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Summary. In this note we present a systematic approach to the stabilizability
problem of linear infinite-dimensional dynamical systems whose infinitesimal gen-
erator has an infinite number of instable eigenvalues. We are interested in strong
non-exponential stabilizability by a linear feed-back control. The study is based on
our recent results on the Riesz basis property and a careful selection of the con-
trol laws which preserve this property. The investigation may be applied to wave
equations and neutral type delay equations.

1 Introduction

For the linear finite-dimensional control system

ẋ = Ax+Bu, (1)

the problem of stabilizability is naturally connected to the possibility to move,
eigenvalues of A, which are in the closed right-half plane by a linear feedback
u = Fx to eigenvalues of A+ BF which are in the open left-half plane, such
that the closed-loop system ẋ = (A + BF )x becomes asymptotically stable.
If we can do that with arbitrary given eigenvalues for A and A+BF , we say
that the system is completely stabilizable (cf. [27]) or that the pole assign-
ment problem is solvable [26]. The last property is connected with the com-
plete controllability: the system is completely stabilizable if it is completely
controllable. When the system is not completely controllable, the problem of
stabilizability may be solvable if the unstable modes of the spectrum are con-
trollable. One can then obtain asymptotic stability by feedback, which is in
fact also exponential stability. It is well known that the situation in infinite
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dimensional spaces is much more complicated (see for example [3, 27] and
references therein). The possibility to move the spectrum is not so simply
connected with the controllability property and the last one also is multiply
defined (exact, approximative, spectral). The spectrum itself is not sufficient
to describe the asymptotic behavior of the solution of the infinite dimensional
system even in Hilbert spaces [25]. Our purpose is to analyze the pole assign-
ment problem in the particular situation of a large class of linear neutral type
systems. Our approach is based one the infinite dimensional framework. Let
us first give some precision about the used notions.

Let us suppose that the system (1) is given in Hilbert spaces X, for the
state, and U for the control. There are essentially two notions of stabilizability
: exponential and strong (asymptotic, non-exponential).

Definition 1. The system is exponentially stabilizable if for some linear feed-
back F the semigroup of the closed loop system e(A+BF )t verifies:

∃Mω > 1, ∃ω > 0, ∀x, ‖e(A+BF )tx‖ ≤Mωe−ωt‖x‖.

The system is strongly stabilizable if

∀x, ‖e(A+BF )tx‖ → 0, as t→∞.

For some particular systems the two notions are equivalent. For example it is
the case for linear parabolic partial differential equations with discrete spec-
trum or for linear retarded systems. For linear neutral type systems and hy-
perbolic partial differential equations they are different: such systems may be
asymptotically stable but not exponentially stable and then the same situa-
tion occurs for stabilizability (see for example [1, 18, 23, 25]). This situation
is related to the location of the spectrum near the imaginary axis (see our
paper about the stability problem [17]). For the neutral type systems, as for
other infinite dimensional systems (for exemple hyperbolic partial differential
systems), the spectrum may contain an infinite set close to the imaginary
axis. In [17, 18] we gave an analysis of this situation on stability conditions.
It is shown that even complete information on the location of the spectrum
of the operator A (and A+BF ) does not provide the description of the cases
when the system is stable or unstable. As clearly indicated in [18, Theorem
22, p.415], there is an example of two systems (of neutral type) which have the
same spectrum in the open left-half plane but one of them is asymptotically
stable while the other is unstable. The reason for this is that not only the
location of the spectrum (eigenvalues in the case of discrete spectrum), but
also the geometric characteristics (the structure of eigenspaces and general-
ized eigenspaces) are important. In this connection we notice that even for
particular systems (except finite-dimensional) the complete description of the
stability properties is not available at the present time. In such a situation,
the stabilizability problem inherits many of the technical difficulties arisen in
the study of the stability.
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The second main difficulty of the stabilization problem in infinite dimen-
sional spaces is related to the action of the control, namely the dimension of
the control variable and the quality of the feedback. So, it is known [24, 20, 14]
that one can essentially change the spectrum of the system by use of a feedback
only in the case when it is exactly controllable (this means, in particular, that
the image of B is infinite dimensional). For example, it is possible to achieve
for any µ > µ0:

σ(A+BF ) = σ(−A∗ − µI).

When the control space is finite dimensional our possibilities to influence
spectrum by feedback is restricted. Only a finite number of eigenvalues may
be assigned by a linear feedback (bounded or A-bounded, see [11, 3]). The
neutral type systems may have an infinite number of unstable eigenvalues
that must be moved from the right half plane by finite dimensional feedback.
In the present paper the pole assignment in this case is considered.

After a preliminary section where the infinite dimensional model of the
neutral type system is given, we consider in Section 3 the case of the abstract
system (1) with a one-dimensional control and with an operator A having a
Riesz basis of eigenvectors. The second part of Section 3 is concerned with
a more general abstract case, when there is no Riesz basis of eigenvectors.
Section 4 is devoted to the case of neutral type system, after that we give
some concluding remarks.

2 The neutral type system and the infinite dimensional
model

We consider the following neutral type system

ż(t) = A−1ż(t− 1) +
∫ 0

−1

A2(θ)ż(t+ θ)dθ +
∫ 0

−1

A3(θ)z(t+ θ)dθ (2)

where A−1 is a constant n×n-matrix, detA−1 6= 0, A2, A3 are n×n-matrices
whose elements belong to L2(−1, 0).

In our previous work [18] we analyzed asymptotic stability conditions of
the system (2). One of the main point of the cited work is the fact that for
(2) it may appear asymptotic non exponential stability (see also [1] for the
behavior of solutions of a class of neutral type systems). We gave a detailed
analysis of non exponential stability in terms of the spectral properties of the
matrix A−1. As a continuation of those results we consider in the present work
the control system

ż(t) = A−1ż(t− 1) +
∫ 0

−1

A2(θ)ż(t+ θ)dθ +
∫ 0

−1

A3(θ)z(t+ θ)dθ +Bu, (3)

where B is a n × p-matrix, and study the property for this system of being
asymptotic stable after a choice of a feedback control law. Namely, we say
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that the system (2) is asymptotically stabilizable if there exists a linear feed-
back control u(t) = F (zt(·)) = F (z(t + ·)) such that the system (2) becomes
asymptotically stable.

It is obvious that for linear systems in finite dimensional spaces the linear-
ity of the feedback implies that the control is bounded in every neighbourhood
of the origin. For infinite dimensional spaces the situation is much more com-
plicated. The boundedness of the feedback law u = F (zt(·)) depends on the
topology of the state space.

When the asymptotic stabilizability is achieved by a feedback law which
does not change the state space and is bounded with respect to the topology
of the state space, then we call it regular asymptotic stabilizability. Under
our assumption on the state space, namely H1([−1, 0],Cn), the natural linear
feedback is

Fz(t+ ·) =
∫ 0

−1

F2(θ)ż(t+ θ)dt+
∫ 0

−1

F3(θ)z(t+ θ)dt, (4)

where F2(·), F3(·) ∈ L2(−1, 0; Cn).
Several authors (see for example [7, 12, 13, 4] and references therein) use

feedback laws which for our system may take the form

k∑
i=1

Fiż(t− hi) +
∫ 0

−1

F2(θ)ż(t+ θ)dt+
∫ 0

−1

F3(θ)z(t+ θ)dt. (5)

This feedback law is not bounded in H1([−1, 0],Cn) and then stabilizability is
not regular. If the original system is not formally stable (see [5]), i.e. the pure
neutral part (when A2 = A3 = 0) is not stable, the non regular feedback (4)
is necessary to stabilize. Later we shall return to this issue from an operator
point of view.

Let us consider know the operator model of the system (3) used in [18]
(see also [2]):

ẋ = Ax+ Bu, x(t) =
(
y(t)
zt(·)

)
, (6)

where A is the generator of a C0-semigroup and is defined by

Ax(t) = A
(
y(t)
zt(·)

)
=

(∫ 0

−1
A2(θ)żt(θ)dθ +

∫ 0

−1
A3(θ)zt(θ)dθ

dzt(θ)/dθ

)
, (7)

with the domain

D(A) = {(y, z(·)) : z ∈ H1([−1, 0]; Cn), y = z(0)−A−1z(−1)} ⊂M2, (8)

where M2
def= Cn × L2(−1, 0; Cn). The operator B : Cp → M2 is defined by

the n×p-matrix B as follows Bu def=
(
Bu
0

)
. The relation between the solution

of the delay system (3) and the system (6) is zt(θ) = z(t + θ), θ ∈ [−1, 0].
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This model was used in particular in [18] for the analysis of the stability of
the system (2) and in [15] for the analysis of the controllability problems (see
also [2, 10]).

From the operator point of view, the regular feedback law (4) means a
perturbation of the infinitesimal generator A by the operator BF which is
relatively A-bounded (cf. [8]) and verifies D(A) = D(A + BF). Such a per-
turbation does not mean, in general, that A + BF is the infinitesimal gen-
erator of a C0-semigroup. However, in our case, this fact is verified directly
[18, 15] since after the feedback we get also a neutral type system like (2) with
D(A) = D(A+ BF) (see below for more details).

From a physical point of view, A-boundedness of the stabilizing feedback
F means that the energy added by the feedback remains uniformly bounded
in every neighbourhood of 0 (see also another point of view in [5]). Hence the
problem of regular asymptotic stabilizability for the systems (3),(6) is to find
a linear relatively A-bounded feedback u = Fx such that the operator A+BF
generates a C0-semigroup e(A+BF)t with D(A + BF) = D(A) and for which
‖e(A+BF)tx‖ → 0, as t→∞ for all x ∈ D(A).

3 Main approach to the problem of infinite pole
assignment

This section presents the main methodology that we propose to solve the
problem of infinite pole assignment. We consider first the case when there
exists a Riesz basis of eigenvectors and the after that the case where there is
only a basis of invariant subspaces.

3.1 Riesz basis of eigenvectors

This approach has been developed in [21] and then essentially extended to a
more general systems as will be described in the next sections.

We consider a system
ẋ = Ax+Bu, (9)

where A generates a contractive semigroup {eAt}t≥0 in a Hilbert space H;
B is a bounded operator from a Hilbert space U to H. We consider equation
(9) under the assumptions:

i) A is an unbounded operator with discrete spectrum consisting of simple
eigenvalues {λk}∞k=1,

ii) there exists a constant Cσ ≡ 1
2 min
i 6=j
|λi − λj | > 0, i.e. the spectrum is

separated,
iii) the space U is one dimensional, so we associate B with a vector b ∈ H;

besides, if {φn}∞n=1 is an orthonormal eigenbasis Aφn = λnφn, then bn =
〈b, φn〉 6= 0, n ∈ N, i.e. the system is approximatively controllable.
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One of the key facts in our approach is the possibility to establish the
existence of a special Riesz basis of the state space. We recall the definition.

Definition 2. A basis {ψj} of a Hilbert space H is called a Riesz basis if there
are an orthonormal basis {φj} of H and a linear bounded invertible operator
R, such that Rψj = φj.

If the operator A has a basis of eigenvectors, it is important also that there is
a Riesz basis of eigenvectors of the operator A+ bq∗, where by q∗ we denote
the functional defined by q∗x = 〈x, q〉. It is obvious that the vector q must
verify some condition. It will be seen from the next sections that this key
property could be extended to a more general situation (e.g. neutral type sys-
tems) where not only Riesz basis of eigenvectors, but Riesz basis of invariant
subspaces should be investigated.

The following assertion is of prime importance for our considerations since
it gives a simple characterization of controls which do not destroy the Riesz
basis property.

Theorem 1. Let ||b|| · ||q|| < Cσ/2, where Cσ ≡ 1
2 min |λi − λj | > 0 and

the family of eigenvectors {φn} of A constitute a Riesz basis of H. Then the
eigenvectors ψk of the operator Ã ≡ A+ bq∗ constitute a Riesz basis of H as
well.

This result was first proved in [21] for the case of a skew-adjoint operator
A. Using the Riesz basis property we have the following main result for the
system (9) under the above assumptions i)-iii).

Theorem 2. [21] Let {λ̃n}∞n=1 be any set of complex numbers such that
i) |λn − λ̃n| < Cσ, n ∈ N;

ii)
∑∞
n=1

|λn−λ̃n|2
|bn|2 < Cσ

||b||2 ,

where Cσ, bn ≡ 〈b, φn〉 and λn are as in Theorem 1, the family of eigenvectors
{φn} of A constitute a Riesz basis of H. Then there exists a unique control
u(x) = q∗x such that the spectrum σ(Ã) of the operator Ã = A+bq∗ is {λ̃n}∞n=1

and, moreover, the corresponding eigenvectors Ãψn = λ̃nψn, constitute a Riesz
basis.

This theorem gives the description how to move the (simple) eigenvalues λn
by using an one-dimensional bounded control (of the form u(x) = q∗x) inside
of circles of radii proportional to rn · bn, where bn ≡ 〈b, φn〉 and {rn}∞n=1 ∈ `2.

3.2 Riesz basis of invariant subspaces

In this section we present an abstract approach to the stabilization problem
for a general operator model and this approach will be used in the next section
to stabilize the neutral type system.
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The approach presented here is a generalization of the idea proposed in
[21] for the problem of infinite pole assignment for the case of the wave (partial
differential) equation. In this case, the operator under consideration is skew-
adjoint with a simple spectrum while in the present case it does not satisfy
neither first nor second assumption. Nevertheless, the main idea of [21], after
necessary improvements, allows us to treat more general case including neutral
type operator model.

Here we use the notation A for an operator satisfying the assumptions
given below. As it will be shown in the next section, the operator defined in
(7) satisfies these assumptions, so the reader mainly interested in the neutral
type system may simply look at A as at the operator (7).

We denote the points

λ(k)
m = ln |µm|+ i(argµm + 2πk),m = 1, .., `; k ∈ Z

and the circles L(k)
m (r(k)) centered at λ(k)

m with radii r(k), satisfying∑
k∈Z

(r(k))2 <∞. (10)

Let H be a complex Hilbert space. We consider an infinitesimal generator
A of a C0-semigroup in H with domain D(A) ⊂ H. We have the following
assumptions:

H1) The spectrum of A consists of the eigenvalues only which are located in
the circles L(k)

m (r(k)), where radii r(k) satisfy (10). Moreover, there exists
N1 such that for any k, satisfying |k| ≥ N1, the total multiplicity of the
eigenvalues, contained in the circles L(k)

m (r(k)), equals pm ∈ N, i.e. the
multiplicity is finite and does not depend on k.

We need the spectral projectors

P (k)
m =

1
2πi

∫
L

(k)
m

R(A, λ)dλ (11)

to define the subspaces V (k)
m = P

(k)
m H

H2) There exists a sequence of invariant for operator A finite-dimensional
subspaces which constitute a Riesz basis in H. More precisely, there ex-
ists N0 large enough, such that for any N ≥ N0, these subspaces are
{V (k)

m } |k|≥N
m=1,..,`

and WN , where the last one is the 2(N + 1)n-dimensional
subspace spanned by all eigen- and rootvectors, corresponding to all eigen-
values of A, which are outside of all circles L(k)

m , |k| ≥ N,m = 1, .., `.

The scalar product and the norm in which all the finite-dimensional subspaces
V

(k)
m and WN are orthogonal and form a Riesz basis of subspaces are denoted

by 〈·, ·〉0 and ‖ · ‖0.
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H3) The system is of single input, i.e. the operator B : C→ H is the operator
of multiplication by b ∈ H.

The main result of this section is the following Theorem (the proof may
be found in [19]).

Theorem 3. [19] (On infinite pole assignment). Assume the assumptions
H1)-H3) are satisfied. Consider an infinite set of circles L(k)

m (r(k)) such that
each L

(k)
m (r(k)) contains only one simple eigenvalue of A, i.e. pm = 1. We

denote the set of indexes of these circles by m ∈ I.
We assume that b ∈ H is not orthogonal to eigenvectors ϕkm, of A∗ for

m ∈ I i.e. 〈
b, ϕkm

〉
0
6= 0 for all |k| ≥ N,m ∈ I (12)

and

lim
k→∞

k ·
∣∣〈b, ϕkm〉0∣∣ = cm,∈ R for all m ∈ I. (13)

Then there exists N2 ≥ N such that for any family of complex numbers λ̃km ∈
L

(k)
m (r(k)), m ∈ I, |k| ≥ N2 there exists a linear control F : D(A) → C, such

that

1) the complex numbers λ̃km are eigenvalues of the operator A+ BF ;
2) the operator BF : D(A)→ H is relatively A-bounded.

The condition (12) means that the eigenvalues to be changed are controllable,
and then may be moved. The condition (13) represents a certain boundedness
of the control operator.

The result is that the controllable eigenvalues may be moved arbitrarily
in some neighbourhoods of the initial eigenvalues.

4 Application to neutral type systems

The main contribution of this paper is that under some controllability con-
ditions on the unstable poles of the system, we can assign arbitrarily the
eigenvalues of the closed loop system into circles centered at the unstable
eigenvalues of the operator A with radii rk such that

∑
r2k < ∞. This is, in

some sense, a generalization of the classical pole assignment problem in finite
dimensional space. Precisely we have the following

Theorem 4. Consider the system (3) under the following assumptions:

1) All the eigenvalues of the matrix A−1 satisfy |µ| ≤ 1.
2) All the eigenvalues µj ∈ σ1

def= σ(A−1)∩{z : |z| = 1} are simple (we denote
their index j ∈ I).

Then the system (3) is regularly asymptotic stabilizable if
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3) rank (∆A(λ) B ) = n for all Reλ ≥ 0, where

∆A(λ) = −λI + λe−λA−1 + λ

∫ 0

−1

eλsA2(s)ds+
∫ 0

−1

eλsA3(s)ds,

4) rank (µI −A−1 B ) = n for all |µ| = 1.

In fact the controllable eigenvalues may be arbitrarily assigned in some neigh-
bourhoods of the initial eigenvalues. Let us also precise that the neutral part
of the system (namely here, the matrix A−1) is not modified).

5 Conclusion

Under some controllability condition we obtain that some infinite part of
the spectrum of a neutral type system may be moved arbitrarily by a finite
dimensional regular feedback. The counterpart is that it may be made only in
some neighbourhoods of the original eigenvalues. But for neutral type systems
it is sufficient to insure asymtotic stability provided that the spectrum close
to the imaginary axis is simple.
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