doukhan and Louhichi [11] and Dedecker and Prieur [8]. Under the
exponential decrease of these coefficients, deviation inequalities for S(f) with a loss in the expo-
nential approximation are given in Doukhan and Neumann [12]. Merlevede et al. [20] extends
these results for the partial sum S(f) for unbounded functions f .

The dependence context of this paper is the one of the so-called ϕ-weakly dependent coefficients
introduced by Rio in [22] to extend the uniformly φ-mixing coefficients. We provide new deviation
inequalities for non mixing processes, such that dynamical systems called expanding maps, see
Collet et al. [6] and continuous functions of Bernoulli shifts. The Bernstein’s deviation inequality
in these non mixing contexts sharpens the existing ones. The deviation inequality is obtained by
dividing the sample (X1, . . . ,Xn) in different blocks (Xi, . . . ,Xi+k∗), where the length k∗ must be
carefully chosen and then by approximating non consecutive blocks by independent blocks using
a coupling scheme.

The coupling scheme follows from a conditional Kantorovitch-Rubinstein duality due to Dedecker
et al. [9] and detailed in Section 2. Using this coupling argument, a new deviation inequality can
be stated in Section 3:

(1.2) P

(

S(f) ≥ 5.8
√

nσ2
k∗(f)x + 1.5 k∗x)

))

≤ e−x for all x ≥ 0,

with σ2
j(f) = supj≤k≤n σ2

k(f) for all 1 ≤ j ≤ n and k∗ = min{k ≥ 1; kδk ≤ σ2
k(f)}, where (δk)

only depends of the ϕ-coefficients, see condition (3.1) for more details. Unlike σ1(f) in (1.1), the
variance term σ2

k∗(f) is natural as it tends to the limit variance in the CLT with k∗. When the
TLC holds, i.e. σ2

k(f) → σ2(f) > 0, then the classical Bernstein’s inequality (1.1) holds up to
constants with σ2

1(f) replaced by σ2(f), see Subsection 3.3 for more details. On the opposite,
if the functionals fn are such that σ2

1(fn) → 0, then for exponentially decreasing rate of the ϕ-
coefficients, k∗ ≈ − ln(σ2

1(fn)) and a logarithmic loss appears. As in the recursive Markov chains
case, the loss in the exponential approximation depends on the size of blocks k∗. We do not know
if this loss in the exponential domain may be reduced for such non uniformly φ-mixing sequences.

In many practical examples such that chains with infinite memory introduced by Doukhan and
Wintenberger [13], Bernoulli shifts and Markov kernels, an L∞ coupling scheme is tractable, see
Section 5 for a detailed definition. In these specific cases of ϕ-weakly dependent sequences, an
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improved version of the deviation inequality (1.2) is given in Theorem 5.1:

P

(

S(f) ≥ 2
√

nσ2
k∗′

(f)x + 1.34 k∗′x)
)

≤ e−x for all x ≥ 0,

with k∗′ = min{1 ≤ k ≤ n / nδ′k ≤ kx}, where (δ′k) only depends of the L∞ coupling scheme, see
condition (5.1) for more details. The paper finishes with the proofs collected in Section 6.

2. Preliminaries: coupling and weak dependence coefficients

Let (X1, . . . ,Xn) with n ≥ 1 be a sample of random variables on some probability space
(Ω,A, P) with value in a metric space (X , d). We assume in all the sequel that for any n ≥ 1

there exists a strictly stationary process (X
(n)
t ) such that (X1, . . . ,Xn) = (X

(n)
1 , . . . ,X

(n)
n ). Let

us consider F the set of measurable functions f : X 7→ R satisfying:

(2.1) |f(x) − f(y)| ≤ d(x, y), ∀(x, y) ∈ X × X and sup
x∈X

|f(x)| ≤ 1/2.

We denote the partial sum S(f) =
∑n

i=1 f(Xi) and Mj = σ(Xt; 1 ≤ t ≤ j) for all 1 ≤ j ≤ n.

2.1. Kantorovitch-Rubinstein duality. The technique of coupling is related with the Kantorovitch-
Rubinstein duality. The duality states that given two distribution P and Q on X there exists a
random couple Y = (Y1, Y2) with Y1 ∼ P and Y2 ∼ Q satisfying

E(d(Y1, Y2)) = sup
f∈Λ1

E|f(dP − dQ)| = inf
Y ′

E(d(Y ′
1 , Y ′

2)),

where Y ′ have the same margins than Y and Λ1 denotes the set of 1-Lipschitz functions such
that |f(x) − f(y)| ≤ d(x, y).

Dedecker, Prieur and Raynaud de Fitte [9] extend the classicalKantorovitch-Rubinstein duality
in the time series framework by considering it conditionally on some event M ∈ A. Assuming
that the original space Ω is rich enough, i.e. it exists a random variable U uniformly distributed
over [0, 1] and independent of M, for any Y1 ∼ P with values in a Polish space it exists a random
variable Y2 ∼ P independent of M satisfying

(2.2) E(d(Y1, Y2) | M) = sup{|E(f(Y1)|M) − E(f(Y1))|, f ∈ Λ1} a.s.

2.2. ϕ-weak dependence coefficients and coupling schemes. Let us recall the weak depen-
dence coefficient ϕ introduced in Rio [22]

Definition 2.1. For any X ∈ X , for any σ-algebra M of A then

ϕ(M,X) = sup{‖E(f(X)|M) − E(f(X))‖∞, f ∈ F}.
Another equivalent definition is

(2.3) ϕ(M,Xr)) = sup{|Cov(Y, f(Xr))|, f ∈ F and Y is M-measurable and E|Y | = 1},
see [8].

We will denote by (A) the specific case where X is a Polish space with sup(x,y)∈X 2 d(x, y) ≤ 1.

In the case (A) we have ϕ(M,X) = τ∞(M,X) where τ∞ is the coupling coefficient defined in
[7] by the relation

τ∞(M,X) = sup{‖E(f(X)|M) − E(f(X))‖∞, f ∈ Λ1}.
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This last coefficients is the essential supremum of the right hand side term of the conditional
Kantorovicth-Rubinstein duality (2.2). Thus in the case (A) we get a coupling scheme directly
on the variable X via the Kantorovitch-Rubinstein duality (2.2): it exists a version X∗ ∼ X
independent of M such that

‖E(d(X,X∗) | M)‖∞ = τ∞(M,X) = ϕ(M,X).

When d is the Hamming distance d(x, y) = 11x 6=y the coefficient ϕ(M,X) coincides with the
uniform mixing coefficient φ(M, σ(X)) of Ibragimov defined for 2 σ-algebra M and M′ as:

φ(M,M′) = sup
M∈M,M ′∈M′

|P(M ′ | M) − P(M ′)|.

In more general context than (A), we have ϕ(M,X) ≤ τ∞(M,X) and coupling scheme directly
on X is not tractable. Then we do coupling scheme on the variables f(Xi) for some function f : If
the sample (X1, . . . Xn) is such that the coefficients ϕ(Mj ,Xi) are finite for 1 ≤ j < i ≤ n and if
f ∈ F then the coupling scheme for f(Xi) follows from the conditional Kantorovitch-Rubinstein
duality (2.2) and the relation

τ∞(Mj , f(Xi)) ≤ ϕ(Mj ,Xi) :

There exists f(Xi)
∗ such that f(Xi)

∗ ∼ f(Xi) is independent of Mj and

‖E(|f(Xi)
∗ − f(Xi)| | Mj)‖∞ = τ∞(Mj , f(Xi)) ≤ ϕ(Mj ,Xi).

In the case (A) we also have another possible coupling scheme for f(Xi), see Section 5 for practical
examples: f(X∗

i ) ∼ f(Xi) is independent of Mj and

‖E(|f(X∗
i ) − f(Xi)| | Mj)‖∞ ≤ ‖E(d(X∗

i ,Xi)| | Mj)‖∞ = τ∞(Mj , f(Xi)) = ϕ(Mj ,Xi).

2.3. Extensions on the product space X q, q > 1. To consider conditional coupling schemes of
length q > 1 we need to extend the notions of weak dependence coefficients on X = (Xt)r≤t<r+q ∈
X q. It depends on the metric dq chosen for X q:

Definition 2.2. For any q ≥ 1, any X ∈ X q and any σ-algebra M of A let us define the
coefficients

ϕ(M,X) = sup{‖E(f(X)|M) − E(f(X))‖∞, f ∈ Fq},
where Fq is the set of 1-Lipschitz functions with values in [−1/2, 1/2] of X d equipped with the
metric dq(x, y) = q−1

∑q
i=1 d(xi, yi).

Let us discuss the consequences of the choice of the metric dq:

• The τ∞ coupling coefficients on X q are defined for the metric dq, see [7], and for all f ∈ F :

τ∞(M, (f(X1), . . . , f(Xq))) ≤ ϕ(M, (X1, . . . ,Xq)).

Moreover, in the case (A) it holds τ∞(M,X) = ϕ(M,X).
• If d is the Hamming metric, as dq(x, y) ≤ 11x 6=y then ϕ(M,X) ≤ φ(M, σ(X)). Thus the

definition of the weakly dependent coefficients ϕ differs here from the one of Rio in [22]
where X q is equipped with d∞(x, y) = max1≤i≤q d(xi, yi).
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2.4. First application: deviation inequality of Hoeffding type. This application is due
to Dedecker and Prieur [8]. Assume that X is a Polish space such that supx,y d(x, y) ≤ 1, i.e.
we are in the case (A). Assume that the coefficients ϕ(Mj , (Xj+1, . . . ,Xn)) are finite for all
1 ≤ j ≤ n − 1 and that g : X n → R satisfies

|g(x1, . . . , xn) − g(y1, . . . , yn)| ≤
n
∑

i=1

d(xi, yi).

As we are in the case (A) it exists a coupling scheme (X∗
j+1, . . . ,X

∗
n) of (Xj+1, . . . ,Xn) for any

1 ≤ j ≤ n − 1 such that, keeping the same notation than in [23]:

Γ(g) = ‖E(g(Xj+1, . . . ,Xn) | Mj) − E(g(Xj+1, . . . ,Xn)‖∞
= ‖E(g(Xj+1, . . . ,Xn) − g(X∗

j+1, . . . ,X
∗
n) | Mj)‖∞ ≤ (n − j)ϕ(Mj , (Xj+1, . . . ,Xn)).

Applying Theorem 1 of [23], if E(g(X1, . . . ,Xn)) = 0 then for all x ≥ 0 it holds:

P



f(X1, . . . ,Xn) ≥

√

√

√

√2−1

n
∑

j=1

(1 + 2(n − j)ϕ(Mj , (Xj+1, . . . ,Xn)))2 x



 ≤ e−x.

This deviation inequality of Hoeffding type only differs from the one for independence by a
constant. However, such inequalities are not as satisfactory as Bernstein ones for statistical
applications.

3. Deviation inequality around the mean inequality

Let us give an inequality for the deviation around the mean of S(f) =
∑n

i=1 f(Xi) for f ∈ F ,
with (X1, . . . ,Xn) on the metric space (X , d) and such that there exists a non increasing sequence
(δr) that satisfies

(3.1) sup
1≤j≤n−2r+1

ϕ(Mj , , (Xr+j , . . . ,X2r+j−1)) ≤ δr for all r ≥ 1.

3.1. A deviation inequality of Bernstein type. Assume with no loss of generality that
E(f(X1)) = 0.

Theorem 3.1. For any integer n, if there exists (δr) as in (3.1) then

P

(

S(f) ≥ 5.8
√

nσ2
k∗(f)x + 1.5 k∗x

)

≤ e−x,

where k∗ = min{1 ≤ k ≤ n / kδk ≤ σ2
k(f)} and σ2

k∗(f) = max{σ2
k(f) / k∗ ≤ k ≤ n}.

The proof of this Theorem is given in Subsection 6.1. We adopt the convention min ∅ = +∞
and the estimate is non trivial when rδr → 0 and nδn ≥ σn(f), i.e. for not too small values of n.

Remark that the variance term σ2
k∗(f) is more natural than σ2

1(f) in (1.1) as in the cen-
tral limit theorem σ2

k∗(f) converges to the limit variance as k∗ goes to infinity. Before giving
some remarks on this Theorem, the next proposition give estimates of the quantity σ2

k(f) =

k−1 Var
(

∑k
i=1 f(Xi)

)

.
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3.2. The variance terms σ2
k(f). Under suitable assumptions on (δr), it is always possible to

obtain rough estimates of σ2
k(f) in function of σ2

1(f) and E|f(X1)|:
Proposition 3.2. If the condtion (3.1) is satisfied then we have for all k ≤ n the inequality:

σ2
k(f) ≤

(

σ2
1(f) + 2E|f(X1)|

k−1
∑

r=1

δr

)

.

See Subsection for a straightforward proof 6.2 of this Proposition. The estimate given in
Proposition 3.2 can be rough, for example in the degenerate cases when σ2

k(f) tends to 0 with k.

3.3. Remarks on Theorem 3.1. The gaussian behavior around the mean is, up to a universal
constant, the same than in the iid case with the more natural variance σ2

k∗(f) instead of σ2
1(f) in

(1.1). However in the exponential domain the estimates given in Theorem 3.1 is sometimes less
sharp than the one obtained for φ-mixing in Samson [24].

In the non degenerate case σ2
k(f) → σ2(f) > 0 then k∗ is finite as soon as rδr ↓ 0. The

deviation inequality of Theorem 3.1 becomes similar than the one in the iid case (1.1) with the
variance term σ2(f) instead of σ2

1(f): there exists C > 0 such that for n sufficiently large we have

P(S(f) ≥ C(
√

nσ2(f)x + x)) ≤ e−xfor all x ≥ 0.

However, the estimate of the exponential behavior in Theorem 3.1 may differ from the one of
the iid case. For example, for statistical issues it is often assumed that f is chosen depending
on n such that σ2

1(fn) → 0. Assume that rδr is summable. Using Proposition 3.2 and Jensen’s

inequality we have the estimate σ2
1(fn) . σ2

1(fn)1/2. If σ2
1(fn)−1/2nδn ↓ 0 then for n sufficiently

large such that k∗
n = min{k ≤ n / kδk ≤ σ2

1(fn)1/2} exists, it holds

P(S(f) ≥ C(
√

σ2
k∗

n
(fn)nx + k∗

nx)) ≤ e−x for all x ≥ 0, with C > 0.

As k∗
n ↑ ∞ there is a loss compare with the iid case (1.1). We do not know if this loss may be

reduced outside the cases of uniformly mixing processes where (1.1) holds, see Samson [24].

This loss may be reduced when the autocorrelations are controlled, choosing a smaller size of
blocks k∗

n. Assume that σ2
1(fn) . σ2

1(fn) (such relation is satisfied in the uniformly φ-mixing
context). If σ2

1(fn)−1nδn ↓ 0 then for n sufficiently large such that k∗
n = min{k ≤ n / kδk ≤

σ2
1(fn)} exists, it holds

P

(

S(fn) ≥ C

(

√

σ2
1(fn)nx + k∗

nx

))

≤ e−x for all x ≥ 0, with C > 0.

The loss compare with the iid case is due to k∗
n ↑ ∞. More precisely

• If δr = Cδr for C > 0 and 0 < δ < 1 then k∗
n ≈ − ln(σ2

1(fn)),

• If δr = Crδ for C > 0 and δ > 1 then k∗
n ≈ σ2

1(fn)1/(1−δ).

4. Examples

We focus on non φ-mixing examples as for them the inequality (1.1) holds up to constants, see
Samson [24]. We present dynamical systems that are known to be non φ-mixing processes but
they satisfy (3.1) in the case (A). Other examples in the case (A) are presented in the Section
5 as a sharpened deviation inequality holds for them, see Theorem 5.1. We also present in this
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Section continuous functions of Bernoulli shifts that are examples not φ-mixing and not in the
case (A) and thus cannot be treated by the approach of Section 5 and of [24].

4.1. Dynamical systems. Here we are in the case X = [0; 1] and d(x, y) = |x − y|, i.e. in the
(A) and then ϕ = τ∞. Since Andrews [2], dynamical systems, defined as stationary solutions of
Xt = T (Xt+1) for all t are classical examples of non-mixing processes. Let us consider Xt the
stationary solution of

Xt =
1

2
(Xt−1 + ξt)

where (ξt) is an iid sequence distributed as a Bernoulli(1/2). Then Xt = T (Xt+1 where T (x) = 2x
modulo 1. Even if it is not mixing, easy computation shows that (Xt) satisfies (3.1) with
rδr = (4/9)2−r (in fact this specific case satisfies also rδ′r = (4/9)2−r , see Section 5 for more
details).

More general examples of dynamical systems are studied in Collet et al. [6]. They obtain
estimates of covariances terms, multivariate versions of (2.3), for dynamical systems called ex-
panding maps. Then it follows the existence of C > 0 and 0 < ρ < 1 such that (3.1) is satisfied
with rδr = Cρr, see Dedecker and Prieur [8] for more details.

4.2. Continuous functions of Bernoulli shifts. Let us consider a φ-mixing stationary process
(ξt) in some measurable space Y and a sequence (Ut) in the metric space X defined as

Ut = F (ξt−j ; j ∈ N),

where F is a measurable function. Assume that the original state space is large enough such that
it exists (ξ′t) distributed as (ξt) but independent of it. As in [22], assume that there exists a non
increasing sequence (vk) satisfying almost surely

d(F (ξj ; j ∈ N), F (ξk
j ; j ∈ N)) ≤ vk,

with the sequence (ξk
t ) satisfying ξt = ξk

t for 0 ≤ t ≤ k and for t > k, ξk
t = ξ′t. Finally set

Xt = H(Ut) for some measurable function H : X → X and t = {1, . . . , n} and denote

wH(x, η) = sup
d(x,y)≤η

d(H(x),H(y)).

Proposition 4.1. The sample (X1, . . . ,Xn) satisfies (3.1) with

δr = inf
1≤k≤r−1

{2φr−k + E(3wH(U0, 2vk)) ∧ 1}.

See the Subsection 6.3 for the proof of this Proposition. Remark that by construction the
process (Xt) is non necessarily in the case (A)

5. In the case (A) with a coupling scheme in L∞.

In all this section we place us in the case (A) where X is a Polish metric space and d(x, y) ≤ 1
for all x, y ∈ X . For all r ≥ 1 a coupling scheme in L∞ for (Xi)r+j≤i<2r+j−1, j ≥ 1, exists when
we can construct (X∗

i )r+j≤i<2r+j−1 distributed as (Xi)r+j≤i<2r+j−1 and independent of Mj such
that

(5.1) sup
1≤j≤n−2r+1

2r+j−1
∑

i=r+j

d(Xi,X
∗
i ) ≤ rδ′r a.s. for all r ≥ 1.
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5.1. A sharper deviation inequality of Bernstein’s type. Remark that condition (5.1) with
(δ′r) implies condition (3.1) with δr = δ′r. Then we obtain a slightly sharper deviation inequality
than in Theorem 3.1:

Theorem 5.1. For f ∈ F such that E(f(X1)) = 0 then we have for all x ≥ nδ′k and all 1 ≤ k ≤ n:

P(S(f) ≥ x) ≤ exp

(

−2nσ2
k(f)

k2
h

(

k(x − nδ′k)

2nσ2
k(f)

))

where h(x) = (1 + x) ln(1 + x) − x for all x ≥ 0. Then it holds for all x ≥ 0:

P

(

S(f) ≥ 2
√

nσ2
k∗′

(f)x + 1.34 k∗′x)
)

≤ exp(−x)

with k∗′ = min{1 ≤ k ≤ n / nδ′k ≤ kx}.
The proof of this Theorem is given in Subsection 6.4.

Let us compare this deviation inequality with the result of Theorem 3.1. In Theorem 5.1
the variance term σ2

k(f) sharpens σ2
k(f) and the normal approximation is better here. For the

exponential approximation, in both Theorems losses are due to the chosen blocks sizes. As
k∗′ = min{1 ≤ k ≤ n / kδ′k ≤ xk2/n}, if kδ′k is decreasing as kδk then k∗′ ≤ k∗ as soon as

nσ2
k(f) ≤ k2x or equivalently

√

nσ2
k(f)x ≤ kx, i.e. as soon as x is in the domain of the expo-

nential approximation. Thus for the normal and the exponential approximations, he deviation
inequality in Theorem 5.1 improves the one of Theorem 3.1.

A tradeoff between the generality of the context and the sharpness of the deviation inequalities
is done. Even if (5.1) is less general than (3.1), it is satisfied for many examples, see below.

5.2. Bounded Markov Chains. Following Dedecker and Prieur [8], let us consider a stationary
Markov chain (Xt) with transition kernel P satisfying, for all f ∈ Λ1, that P (f) =

∫

f(y)P (x, dy)
is a κ-Lipschitz function with κ < 1. Then

rδ′r = κr(1 + · · · + κr),

see [8] for more details.

5.3. Bounded chains with infinite memory. Let the sequence of the innovations (ξt)t∈Z be
an iid process on a measurable space Y. We define X = (Xt)t∈Z as the solution of the equation

(5.2) Xt = F (Xt−1,Xt−2, . . . ; ξt) a.s.,

for some bounded function F : X (N\{0}) × Y → X satisfying the condition

(5.3) d(F ((xk)k∈N\{0}; ξ0), F ((yk)k∈N\{0}; ξ0)) ≤
∞
∑

j=1

aj(F )d(xj , yj), a.s.

for all (xk)k∈N\{0}, (yk)k∈N\{0} ∈ XN\{0} such that there exists N > 0 as xk = yk = 0 for all
k > N and with aj(F ) ≥ 0 satisfying

(5.4)
∞
∑

j=1

aj(F ) := a(F ) < 1.
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Let (ξ∗t )t∈Z be a stationary sequence distributed as (ξt)t∈Z , independent of (ξt)t≤0 and such that
ξt = ξ∗t for t > 0. Let (X∗

t )t∈Z be the solution of the equation

X∗
t = F (X∗

t−1,X
∗
t−2, . . . ; ξ

∗
t ), a.s.

Using similar arguments than in Doukhan and Wintenberger [13] we have the following result,

Lemma 5.2. Under condition (5.4) there exists some bounded (by 1/2) stationary process X
solution of the equation (5.2). Moreover, this solution satisfies (5.1) with

rδ′r =

2r−1
∑

j=r

inf
0<p≤j







a(F )r/p +

∞
∑

j=p

aj(F )







.

As the proof of this Lemma is similar than the one in [13], it is omitted here.

Many solutions of econometrical models may be written as chains with infinite memory. How-
ever, the assumption of boundedness is very restrictive for practical models.

5.4. Bernoulli shifts. Solutions of the recurrence equation (5.2) may always be written as Xt =
H((ξj)j≤t) for some measurable function H : YN 7→ X were (ξt) is an iid process called the
innovations. In this very general framework, a coupling version X∗

t is given by X∗
t = H((ξ∗t ))

where (ξ∗t ) is a stationary sequence distributed as (ξt), independent of (ξt)t≤0 and such that
ξt = ξ∗t for t > 0. If there exist ai ≥ 0 such that

d(H(x),H(y)) ≤
∑

i≥1

aid(xi, yi) with
∑

i≥1

ai < ∞,

and if Y is a metric space such that it exists y ∈ Y with d(ξ1, y) bounded a.s., then (Xt) satisfies
(5.1) with

rδ′r = C
∑

i≥r

ar

for some C > 0.

6. Proofs

This Section contains the proofs.

6.1. Proofs of the Theorems 3.1. This section contains the proofs of the Bernstein’s type
estimates on the partial sums S(f) for f ∈ F . As in the independent case, the proofs follow the
Chernoff device. We will proceed using Bernstein’s block technique as in [10]. Let us denote by
Ij the j-th block of indices of size k, i.e. {(j − 1)k + 1, jk} except the last blocks and let p be an
integer such that 2p − 1 ≤ k−1n ≤ 2p.

Let us denote by S1 and S2 the sums of even and odd blocks defined as

S1 =
∑

i∈I2j , 1≤j≤p

f(Xi) and S2 =
∑

i∈I2j−1, 1≤j≤p

f(Xi).

From Cauchy-Schwartz inequality, it holds:

ln E[exp(tS(f))] ≤ 1

2
(ln E exp (2tS1) + ln E exp (2tS2)) .
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Now let us treat in detail the term depending on S1, the same argument applies identically to
S2. We want to prove that for any 0 ≤ t ≤ 1, choosing k = [1/t] ∧ n as in [10] it holds:

(6.1) ln E(exp(tS(f))) ≤ 4nt2(2(e − 2)σ2
k(f) + ekδk).

Denoting Lm = ln E(exp(2t
∑

i∈I2j , 1≤j≤m f(Xi))) for any 1 ≤ m ≤ p, we do a recurrence on m

remarking that ln E(exp(2tS1)) = Lp. From Holder inequality, we have for any 2 ≤ m ≤ p − 1
the inequalities:

exp(Lm+1) − exp(Lm) exp(L1)

≤ exp(Lm)

∥

∥

∥

∥

∥

∥

E

(

exp
(

2t
∑

i∈I2(m+1)

f(Xi)
)

| M2mk

)

− E

(

exp
(

2t
∑

i∈I2(m+1)

f(Xi)
))

∥

∥

∥

∥

∥

∥

∞

≤ exp(Lm)

∥

∥

∥

∥

∥

∥

E

(

exp
(

2t
∑

i∈I2(m+1)

f(Xi)
)

− exp
(

2t
∑

i∈I2(m+1)

f(Xi)
)∗

| M2mk

)

∥

∥

∥

∥

∥

∥

∞

,

where exp
(

2t
∑

i∈I2(m+1)
f(Xi)

)∗
is a coupling version of the variable exp

(

2t
∑

i∈I2(m+1)
f(Xi)

)

,

independent of M2mk. From the definition of the coupling coefficients τ∞, we know that
∥

∥

∥

∥

∥

∥

E

(

exp
(

2t
∑

i∈I2(m+1)

f(Xi)
)

− exp
(

2t
∑

i∈I2(m+1)

f(Xi)
)∗

| M2mk

)

∥

∥

∥

∥

∥

∥

∞

≤ τ∞

(

M2mk, exp
(

2t
∑

i∈I2(m+1)

f(Xi)
))

.

As
∑

i∈I2(m+1)
f(Xi) is bounded with k/2, then u → exp(2tu) is a Lipschitz function with constant

2kt exp(kt) with respect to dk and bounded with exp(kt) for all t ≥ 0. We then deduce that for
n−1 < t ≤ 1, choosing k = [1/t] ∧ (n − 1) and under condition (3.1) we have

τ∞

(

M2mk, exp
(

2t
∑

i∈I2(m+1)

f(Xi)
))

≤ 2ktektϕ(M2mk, (Xi)i∈I2(m+1)
) ≤ 2eδk.

Collecting this inequalities, we achieve that

exp(Lm+1) ≤ exp(Lm)(exp(L1) + 2eδk).

The classical Bennett’s inequality on
∑

i∈I2
f(Xi) gives the estimates exp(L1) ≤ 1+4σ2

k(f)/k(ekt−
kt − 1) and as kt ≤ 1 we obtain

Lm+1 ≤ Lm + ln

(

1 +
4(e − 2)σ2

k(f) + 2ekδk

k

)

≤ Lm +
4(e − 2)σ2

k(f) + 2ekδk

k
.

The p steps of the recurrence leads to the desired inequality

ln E(exp(2tS1)) ≤ 2p
2(e − 2)σ2

k(f) + ekδk

k
.

As the same inequality holds for S2 we obtain (6.1) for n−1 < t ≤ 1 remarking that 2pk−1 ≤ 4nt2.
For t ≤ n−1, classical Bennett inequality on S1 gives

ln E(exp(2tS1)) ≤ 4σ2
n(f)/n(ent − nt − 1).
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Remarking that ent − nt − 1 ≤ (nt)2
∑

k≥0(nt)k/(k + 2)! and (k + 2)! ≥ 23k we derive that

ent−nt−1 ≤ 2−1(nt)2
∑

k≥0 3−k ≤ 3/4(nt)2 for nt ≤ 1. Then collecting thes bounds, for t ≤ n−1

it holds

ln E(exp(2tS1)) ≤ 3nσ2
n(f)t2 ≤ 4nt2(2(e − 2)σ2

n(f) + enδn).

The same holds for S2 and then (6.1) follows for 0 ≤ t ≤ n−1 and then for all 0 ≤ t ≤ 1.

Note that for k ≥ k∗ we have σ2
k(f) ≤ σ2

k∗(f) and kδk ≤ σ2
k(f) by definition. From (6.1) we

achieve

ln E(exp(tS(f))) ≤ Knσ2
k∗(f)t2, for 0 ≤ t ≤ k∗−1,

with K = 4(3e−4). Follow the Chernoff’s device, i.e. using ln P(S(f) ≥ x) ≤ ln E(exp(tS(f)))−tx
and optimizing in 0 ≤ t ≤ k∗−1, we obtain

P(S(f) ≥ x) ≤ exp

(

− x2

2Knσ2
k∗(f)

)

11k∗x≤2Knσ2
k∗

(f) + exp

(

Knσ2
k∗(f)

k∗2 − x

k∗

)

11k∗x>2Knσ2
k∗

(f).

Easy calculation yields for all x ≥ 0

P(S(f) ≥
√

2Knσ2
k∗(f)11k∗2x≤2Knσ2

k∗
(f) + (k∗t + k∗−1Knσ2

k∗(f))11k∗2x>2Knσ2
k∗

(f) ≤ e−x.

A rough bound k∗t + k∗−1Knσ2
k∗(f) ≤ 3k∗x/2 for k∗2x > 2Knσ2

k∗(f) leads to the result of the
Theorem.

6.2. Proof of Proposition 3.2. We have the classical decomposition

Var

(

k
∑

i=1

f(Xi)

)

= k Var(f(X1)) + 2

k−1
∑

r=1

(k − r)Cov(f(X1), f(Xr+1)).

Now let us consider the coupling scheme f(Xr+1)
∗ distributed as f(Xr+1) but independent of

M1. Then from Holder inequality it holds

Cov(f(X1), f(Xr+1)) = E(E(f(Xr+1) − f(Xr+1)
∗ |M1)f(X1)).

But as f(Xr+1) − f(Xr+1)
∗ ≤ δr conditionally to M0 we get the desired result.

6.3. Proof of Proposition 4.1. We adapt the proof of [22]. We are interested in estimated the
coefficients ϕ(Mj , (Xr+j , . . . ,X2r−1+j)) for any (j, r) satisfying 1 ≤ j ≤ j + r ≤ 2r − 1 + j ≤ n.
Let us fix (j, r) and denote (ξk

t ) a sequence such that ξk
t = ξt for all t ≥ r + j − k > j and ξk

t = ξ′t
otherwise. Denote Uk

t = F (ξk
t−j ; j ∈ N) and Xk

t = H(Uk
t ). For any f ∈ F , we have

(6.2) f(Xr+j, . . . ,X2r−1+j) − f(Xk
r+j , . . . ,X

k
2r−1+j) ≤





1

r

2r−1+j
∑

i=r+j

d(Xi,X
k
i )



 ∧ 1.

By definition of the modulus of continuity and as d(Uk
i , Ui) ≤ vk for any r + j ≤ i ≤ 2r − 1 + j,

we have

d(Xi,X
k
i ) = d(H(Ui),H(Uk

i )) ≤ wH(Uk
i , vk).
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Remarking that
(

r−1
∑2r−1+j

i=r+j wH(Uk
i , vk)

)

∧1 is a measurable function of ((ξ′t)t<r+j−k, (ξt)t≥r+j−k)

bounded by 1, it holds from the definition of the φ-mixing coefficients:

E





(

r−1
2r−1+j
∑

i=r+j

wH(Uk
i , vk)

)

∧ 1 / Mj



 ≤ φr−k + E





(

r−1
2r−1+j
∑

i=r+j

wH(Uk
i , vk)

)

∧ 1



 .

Using again that d(Uk
i , Ui) ≤ vk, then wH(Uk

i , vk) ≤ 2wH(Ui, 2vk). By stationarity of (Ut), we
obtain

E





(

r−1
2r−1+j
∑

i=r+j

wH(Uk
i , vk)

)

∧ 1



 ≤ E(2wH(U0, 2vk)) ∧ 1.

So combining these inequalities we obtain for all 1 ≤ k ≤ r − 1:
(6.3)
∥

∥

∥
E

(

f(Xr+j, . . . ,X2r−1+j) − f(Xk
r+j , . . . ,X

k
2r−1+j)

/

Mj

)∥

∥

∥

∞
≤ φr−k + E(2wH(U0, 2vk)) ∧ 1.

Using again the definition of the φ-mixing coefficients, as f is bounded by 1 it holds

(6.4)
∥

∥

∥
E

(

f(Xk
r+j, . . . ,X

k
2r−1+j)

/

Mj

)

− E

(

f(Xk
r+j , . . . ,X

k
2r−1+j)

)∥

∥

∥

∞
≤ φr−k.

Finally, using again (6.2) and that d(Xi,X
k
i ) ≤ wH(Ui, vk), by stationarity of (Ut) we obtain

(6.5) Ef(Xr+j, . . . ,X2r−1+j) − Ef(Xk
r+j, . . . ,X

k
2r−1+j) ≤ E(wH(U0, vk)) ∧ 1.

The result of the Proposition 4.1 follow from the definition of the ϕ-coefficients, the inequalities
(6.3), (6.4) and (6.5).

6.4. Proof of Theorem 5.1. Let us keep the same notation than in the proof of Theorem 3.1.
The Benett’s type deviation inequality follows classically from the Chernoff device applies with
the estimate:

(6.6) ln(E(exp(tS(f))) ≤ 2nσ2
k(f)

k2
(exp(kt) − kt − 1) + nδ′kt for all t ≥ 0.

To prove (6.6), let us use the L∞-coupling scheme and (5.1) to derive for all 1 ≤ m ≤ p:
∥

∥

∥

∥

∥

∥

∑

i∈I2m

f(Xi) −
∑

i∈I2m

f(X∗
i )

∥

∥

∥

∥

∥

∥

∞

≤
∑

i∈I2(m+1)

‖d(Xi,X
∗
i )‖∞ ≤ kδ′k,

where, as in Subsection 6.1, |Ij | = k for all 1 ≤ j ≤ 2p with 2p − 1 ≤ nk−1 ≤ 2p. Then, for all
t ≥ 0 we have:

exp



2t
∑

i∈I2m

f(Xi)



 ≤ e2tkδ′
k exp



2t
∑

i∈I2m

f(X∗
i )



 a.s.

for all 1 ≤ m ≤ p. In particular, by independence of (X∗
i )i∈I2m

with M2i−1 and by stationary we
deduce that

E



exp



2t
∑

i∈I2m

f(Xi)



 | M2(m−1)



 ≤ e2tkδ′
kE



exp



2t
∑

i∈I1

f(X∗
i )











DEVIATION INEQUALITIES FOR SUMS OF WEAKLY DEPENDENT TIME SERIES 13

for all 1 ≤ m ≤ p. Applying this inequality for m = p we have

E exp(2tS1) = E



exp



2t
∑

1≤m≤p−1

∑

i∈I2m

f(Xi)



E



exp





∑

i∈I2p

f(Xi)



 | M2(p−1)









≤ e2tkδ′
kE



exp



2t
∑

i∈I1

f(X∗
i )







E



exp



2t
∑

1≤m≤p−1

∑

i∈I2m

f(Xi)







 .

Let us do the same reasoning recursively on m = p − 1, . . . , 2 to obtain finally

ln E exp(2tS1) ≤ 2(p − 1)kδ′kt + p ln E



exp



2t
∑

i∈I1

f(X∗
i )







 .

The classical Bennett inequality gives

ln E



exp



2t
∑

i∈I1

f(X∗
i )







 ≤ 4σ2
k(f)

k
(exp(kt) − kt − 1)

and the inequality (6.6) follows remarking that 4pk−1 ≤ 2nk−2 and 2(p − 1)k ≤ n.

For the Bernstein’s type inequality, we use (6.6), the series expansion of the function exp(x)−
x − 1 and that k! ≥ 23k−2 for k ≥ 2 to derive:

ln(E(exp(tS(f))) ≤ nσ2
k(f)t2

1 − (k/3)t
+ nδ′kt for all t ≥ 0.

With the same notation than in [18], for x ≥ nδ′k the Chernoff device leads to:

P(S(f) ≥ x) ≤ exp

(

2nσ2
k(f)

(k/3)2
h1

(

(k/3)(x − nδ′k)

2nσ2
k(f)

))

,

where h1(x) = 1 + x −
√

1 + 2x for all x ≥ 0. Then for all x ≥ 0 we have

P(S(f) ≥ x + nδ′k) ≤ exp

(

2nσ2
k(f)

(k/3)2
h1

(

(k/3)x

2nσ2
k(f)

))

and the desired result follows as h−1
1 (x) =

√
2x + x for all x ≥ 0.
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