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ENTROPY OF SEMICLASSICAL MEASURES FOR NONPOSITIVELY

CURVED SURFACES

GABRIEL RIVIÈRE

Abstract. We study the asymptotic properties of eigenfunctions of the Laplacian in the case of
a compact Riemannian surface of nonpositive sectional curvature. We show that the Kolmogorov-
Sinai entropy of a semiclassical measure µ for the geodesic flow gt is bounded from below by
half of the Ruelle upper bound, i.e.

hKS(µ, g) ≥
1

2

Z

S∗M

χ+(ρ)dµ(ρ).

We follow the same main strategy as in [18] and refer the reader to it for the details of several
lemmas.

1. Introduction

Let M be a compact C∞ Riemannian manifold. For all x ∈ M , T ∗
xM is endowed with a norm

‖.‖x given by the metric over M . The geodesic flow gt over T ∗M is defined as the Hamiltonian

flow corresponding to the Hamiltonian H(x, ξ) :=
‖ξ‖2

x

2 . This last quantity corresponds to the
classical kinetic energy in the case of the absence of potential. As any observable, this quantity
can be quantized via pseudodifferential calculus and the quantum operator corresponding to H

is −~
2∆
2 where ~ is proportional to the Planck constant and ∆ is the Laplace Beltrami operator

acting on L2(M). Our main concern in this note will be to study the asymptotic behavior, as ~

tends to 0, of the following sequence of distributions:

∀a ∈ C∞
o (T ∗M), µ~(a) =

∫

T∗M

a(x, ξ)dµ~(x, ξ) := 〈ψ~,Op~(a)ψ~〉L2(M),

where Op~(a) is a ~-pseudodifferential operator of symbol a [9] and ψ~ satisfies

−~2∆ψ~ = ψ~.

An accumulation point of such a sequence of distribution µ~ is called a semiclassical measure.
Moreover, one knows that a semiclassical measure is a probability measure on S∗M := {‖ξ‖2

x = 1}
which is invariant under the geodesic flow gt on S∗M . For manifolds of negative curvature,
the geodesic flow on S∗M satisfies strong chaotic properties (Anosov property, ergodicity of the
Liouville measure) and as a consequence, it can be shown that almost all the µ~ converge to the
Liouville measure on S∗M [22], [25], [8]. This phenomenon is known as the quantum ergodicity
property. A main challenge concerning this result would be to answer the Quantum Unique
Ergodicity Conjecture [19], i.e. determine whether the Liouville measure is the only semiclassical
measure or not (at least for manifolds of negative curvature).
In [2], Anantharaman used the Kolmogorov-Sinai entropy to study the properties of semiclassical
measures on manifolds of negative curvature1. In particular, she showed that the Kolmogorov-
Sinai entropy of any semiclassical measure is positive. This result implies that the support of a
semiclassical measure cannot be restricted to a closed geodesic, i.e. eigenfunctions of the Laplacian
cannot concentrate only on a closed geodesic in the high energy limit. In subsequent works, with
Nonnenmacher and Koch, more quantitative lower bounds on the entropy of semiclassical measures
were given [4], [3].

1In fact, her result was about manifolds with Anosov geodesic flow, for instance manifolds of negative curvature.
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2 G. RIVIÈRE

1.1. Kolmogorov-Sinai entropy. Let us recall a few facts about the Kolmogorov-Sinai (also
called metric) entropy (see [24] or appendix B for more details and definitions). It is a nonnegative
number associated to a flow g and a g-invariant measure µ, that estimates the complexity of µ
with respect to this flow. For example, a measure carried by a closed geodesic will have entropy
zero. Recall also that a standard theorem of dynamical systems due to Ruelle [20] asserts that,
for any invariant measure µ under the geodesic flow:

(1) hKS(µ, g) ≤
∫

S∗M

∑

j

χ+
j (ρ)dµ(ρ)

with equality if and only if µ is the Liouville measure in the case of an Anosov flow [16]. In the
previous inequality, the χ+

j denoted the positive Lyapunov exponents of (S∗M, gt, µ) [6].
Regarding these properties, the main result of Anantharaman-Koch-Nonnenmacher was to show
that, for a semiclassical measure µ on an Anosov manifold, one has

hKS(µ, g) ≥
∫

S∗M

d−1
∑

j=1

χ+
j (ρ)dµ(ρ) − (d− 1)λmax

2
.

where λmax := limt→±∞
1
t log supρ∈S∗M |dρgt| is the maximal expansion rate of the geodesic flow

and the χ+
j ’s are the positive Lyapunov exponents [6]. Compared with the original result from [2],

this inequality gives a precise lower bound on the entropy of a semiclassical measure. For instance,
for manifolds of constant negative curvature, this lower bound can be rewritten as d−1

2 . However,
it can turn out that λmax is a very large quantity and in this case, the previous lower bound can
be negative (which would imply that it is an empty result). Combining these two observations [4],
they were lead to formulate the conjecture that, for any semiclassical measure µ, one has

hKS(µ, g) ≥ 1

2

∫

S∗M

d−1
∑

j=1

χ+
j (ρ)dµ(ρ).

They also ask about the extension of this conjecture to manifolds without conjugate points [4].
In recent work [18], we were able to prove that their conjecture holds for any surface with an
Anosov geodesic flow (for instance surfaces of negative curvature). Regarding our proof and the
nice properties of surfaces of nonpositive curvature [21], [12], it became clear that our result can
be adapted in the following way:

Theorem 1.1. Let M be a C∞ Riemannian surface of nonpositive sectional curvature and µ a
semiclassical measure. Then,

(2) hKS(µ, g) ≥ 1

2

∫

S∗M

χ+(ρ)dµ(ρ),

where hKS(µ, g) is the Kolmogorov-Sinai entropy and χ+(ρ) is the upper Lyapunov exponent at
point ρ.

In particular, this result shows that the support of a semiclassical measure cannot be reduced to
a closed unstable geodesic. We underline that our inequality is also coherent with the quasimodes
constructed by Donnelly [10]. In fact, his quasimodes are supported on closed stable geodesics
(included in flat parts of a surface of nonpositive curvature) and have zero entropy. We can make
a last observation on the assumptions on the manifold: it is not known whether the geodesic flow
is ergodic or not for the Liouville measure on a surface of nonpositive curvature. The best result
in this direction is that there exists an open invariant subset U of positive Liouville measure such
that the restriction g|U is ergodic with respect to Liouville [6]. The extension of this result on
the entropy of semiclassical measures raises the question of knowing whether one could obtain an
analogue of this result for weakly chaotic systems. For instance, regarding the counterexamples
constructed in [15], it would be interesting to have a lower bound for ergodic billiards.
Our purpose in this note is to prove theorem 1.1. Our strategy will be the same as in [18]. So we
will focus on the main differences and refer the reader to [18] and [4] for the details of several lem-
mas. The crucial observation is that as in the Anosov case, surfaces of nonpositive curvature have
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continuous stable and unstable foliations and no conjugate points. This property was at the heart
of the proofs in [4], [3] and [18] and we will verify that even if the properties of these stable/unstable
directions are weaker for surfaces of nonpositive curvature, they are sufficient to prove the con-
jecture of Anantharaman-Nonnenmacher in this weakly chaotic setting. In [4], [3], [18], there was
a dynamical quantity which was crucially used: the unstable Jacobian of the geodesic flow. In
the case of surfaces of nonpositive curvature, one can introduce an analogue of it. This quantity
comes from the study of Jacobi fields and is called the unstable Riccati solution Uu(ρ) [21]. In
this setting, it has been shown that the Ruelle inequality can be rewritten as follows [13]:

hKS(µ, g) ≤
∫

S∗M

Uu(ρ)dµ(ρ).

So, the lower bound of theorem 1.1 can be rewritten as

(3) hKS(µ, g) ≥ 1

2

∫

S∗M

Uu(ρ)dµ(ρ).

The main adavantage of this new formulation is that the function in the integral of the lower
bound is defined everywhere (and not almost everywhere).

Remark. One could also ask whether it would be possible to extend this result to surfaces without
conjugate points. In fact, these surfaces also have a stable and unstable foliations (and of course
no conjugate points). Moreover, according to Green [14] and Eberlein [11], the Jacobi fields also
satisfy a property of uniform divergence (at least in dimension 2). The main difficulty is that the
continuity of Uu(ρ) is not true anymore [5] and at this point, we do not see any way of escaping
this difficulty.

1.2. Organization of the article. In section 2, we will give a precise survey2 on surfaces of
nonpositive curvature and highlight the properties we will need to make the proof work. Then,
in section 3, we will draw a precise outline of the proof and we will refer to [18] for the details of
some lemmas. In section 4, we will explain how the main result from [4] can be adapted in the
setting of surfaces of nonpositive curvature. In section 5, we follow the same strategy as in [18]
to derive a crucial estimate on the quantum pressures. Finally, in the appendix, we recall some
results on quantum pressure from [4].

Acknowledgements. I would like to sincerely thank my advisor Nalini Anantharaman for intro-
ducing me to this question and for encouraging me to extend the result from [18] to nonpositively
curved surfaces. I also thank her for many helpful discussions about this subject.

2. Classical setting of the article

2.1. Surfaces of nonpositive curvature. In this first section, we recall some facts about non-
positively curved manifolds [21], [12].

2.1.1. Stable and unstable Jacobi fields. We define π : S∗M → M the canonical projection
π(x, ξ) := x. The vertical subspace Vρ at the point ρ = (x, ξ) is the kernel of the application
dρπ. We underline that it is in fact the tangent space in ρ of the 1-dimensional submanifold
S∗
xM . In the case of a surface, it has dimension 1. We can also define the horizontal subspace

in ρ. Precisely, for Z ∈ TρS
∗M , we consider a smooth curve c(t) = (a(t), b(t)), t ∈ (−ǫ, ǫ), in

S∗M such that c(0) = ρ and c′(0) = Z. Then, we define the horizontal space Hρ as the kernel of
the application Kρ(Z) = ∇a′(0)b(0) = ∇dρπ(Z)b(0), where ∇ is the Levi-Civita connection. This
subspace contains XH(ρ) the vector field tangent to the Hamiltonian flow. For a surface, this
subspace is of dimension 2. We know that we can use these two subspaces to split the tangent
space TρS

∗M = Hρ⊕Vρ (it is the usual way to split the tangent space in order to define the Sasaki
metric on S∗M [21]). Using this decomposition, we would like to recall an important link between
the linearization of the geodesic flow and the Jacobi fields on M . To do this, we underline that to

2We refer the reader to [12] or [21] for more details.
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each point ρ in S∗M corresponds a unique unit speed geodesic γρ. Then we define a Jacobi field
in ρ (or along γρ) as a solution of the differential equation:

J”(t) +R(γ′ρ(t), J(t))γ′ρ(t) = 0,

where R(X,Y )Z is the curvature tensor applied to the vector fields X , Y and Z and J′(t) =
∇γ′

ρ(t)J(t). We recall that we can interpret Jacobi fields as geodesic variation vector fields [12].

Precisely, consider a C∞ family of curves cs : [a, b] → M , s in (−ǫ, ǫ). We say that it is a C∞

variation of c = c0. It defines a corresponding variation vector field Y (t) = ∂
∂s (cs(t))|s=0 that gives

the initial velocity of s 7→ cs(t). If we suppose now that c is a geodesic of M , then a C2 vector field
Y (t) on c is a Jacobi vector field if and only if Y (t) is the the variation vector field of a geodesic
variation of c (i.e. ∀s ∈ (−ǫ, ǫ), cs is a geodesic of M). For instance, γ′ρ(t) and tγ′ρ(t) are Jacobi
vector fields along γρ.
Consider now a vector (V,W ) in TρS

∗M given in the coordinates Hρ ⊕ Vρ. Using the canonical
identification given by dρπ and Kρ, there exists a unique Jacobi field JV,W (t) in ρ whose initial
conditions are JV,W (0) = V and J′V,W (0) = W , such that

dρg
t(V,W ) = (JV,W (t), J′V,W (t))

in coordinates Hgtρ ⊕ Vgtρ [21] (lemma 1.4). We define Nρ the subspace of TρS
∗M of vectors

orthogonal to XH(ρ) and Hρ the intersection of this subspace with Hρ. Using the previous
property about Jacobi fields, we know that the subbundle N perpendicular to the Hamiltonian
vector field is invariant by gt and that we have the following splitting [21] (lemma 1.5):

TρS
∗M = RXH(ρ) ⊕Hρ ⊕ Vρ.

Obviously, these properties can be extended to any energy layer E(λ) for any positive λ. Fol-
lowing [21] (lemma 3.1), we can make the following construction of two particular Jacobi fields
along γρ. We denote (γ′ρ(t), e(t)) an orthonormal basis defined along γρ(t). Given a positive T
and because there are no conjugate points on the manifold M , there exists a unique Jacobi field
JT (t) such that JT (0) = e(0) and JT (T ) = 0. Moreover, JT (t) is perpendicular to γρ(t) for all t
in R [21] (page 50). As a consequence, JT (t) can be identified with its coordinate along e(t) (as
Tγρ(t)M is of dimension 2). A result due to Hopf (lemma 3.1 in [21]) tells us that the limits

lim
T→+∞

JT (t) and lim
T→−∞

JT (t)

exist. They are denoted Jsρ(t) and Juρ(t) (respectively the stable and the unstable Jacobi field).
They satisfy the simplified one dimensional Jacobi equation:

J”(t) +K(t)J(t) = 0,

where K(t) = K(γρ(t)) is the sectional curvature at γρ(t). They are never vanishing Jacobi
fields with J∗ρ(0) = e(0) and for all t in R, they are perpendicular to γ′ρ(t). Moreover, we have

‖J∗
′

ρ (t)‖ ≤ √
K0‖J∗ρ(t)‖ for every t in R (where −K0 is some negative lower bound on the curvature).

Using the previous link between geodesic flow and Jacobi fields, we can lift these subspaces to
invariant subspaces Es(ρ) and Eu(ρ) called the Green stable and unstable subspaces. These
subspaces have dimension 1 (in the case of surfaces) and are included in Nρ. A basis of Es(gtρ)

is given by (Jsρ(t), J
s′

ρ (t)) in coordinates Hgtρ ⊕ Vgtρ. We can underline that both subspaces are
uniformly transverse to Vρ and that it can happen that they are equal to each other (which was
not the case in the Anosov setting). In the case of nonpositive curvature, these subspaces depend
continuously in ρ and are integrable as in the Anosov case [12].

2.1.2. Riccati equation. In the case where the Green subspaces attached to ρ are linearly inde-
pendent, a splitting of Nρ is given by Eu(ρ)⊕Es(ρ) and the splitting holds for all the trajectory.
For the opposite case, we know that the Green subspaces attached to ρ (and hence to a geodesic
γρ) are linearly dependent if and only if the sectional curvature is vanishing at every point of the
geodesic γρ [21]. As a consequence, we cannot use the same kind of splitting. However, there exists
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a splitting of Nρ that we can use in both cases, precisely Eu(ρ) ⊕ Vρ. We would like to mention
that the one dimensional Jacobi equation defined earlier gives rise to the Riccati equation:

U ′(t) + U2(t) +K(t) = 0,

where U(t) = J′(t)J(t)−1 for non vanishing J. Then we define the corresponding unstable Riccati

solution associated to the unstable Jacobi field as Uuρ (t) := Ju
′

ρ (t)(Juρ(t))
−1. It is a nonnegative

quantity and it describes the growth of the unstable Jacobi field (in dimension 2) as follows:

‖Juρ(t)‖ = ‖Juρ(0)‖e
R

t

0
Uu

ρ (s)ds.

The same works for the stable Jacobi field. Both quantities are continuous3 with respect to
ρ. We underline that, we can use the previous results to obtain the bound ‖dρgt|Eu(ρ)‖ ≤
√

1 +K0e
R

t

0
Uu

ρ (s)ds. So the unstable Riccati solution describe the infinitesimal growth of the geo-
desic flow along the unstable direction, whereas Ju(ρ)−1 used in the previous sections described
the growth at time 1. More precisely, as for the unstable Jacobian, Freire and Mañé showed that
the unstable Riccati solutions are related to the Lyapunov exponents. In fact, they proved that
the Ruelle bound for the entropy of a g-invariant measure µ in the case of nonpositive curvature
(precisely for manifolds without conjugate points) [13] is:

hKS(µ, g) ≤
∫

S∗M

Uu(ρ)dµ(ρ).

2.1.3. Divergence of vanishing Jacobi fields. A last point we would like to recall is a result due to
Green [14] and to Eberlein in the general case [11]. It asserts that for any positive c there exists
a positive T = T (c) such that for any ρ in S∗M and for any nontrivial Jacobi field J(t) along
γρ such that J(0) = 0 and ‖J′(0)‖ ≥ 1, for all t larger than T , we have ‖J(t)‖ ≥ c (proposition
3.1 [21]). This property of uniform divergence only holds in dimension 2 and as it is crucially used
in the following, our proof only works for surfaces of nonpositive curvature. In larger dimensions,
the same result holds but without any uniformity in ρ. Finally, all these properties allow to prove
the following lemma:

Lemma 2.1. Let v = (0, V ) be a unit vertical vector at ρ. Then for any c > 0, there exists
T = T (c) > 0 (independent of ρ and of v) such that for any t ≥ T , ‖dρgtv‖ ≥ c.

We underline that, for t ≥ T , the angle between Eu(gtρ) and dρg
tv is bounded by some κ(c)

with κ(c) arbitrarly small as c tends to infinity.

2.2. Discretization of the unstable Riccati solution. For θ small positive number (θ will be
fixed all along the paper), one defines

Eθ := H−1(]1/2 − θ, 1/2 + θ[).

From previous section, we know that there exists a constant b0 such that

∀ρ ∈ Eθ, 0 ≤ Uu(ρ) ≤ b0.

This function will replace the logarithm of the unstable Jacobian log Ju in the proof from [18].
The situation is slightly different from the case of an Anosov flow as we do not have that Uu is
uniformly bounded from below by some positive constant, a property that was crucially to prove
theorem 1.2 in [18]. We solve this problem by introducing a small positive parameter ǫ0 and
defining an auxiliary function

Uu0 (ρ) := sup{Uu(ρ), ǫ0}.
We also fix ǫ and η two small positive constants lower than the injectivity radius of the manifold
(that we suppose to be larger than 2). We choose η small enough to have (2 + b0

ǫ0
)b0η ≤ ǫ

2 (as

in [18], this property is only used in the proof of lemma 3.1). We underline that there exists ε > 0
such that if

∀ (ρ, ρ′) ∈ Eθ × Eθ, d(ρ, ρ′) ≤ ε⇒ |Uu(ρ) − Uu(ρ′)| ≤ ǫ0ǫ.

3The continuity in ρ is a crucial property that we will use in our proof. We underline that it is not true if we
only suppose the surface to be without conjugate points [5].
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We make the extra assumption that the small parameter ǫ used for the continuity is smaller than
ǫ0.

Discretization of the manifold. As in the case of Anosov surfaces, our strategy to prove theorem 1.1
will be to introduce a discrete reparametrization of the geodesic flow. Regarding this goal, we cut

the manifold M and precisely, we consider a partition M =
⊔K
i=1Oi of diameter smaller than some

positive δ. Let (Ωi)
K
i=1 be a finite open cover of M such that for all 1 ≤ i ≤ K, Oi ( Ωi. For

γ ∈ {1, · · · ,K}2, define an open subset of T ∗M :

Vγ := (T ∗Ωγ0 ∩ g−ηT ∗Ωγ1) ∩ Eθ.
We choose the partition (Oi)

K
i=1 and the open cover (Ωi)

K
i=1 of M such that (Vγ)γ∈{1,··· ,K}2 is a

finite open cover of diameter smaller4 than ε of Eθ. For γ := (γ0, γ1), we define f(γ) and f0(γ) as
in the case of an Anosov flow i.e.

f0(γ) := η inf{Uu0 (ρ) : ρ ∈ Vγ} and f(γ) := η inf{Uu(ρ) : ρ ∈ Vγ}.
Compared with the Anosov case, we will have slightly different properties for the function f(γ),
i.e.

(4) ∀ρ ∈ Vγ ,

∣

∣

∣

∣

∫ η

0

Uuρ (s)ds− f(γ)

∣

∣

∣

∣

≤ ηǫ0ǫ.

We also underline that the function f0 satisfies the following bounds, for γ ∈ {1, · · · ,K}2,

ǫ0η ≤ f0(γ) ≤ b0η.

Finally, let α = (α0, α1, · · · ) be a sequence (finite or infinite) of elements of {1, · · · ,K} whose
length is larger than 1 and define:

(5) f+(α) := f0 (α0, α1) ≤
ǫ

2
and f(α) := f(α0, α1) ≤

ǫ

2
,

where the upper bounds follow from the previous hypothesis. In the following, we will also have
to consider negative times. To do this, we define the analogous functions, for β := (· · · , β−1, β0)
of finite (or infinite) length,

f−(β) := f0(β−1, β0) and f(β) := f(β−1, β0).

Remark. We underline that the functions f+ and f− are defined from Uu0 while f is defined from
Uu. This distinction will be important in the following.

3. Proof of theorem 1.1

Let (ψ~k
) be a sequence of orthonormal eigenfunctions of the Laplacian corresponding to the

eigenvalues −1/~−2
k such that the corresponding sequence of distributions µk on T ∗M converges

as k tends to infinity to the semiclassical measure µ. For simplicity of notations and to fit semi-
classical analysis notations, we will denote ~ tends to 0 the fact that k tends to infinity and ψ~ and
~−2 the corresponding eigenvector and eigenvalue. To prove the inequality of theorem 1.1, we will
again give a symbolic interpretation of a semiclassical measure and apply results on suspension
flows to this measure [1].
Let ǫ′ > 4ǫ be a positive number, where ǫ was defined in section 2.2. As in the Anosov setting,
the link between the two quantities ǫ and ǫ′ is only used to obtain theorem on product of pseu-
dodifferential operators from sections 6 and 7 in [18] (here theorem 3.2). In the following of the
note, the Ehrenfest time nE(~) will be the quantity:

(6) nE(~) := [(1 − ǫ′)| log ~|].
We underline that it is an integer time and that, compared with usual definitions of the Ehrenfest
time, there is no dependence on the Lyapunov exponent. We also consider a smaller non integer
time:

(7) TE(~) := (1 − ǫ)nE(~).

4In particular, the diameter of the partition δ depends on θ and ǫ.



ENTROPY OF SEMICLASSICAL MEASURES FOR NONPOSITIVELY CURVED SURFACES 7

We draw now a precise outline of the proof of theorem 1.1 and refer the reader to [18] for the
proof of several lemmas. The main differences with the Anosov case is that we have to indroduce
a thermodynamical formalism to treat the problem.

3.1. Quantum partitions of identity. In order to find a lower bound on the metric entropy of
the semiclassical measure µ, we would like to apply the uncertainty principle for quantum pressure
(see appendix A) and see what informations it will give (when ~ tends to 0) on the metric entropy
of the semiclassical measure µ. To do this, we define quantum partitions of identity corresponding
to a given partition of the manifold. We recall the notations from [18].

3.1.1. Partitions of identity. In paragraph 2.2, we considered a partition of small diameter (Oi)
K
i=1

of M . We also defined (Ωi)
K
i=1 a corresponding finite open cover of small diameter of M . By

convolution of the characteristic functions 1Oi
, we obtain P = (Pi)i=1,..K a smooth partition of

unity on M i.e. for all x ∈M :
K

∑

i=1

P 2
i (x) = 1.

We assume that for all 1 ≤ i ≤ K, Pi is an element of C∞
c (Ωi). To this classical partition

corresponds a quantum partition of identity of L2(M). In fact, if Pi denotes the multiplication
operator by Pi(x) on L2(M), then one has:

(8)
K

∑

i=1

P ∗
i Pi = IdL2(M).

3.1.2. Refinement of the quantum partition under the Schrödinger flow. Like in the classical setting
of entropy, we would like to make a refinement of the quantum partition. To do this refinement,

we use the Schrödinger propagation operator U t = e
ıt~∆

2 . We define A(t) := U−tAU t, where A is
an operator on L2(M). To fit as much as possible with the metric entropy, we define the following
operators:

(9) τα = Pαk
(kη) · · ·Pα1(η)Pα0

and

(10) πβ = Pβ−k
(−kη) · · ·Pβ−2(−2η)Pβ0Pβ−1(−η),

where α = (α0, · · · , αk) and β = (β−k, · · · , β0) are finite sequences of symbols such that αj ∈ [1,K]
and β−j ∈ [1,K]. We can remark that the definition of πβ is the analogue for negative times of
the definition of τα. The only difference is that we switch the two first terms β0 and β−1. The
reason of this choice relies again in the application of the quantum uncertainty principle. One can
see that for fixed k, using the Egorov property:

(11) ‖Pαk
(kη) · · ·Pα1(η)Pα0ψ~‖2 → µ(P 2

αk
◦ gkη × · · ·P 2

α1
◦ gη × P 2

α0
) as ~ tends to 0.

This last quantity is the one used to compute hKS(µ, gη) (with the notable difference that the
Pj are here smooth functions instead of characteristic functions). As in [18], we will have to
understand for which range of times kη, the Egorov property can be be applied. In particular,
we will study for which range of times, the operator τα is a pseudodifferential operator of symbol
Pαk

◦ gkη × · · ·Pα1 ◦ gη × Pα0 (see (11)). In [4] and [3], they only considered kη ≤ | log ~|/λmax

where λmax := limt→±∞
1
t log supρ∈S∗M |dρgt|. This choice was not optimal and in the following,

we try to define sequences α for which we can say that τα is a pseudodifferential operator.

3.1.3. Index family adapted to the variation of the unstable Jacobian. Let α = (α0, α1, · · · ) be a
sequence (finite or infinite) of elements of {1, · · · ,K} whose length is larger than 1. We define a
natural shift on these sequences

σ+((α0, α1, · · · )) := (α1, · · · ).
For negative times and for β := (· · · , β−1, β0), we define the backward shift

σ−((· · · , β−1, β0)) := (· · · , β−1).
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In the following, we will mostly use the symbol x for infinite sequences and reserve α and β for
finite ones. Then, using notations of section 2.1 and as described in section 4 of [18], index families
depending on the value of the unstable Jacobian can be defined as follows:

(12) Iη(~) := Iη(TE(~)) =

{

(α0, · · · , αk) : k ≥ 3,

k−2
∑

i=1

f+
(

σi+α
)

≤ TE(~) <

k−1
∑

i=1

f+
(

σi+α
)

}

,

(13) Kη(~) := Kη(TE(~)) =

{

(β−k, · · · , β0) : k ≥ 3,

k−2
∑

i=1

f−
(

σi−β
)

≤ TE(~) <

k−1
∑

i=1

f−
(

σi−β
)

}

.

We underline that f+, f− ≥ ǫ0η ensures that we consider finite sequences. These sets define the
maximal sequences for which we can expect to have Egorov property for the corresponding τα.
The sums used to define these sets were already used in [18]. We can again think of the time |α|η
as a stopping time for which property (11) will hold (for a symbol τα corresponding to α).
A good way of thinking of these families of words is by introducing the sets

Σ+ := {1, · · · ,K}N and Σ− := {1, · · · ,K}−N.

Once more, the sets Iη(~) (resp. Kη(~)) lead to natural partitions of Σ (resp. Σ−). Families of
operators can be associated to these families of index: (τα)α∈Iη(~) and (πβ)β∈Kη(~). One can show
that these partitions form quantum partitions of identity (lemma 5.1 in [18]):

∑

α∈Iη(~)

τ∗ατα = IdL2(M) and
∑

β∈Kη(~)

π∗
βπβ = IdL2(M).

3.2. Symbolic interpretation of semiclassical measures. Now that we have defined these
partitions of variable size, we want to show that they are adapted to compute the pressure of a
certain measure with respect to some reparametrized flow associated to the geodesic flow. To do
this, we proceed as in [18] and provide a symbolic interpretation of the quantum partitions. We
denote Σ+ := {1, · · · ,K}N. We also denote Ci the subset of sequences (xn)n∈N such that x0 = i.
Define also:

[α0, · · · , αk] := Cα0 ∩ · · · ∩ σ−k
+ Cαk

,

where σ+ is the shift σ+((xn)n∈N) = (xn+1)n∈N (it fits the notations of the previous section). The
set Σ+ is then endowed with the probability measure (not necessarily σ-invariant):

µ
Σ+

~
([α0, · · · , αk]) = µ

Σ+

~

(

Cα0 ∩ · · · ∩ σ−k
+ Cαk

)

= ‖Pαk
(kη) · · ·Pα0ψ~‖2.

Using the property of partition of identity, it is clear that this definition assures the compatibility
conditions to define a probability measure:

∑

αk+1

µ
Σ+

~
([α0, · · · , αk+1]) = µ

Σ+

~
([α0, · · · , αk]) .

Then, we can define the suspension flow, in the sense of Abramov, associated to this probability
measure. To do this, the suspension set is defined as:

(14) Σ+ := {(x, s) ∈ Σ+ × R+ : 0 ≤ s < f+ (x)}.
Recall that the roof function f+ is defined as f+(x) := f+(x0, x1). We define a probability measure

µ
Σ+

~
on Σ+:

(15) µ
Σ+

~
= µ

Σ+

~
× dt

∑

α∈{1,··· ,K}2 f+(α)‖Pαψ~‖2
= µ

Σ+

~
× dt

∑

α∈{1,··· ,K}2 f+(α)µ
Σ+

~
([α])

.

The suspension semi-flow associated to σ+ is for time s:

(16) σs+ (x, t) :=



σn−1
+ (x), s+ t−

n−2
∑

j=0

f+

(

σj+x
)



 ,
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where n is the only integer such that

n−2
∑

j=0

f+

(

σj+x
)

≤ s+ t <

n−1
∑

j=0

f+

(

σj+x
)

.

Remark. We underline that we used the fact that f+ > 0 to define the suspension flow. If we had
considered f , we would not have been able to construct the suspension flow as f could be equal
to 0.

A notable difference with the Anosov setting is that we will not consider time 1 of the suspension
of the flow. Instead of it, we fix a large integer N0 (such that5 ǫ′ ≪ 1/N0 ≪ ǫ0) and consider time
1/N0 of the flow and its iterates.

Remark. It can be underlined that the same procedure holds for the partition (πβ). The only
differences are that we have to consider Σ− := {1, · · · ,K}−N, σ−((xn)n≤0) = (xn−1)n≤0 and that
the corresponding measure is, for k ≥ 1:

µ
Σ−

~
([β−k, · · · , β0]) = µ

Σ−

~

(

σ−k
− Cβ−k

∩ · · · ∩ Cβ0

)

= ‖Pβ−k
(−kη) · · ·Pβ0Pβ−1(−η)ψ~‖2.

For k = 0, one should take the only possibility to assure the compatibility condition:

µ
Σ−

~
([β0]) =

K
∑

j=1

µ
Σ−

~
([β−1, β0]) .

The definition is quite different from the positive case but in the semiclassical limit, it will not
change anything as Pβ0 and Pβ−1(−η) commute. Finally, the ”past” suspension set can be defined
as

Σ− := {(x, s) ∈ Σ− × R+ : 0 ≤ s < f−(x)}.
Now let α be an element of Iη(~). Define:

(17) C̃+
α := Cα0 ∩ · · · ∩ σ−k

+ Cαk
.

This new family of subsets forms a partition of Σ+. Then, a partition C+

~ of Σ+ can be defined

starting from the partition C̃ and [0, f+(α)[. An atom of this suspension partition is an element

of the form C+

α = C̃+
α × [0, f+(α)[. For Σ

−
(the suspension set corresponding to Σ−), we define an

analogous partition C−
~ = ([β] × [0, f−(β)[)β∈Kη(~). As in the case of the Anosov geodesic flows,

we now have to apply the uncertainty principle to these partitions of variable size. The main
difference with [18] is that we will apply it for quantum pressures (see section A). We introduce
the weights

W+
α := exp





1

2

k−1
∑

j=1

f(σj+α)



 and W−
β := exp





1

2

k−1
∑

j=1

f(σj−β)



 .

We underline that the weights depends on f and not f+ or f−. It cames from the fact that f is
the function that appears in theorem 4.1. We introduce the associated quantum pressure6:

(18) p
(

µ
Σ+

~
, C+

~

)

:= H
(

µ
Σ+

~
, C+

~

)

− 2
∑

α∈Iη(~)

µ
Σ+

~

(

C+

α

)

logW+
α

and

(19) p
(

µ
Σ−

~
, C−

~

)

:= H
(

µ
Σ−

~
, C−

~

)

− 2
∑

β∈Kη(~)

µ
Σ−

~

(

C−
β

)

logW−
β .

We follow then the procedure of section 5 in [18] to apply the entropic uncertainty principle (i.e.
apply it K2 times and not 1 time as in [3]) and we use the main estimate on the norms of the
quantum partitions (see theorem 4.1) to derive that

(20) p
(

µ
Σ+

~
, C+

~

)

+ p
(

µ
Σ−

~
, C−

~

)

≥ − logC − (1 + ǫ′ + 4ǫ)nE(~),

5To summarize the relations between the different parameters, we have ǫ
4

< ǫ′ ≪ 1

N0
≪ ǫ0. Moreover η depends

on ǫ and ǫ0 and tends to 0 when ǫ tends to 0 and ǫ0 is fixed.
6We refer the reader to appendix B for the definition of H.
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where C is a constant that does not depend on ~.

Remark. This last inequality is a crucial step to prove theorem 1.1. We will recall how one can
get such a lower bound in section 5. This inequality corresponds to proposition 5.3 in [18]. The
strategy of the proof is exactly the same except that we have to deal with quantum pressures and
not quantum entropies (see section 5). However, we can follow the same lines as in section 5.3.2
in [18] (i.e. apply K2 times the uncertainty principle) and obtain a lower bound that depends on
the bound from theorem 4.1. At this point, there is a difference because theorem 4.1 was proved
in [4] for Anosov manifolds. In section 4, we will show that the proof of theorem 4.1 from [4] can
be adapted in the setting of nonpositively curved surfaces.

The problem of expression (20) is that it is not exactly the pressure of a refined partition. As
in [18], one can prove the following lemma:

Lemma 3.1. Let N0 be a positive integer defined as previously. There exists an explicit partition

C+

N0
of Σ+, independent of ~ such that ∨nE(~)N0−1

i=0 σ
− i

N0
+ C+ is a refinement of the partition C+

~ .

Moreover, let n be a fixed positive integer. Then, an atom of the refined partition ∨n−1
i=0 σ

− i
N0

+ C+

is of the form [α] × B(α), where α = (α0, · · · , αk) is a k + 1-uple such that (α0, · · · , αk) verifies

n
N0

(1 − ǫ) ≤
k−1
∑

j=0

f+

(

σj+α
)

≤ n

N0
(1 + ǫ) and B(α) is a subinterval of [0, f+(α)[.

This lemma is the exact analogue of lemma 4.1 in [18] and its proof is the same: the only
difference is that we consider times 1/N0 instead of time 1. In particular, in the proof, the

partition C+

N0
is constructed from7 Iη(1/N0) and not from Iη(1). As in the Anosov case, we

would like to use this lemma to rewrite the quantum pressure in terms of the pressure of a refined
partition. To do this, we use basic properties of the classical entropy (see appendix B) to find
that:

H
(

µ
Σ+

~
, C+

~

)

≤ HN0nE(~)

(

µ
Σ+

~
, σ

1
N0
+ , C+

N0

)

.

Consider now an atom A of the partition ∨nE(~)N0−1
j=0 σ

− j
N0

+ C+

N0
. To this atom, it corresponds an

unique family (γ0, · · · , γnE(~)N0−1) in Iη(1/N0)
N0nE(~) and we define the corresponding weight as

W+
A :=

N0nE(~)−1
∏

j=0

W+
γj
.

With these notations, we introduce the refined pressure at times n:

pn

(

µ
Σ+

~
, σ

1
N0
+ , C+

N0

)

:= Hn

(

µ
Σ+

~
, σ

1
N0
+ , C+

N0

)

− 2
∑

A∈∨n−1
j=0 σ

−
j

N0 C
+
N0

µ
Σ+

~
(A) logW+

A .

One can then write the following inequality

−2
∑

α∈Iη(~)

µ
Σ+

~

(

C+

α

)

logW+
α ≤ −2

∑

A∈∨
N0nE(~)−1

j=0 σ
−

j
N0 C

+
N0

µ
Σ+

~
(A) logW+

A + 2
b0
ǫ0
b0ηN0nE(~).

The correction term in the last expression comes from the fact that, for each atom A in the

partition ∨N0nE(~)−1
j=0 σ− j

N0 C, one has an unique α′ in Iη(~) and the corresponding W+
α′ is not

exactly equal to W+
A . Finally, the previous inequalities can be summarized as follows:

(21)

−4
b0N0nE(~)

ǫ0
ǫ−logC−(1+ǫ′+4ǫ)nE(~) ≤ pnE(~)N0

(

µ
Σ+

~
, σ

1
N0
+ , C+

N0

)

+pnE(~)N0

(

µ
Σ−

~
, σ

1
N0
− , C−

N0

)

.

This estimate is crucial in our proof as we have derived from a quantum relation a lower bound
on the classical pressure of a dynamical system associated to the geodesic flow.

7We recall that Iη(t) was defined as the set of words
n

α = (α0, · · · , αk) : k ≥ 3,
Pk−2

i=1
f+

`

σi
+α

´

≤ t <
Pk−1

i=1
f+

`

σi
+α

´

o

.
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3.3. Subadditivity of the quantum pressure. As in [18], we would like to let ~ tends to 0 in
inequality (21). The main difficulty to do this is that everything depends on ~. So, once more, we
have to prove a subadditivity property for the quantum pressure:

Theorem 3.2. Let C+

N0
be the partition of lemma 3.1. There exists a function R(n0, ~) on N×(0, 1]

and R(N0) independent of n0 such that

∀n0 ∈ N, lim sup
~→0

|R(n0, ~)| = R(N0).

Moreover, for any ~ ∈ (0, 1] and any n0,m ∈ N such that n0 +m ≤ N0nE(~), one has:

pn0+m

(

µ
Σ+

~
, σ

1
N0 , C+

N0

)

≤ pn0

(

µ
Σ+

~
, σ

1
N0 , C+

N0

)

+ pm

(

µ
Σ+

~
, σ

1
N0 , C+

N0

)

+R(n0, ~).

Proof. To prove this subadditivity property, we will prove subadditivity of the quantum entropy
and subadditivity of the pressure term. As in section 6 from [18], we write for the entropy part
that:

Hn0+m

(

µ
Σ+

~
, σ

1
N0 , C+

N0

)

≤ H
(

σ
m
N0
+ ♯µ

Σ+

~
,∨n0−1

j=0 σ
− j

N0 C+

N0

)

+Hm

(

µ
Σ+

~
, σ

1
N0 , C+

N0

)

.

So, as in [18], we have to show that the measure of the atoms of the partition are almost invariant

under σ
1

N0
+ for the range of times we have considered (proposition 6.1 in [18]). Consider now the

pressure term in the quantum pressure. Using the multiplicative structure of the W+
A , one has

∑

A∈∨
n0+m−1
j=0 σ

−
j

N0 C
+
N0

µ
Σ+

~
(A) logW+

A =
∑

A∈∨m−1
j=0 σ

−
j

N0 C
+
N0

µ
Σ+

~
(A) logW+

A

+
∑

A∈∨
n0−1
j=0 σ

−
j

N0 C
+
N0

σ
m
N0
+ ♯µ

Σ+

~
(A) logW+

A +
∑

A∈C
+
N0

σ
m
N0
+ ♯µ

Σ+

~
(A) logW+

A .

So, once more, the additivity property of the pressure term derives from the almost invariance of
the measure for the range of times we consider8. Precisely, according to the last two inequalities,

we only need to verify that proposition 6.1 in [18] remains true for the partition C+

N0
in the setting

of surfaces of nonpositive curvature. We will not reproduce the proof here: it is the same one.
We recall that this proposition relied on a theorem for products of pseudodifferential operators
(theorem 7.1 in [18]) and we need to verify that the proof we gave still works in the case of surfaces
of nonpositive curvature. The key point of the proof of this theorem is that in the allowed range
of times |dρgt| is bounded by some ~−ν (with ν < 1/2) (see section 7.2 in [18]). We know that
to each ρ we can associate a word α of length k. The range of times we will consider will be
0 ≤ t ≤ kη. To prove previous property in the case of surfaces of nonpositive curvature, we use
the splitting of TρS

∗M given by RXH(ρ) ⊕ Eu(ρ) ⊕ Vρ. These three subspaces are uniformly
transverse so we only have to give an estimate of ‖dρgtE→T∗

gtρ
M‖ when E is one of them. In the

case where E = RXH(ρ), it is bounded by 1 and in the case where E = Eu(ρ), it is bounded

by
√

1 +K0e
R

t

0
Uu

ρ (s)ds. In the last case, lemma 2.1 tells us that the spaces dρg
tVρ and Eu(gtρ)

become uniformly close (in direction) to each other. Then, we consider e0 a unit vector in Vρ and

for 0 ≤ p ≤ k − 1, we define the epη as the unit vector
dρg

pηe0
‖dρgpηe0‖

. We can write:

‖dρgkηe0‖ = |〈dρgkηe0, ekη〉| = |〈dg(k−1)ηρg
ηe(k−1)η, ekη〉 · · · 〈dρgηe0, eη〉|.

We also define the corresponding sequence eupη :=
dρg

pηeu
0

‖dρgpηeu
0 ‖

of unit unstable vectors, where eu0 :=

(Ju
ρ (0),Ju′

ρ (0))

‖(Ju
ρ (0),Ju′

ρ (0))‖
. From lemma 2.1, we know that epη becomes uniformly close (in ρ) to eupη. So, up

to an error term of order Cekηδ (with C uniform in ρ and δ arbitrarly small), we have:

‖dρgkηe0‖ ≤ Cekηǫ0ǫ|〈dg(k−1)ηρg
ηeu(k−1)η, e

u
kη〉 · · · 〈dρgηeu0 , euη〉| = Cekηδ‖dρgkη|Eu(ρ)‖.

8We underline that R(N0) will be equal to sup
A∈C

+
N0

log W+

A which only depends on N0.
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Finally, taking δ = ǫ0ǫ, we have that ‖dρgkη‖ is bounded by Cekηǫ0ǫe
R

kη

0
Uu

ρ (s)ds (with C uniform
in ρ). For the allowed words, ekηǫ0ǫ is of order ~−ǫ (as kηǫ0 ≤ 1/2nE(~)). To conclude, we can
estimate:

∣

∣

∣

∣

∣

∣

∫ kη

0

Uuρ (s)ds−
k−1
∑

j=0

f(σjα)

∣

∣

∣

∣

∣

∣

≤
k−1
∑

j=0

∣

∣

∣

∣

∣

∫ (j+1)η

jη

Uuρ (s)ds− f(σjα)

∣

∣

∣

∣

∣

.

To bound this sum, we can use the continuity of Uu (see inequality (4)) to show that this quantity is

bounded by ǫ| log ~|. By definition of the allowed words α, we know that
∑k−1

j=0 f(σjα) ≤ 1/2nE(~).

This allows to conclude that |dρgt| is bounded by some C~−ν (with C independent of ρ and
ν < 1/2).�

Remark. We underline that here we need to use the specific properties of surfaces of nonpositive
curvature to prove this theorem. It is not really surprising that theorem 7.1 from [18] can be
extended in our setting as the situation can only be less ‘chaotic’. We also mention that we have
to use the continuity of Uu(ρ) which is for instance false for surfaces without conjugate points [5].

3.4. The conclusion.

3.4.1. Applying the Abramov theorem. Thanks to the subadditivity property of the quantum pres-
sure, we can proceed as in [18] and write, for a fixed n0, the euclidean division N0nE(~) = qn0 +r.
Using the same method, we find, after applying the subadditivity property and letting ~ tends to
0,

−4
b0
ǫ0
ǫ− R(N0)

n0
− 1

N0
(1 + ǫ′ + 4ǫ) ≤ 1

n0

(

pn0

(

µΣ+ , σ
1

N0
+ , C+

N0

)

+ pn0

(

µΣ− , σ
1

N0
− , C−

N0

))

.

As in [18], we can replace the smooth partitions by true partitions of the manifold in the previous
inequality. We would like now to transform the previous inequality on the metric pressure into an
inequality on the Kolmogorov-Sinai entropy. To do this, we write the multiplicative property of
WA to write:

∑

A∈∨
n0−1

j=0 σ
−

j
N0 +C

+
N0

µΣ
+

(A) logW+
A =

∑

A0,··· ,An0−1∈C
+
N0

µΣ
+

(A0 ∩ · · · ∩ σ−
n0−1

N0 An0−1)

n0−1
∑

j=0

logW+
Aj
.

After simplification and using the fact C+

N0
is a partition of Σ

+
, we find that this last inequality

can be rewritten as follows
∑

A∈∨
n0−1

j=0 σ
−

j
N0 +C

+
N0

µΣ
+

(A) logW+
A = n0

∑

A∈C
+
N0

µΣ
+

(A) logW+
A

The same property holds for the backward side. After letting n0 tends to infinity, we find that:

−4
b0
ǫ0
ǫ− 1

N0
(1 + ǫ′ + 4ǫ) + 2







∑

A∈C
+
N0

µΣ
+

(A) logW+
A +

∑

A∈C
−

N0

µΣ
−

(A) logW−
A







≤ 1

N0

(

hKS

(

µΣ+ , σ+

)

+ hKS

(

µΣ− , σ−

))

.

We now underline that, by construction (see the proof of lemma 4.1 in [18]) and by invariance of
the measure µΣ+ , one has:
∑

A∈C
+
N0

µΣ
+

(A) logW+
A+

∑

A∈C
−

N0

µΣ
−

(A) logW−
A =

2
∑

γ′∈{1,··· ,K}2 f0(γ′)µΣ([γ′])

∑

γ∈Iη(1/N0)

f0(γ)µ
Σ([γ]) logWγ .

We use this last property and combine it with the Abramov theorem [1]. We find then

∑

γ′∈{1,··· ,K}2

f0(γ
′)µΣ([γ′])

(

−2
b0N0

ǫ0
ǫ− 1

2
(1 + ǫ′ + 4ǫ)

)

+2N0

∑

γ∈Iη(1/N0)

f0(γ)µ
Σ([γ]) logWγ ≤ ηhKS(µ, g).
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3.4.2. The different small parameters tend to 0. We have obtained a lower bound on the Kolmogorv-
Sinai entropy of the measure µ. This lower bound depend on several small parameters that are
linked to each other in the following way:

ǫ < 4ǫ′ ≪ 1

N0
≪ ǫ0.

Moreover the small parameter η depends on ǫ and ǫ0. For a fixed ǫ0, it tends to 0 when ǫ tends to
0. We have now to be careful to transform our lower bound on the entropy of µ into the expected
lower bound. To do this, we use the notations of section 2.1 and introduce, for ρ ∈ S∗M , the
application

F0(ρ) :=
∑

γ∈Iη(1/N0)

f0(γ) logWγ1Oγ0
(ρ) · · ·1Oγk

◦ gkη(ρ).

We underline that for each ρ in S∗M , there exists an unique γ in Iη(1/N0) such that 1Oγ0
(ρ) · · ·1Oγk

◦
gkη(ρ) is non zero (it is then equal to 1). With this new function, the lower bound on the
Kolmogorov-Sinai entropy can be rewritten as follows:

∑

γ′∈{1,··· ,K}2

f0(γ
′)µΣ([γ′])

(

−2
b0N0

ǫ0
ǫ− 1

2
(1 + ǫ′ + 4ǫ)

)

+ 2N0

∫

S∗M

F0(ρ)dµ(ρ) ≤ ηhKS(µ, g).

We define then

X0 :=

{

ρ ∈ S∗M : ∀0 ≤ t ≤ 1

N0ǫ0
, Uu(gtρ) > 2ǫ0

}

.

We can verify that F0(ρ) ≥ (1/N0)
∑

γ0,γ1
f0(γ)1X0(ρ)1Oγ0

(ρ)1Oγ1
◦ gη(ρ) for all ρ in Eθ. In fact,

one has, for ρ ∈ X0 (otherwise the inequality is trivial), logWγ = 1
2

∑k−1
j=1 f(σjγ), where ρ belongs

to Oγ0 ∩ · · · g−kηOγk
and γ satisfies

k−2
∑

j=1

f0(σ
jγ) ≤ 1

N0
<

k−1
∑

j=1

f0(σ
jγ).

In particular, one has (k − 2)ηǫ0 ≤ 1/N0. Using the relation of continuity (4) and the fact that
Uu0 (gtρ) = Uu(gtρ) on X0, one find that, for ρ ∈ X0 ∩Oγ0 ∩ · · · g−kηOγk

,

logWγ ≥ −2ǫ0
N0

+
1

2

k−1
∑

j=1

f0(σ
jγ) ≥

(

1

2
− 2ǫ0

)

1

N0
.

We use this function 1X0(ρ) in our lower bound on the entropy of µ. We let the diameter of the
partition tends to 0 and we divide by η. This gives us
(

−2
b0N0

ǫ0
ǫ− 1

2
(1 + ǫ′ + 4ǫ)

) ∫

S∗M

Uu0 (ρ)dµ(ρ) + (1 − 4ǫ0)

∫

S∗M

Uu0 (ρ)1X0(ρ)dµ(ρ) ≤ hKS(µ, g).

Finally, we let ǫ and ǫ′ tend to 0 (in this order). We find the following bound on the entropy of µ:

−1

2

∫

S∗M

Uu0 (ρ)dµ(ρ) + (1 − 4ǫ0)

∫

S∗M

Uu0 (ρ)1X0(ρ)dµ(ρ) ≤ hKS(µ, g).

We let now N0 tend to infinity and then ǫ0 tend to 0 (in this order). We find finally the expected
lower bound:

1

2

∫

S∗M

Uu(ρ)dµ(ρ) ≤ hKS(µ, g).�

4. Proof of the main estimate from [4]

In the previous section, we have been able to apply the method we used for Anosov surfaces in
order to prove theorem 1.1. As in [18], the strategy relied on a careful adaptation of an uncertainty
principle. In particular, to derive inequality (20), we had to use the following equivalent of
theorem 3.1 from [3]:
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Theorem 4.1. Let M be a surface of nonpositive sectional curvature and ǫ, ǫ0 and η be small
positive parameters as in section 2.2. For every K > 0 (K ≤ Cδ0), there exists ~K and CK(ǫ, η, ǫ0)
such that uniformly for all ~ ≤ ~K, for all k ≤ K| log ~|, for all α = (α0, · · · , αk),
(22)

‖Pαk
UηPαk−1

· · ·UηPα0Op~(χ(k))‖L2(M) ≤ CK(ǫ, η, ǫ0)~
− 1

2−cδ0e2kηǫ0ǫ exp



−1

2

k−1
∑

j=0

f(σj+α)



 ,

where c depends only on the riemannian manifold M .

Remark. We underline two facts about this theorem. The first one is that Op~(χ(k)) is a cutoff
operator that was already defined in [18] (section 5.3) and in the appendix of [4]. We describe
briefly its construction in section 5.1. The second one is that it is function f and not f+ that
appears in the upper bound.

This theorem is the analogue for surfaces of nonpositive of a theorem from [4]. As the geometric
situation is slightly different from [4], we will recall the main lines of the proof where the geometric
properties appear and focus on the differences. We refer the reader to [4] for the details9. On [4],
the proof of the analogue of theorem 4.1 (section 3 and more precisely corollary 3.5) relies on a
study of the action of Pαk

UηPαk−1
· · ·UηPα0 on a particular family of Lagrangian states. This

reduction was possible because of the introduction of the cutoffs operators Op~(χ(k)) (see section
3 in [4] for the details).

4.1. Evolution of a WKB state. Consider u~(0, x) = a~(0, x)e
ı
~
S(0,x) a Lagrangian state, where

a~(0, •) and S(0, •) are smooth functions on a subset Ω in M and a~(0, •) ∼ ∑

k ~kak(0, •).
This represents a Lagrangian state which is supported on the Lagrangian manifold L(0) :=
{(x, dxS(0, x) : x ∈ Ω}. According to [4], if we are able to understand the action of Pαk

UηPαk−1
· · ·UηPα0

on Lagrangian states (with specific initial Lagrangian manifolds: see next paragraph), then we
can derive our main theorem. A strategy to estimate this action is to use a WKB Ansatz. Recall
that if we note ũ(t) := U tU(0), then, for any integer N , the state ũ(t) can be approximated to
order N by a Lagrangian state u(t) of the form

u(t, x) := e
ı
~
S(t,x)a~(t, x) = e

ı
~
S(t,x)

N−1
∑

K=0

~kak(t, x).

As u is supposed to solve ı~∆
2 u = ∂tu (up to an error term of order N), we know that S(t, x)

and the ak(t, x) satisfy several partial differential equations. In particular, S(t, x) must solve the
Hamilton-Jacobi equation

∂S

∂t
+H(x, dxS) = 0.

Assume that, on a certain time interval (for instance s ∈ [0, η]), the above equations have a well
defined smooth solution S(s, x), meaning that the transported Lagrangian manifold L(s) = gsL(0)
is of the form L(s) = {(x, dxS(s, x))}, where S(s) is a smooth function on the open set πL(s).
As in [4], we shall say that a Lagrangian manifold L is ”projectible” if the projection π : L →M
is a diffeomorphism onto its image. If the projection of L to M is simply connected, this implies
L is the graph of dS for some function S: we say that L is generated by S.
Suppose now that, for s ∈ [0, η], the Lagrangian L(s) is ”projectible”. Then, this family of
Lagrangian manifolds define an induced flow on M , i.e.

gtS(s) : x ∈ πL(s) 7→ πgt(x, dxS(s, x)) ∈ πL(s+ t).

This flow satifies a property of semi-group as follows: gtS(s+τ) ◦ gτS(s) = gt+τS(s). Using this flow, we

define an operator that sends functions on πL(s) into functions on πL(s+ t):

T tS(s)(a)(x) := a ◦ g−tS(s+t)(x)
(

J−t
S(s+t)(x)

)
1
2

,

9We assume the reader is familiar with the proof of [4].
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where J tS(s)(x) is the Jacobian of the map gtS(s) at point x (w.r.t. the riemannian volume). This

operator allows to give an explicit expression for all the ak(t) [4], i.e.

ak(t) := T tS(0)a0(0) and ak(t) := T tS(0)ak(0) +

∫ t

0

T t−sS(s)

(

ı∆ak−1(s)

2

)

ds.

Regarding the details of the proof in [4], we know that there are two main points where the
dynamical properties of the manifold are used:

• the evolution of the Lagrangian manifold under the action of Pαk
UηPαk−1

· · ·UηPα0 (sec-
tion 3.4.1 in [4]);

• the value of J tS(0) for large t (section 3.4.2 in [4]).

We will discuss these two points in the two following paragraphs. We will recall what was proved
for these two questions in section 3.4 of [4] and see how it can be translated in the setting of
surfaces of nonpositive curvature.

4.2. Evolution of the Lagrangian manifolds. The first thing we need to understand is how the
Lagrangian manifolds evolve under the action of the operator Pαk

UηPαk−1
· · ·UηPα0 . According

to [4], we know that the introduction of the cutoff operator Op~(χ) implies that we can restrict our
selves to a particular family of Lagrangian states. Precisely, we fix some small parameter η1 and
we know that they must be localized on a piece of Lagrangian manifold L0(0) which is included
in the set ∪|τ |≤ηg

τS∗
z,η1M (where S∗

z,η1M := {(z, ξ) : ‖ξ‖2
z = 1 + 2η1}). If we follow the method

developped in [4], we are given a sequence of Lagrangian manifolds Lj(0) as follows:

∀t ∈ [0, η], ∀j, L0(t) := gtL0(0) and Lj(t) := gt
(

Lj−1(η) ∩ T ∗Ωαj

)

.

The manifold Lj(0) is obtained after performing Pαj
UηPαk−1

· · ·UηPα0 on the initial Lagrangian
state. To show that the procedure from [4] is consistent (i.e. performing several WKB Ansatz),
we need to verify that the Lagrangian manifold Lj(t) does not develop caustics and remains
”projectible”. The only geometric properties which were used to derive these two properties were:

• M has no conjugate points (to derive that Sj will not develop caustics);
• the injectivity radius is larger than 2 (to ensure the ”projectible” property).

In our setting, these two properties remain true (in particular, a surface of nonpositive curvature
has no conjugate points [21]). Finally, we undeline that, thanks to the construction of the strong
unstable foliation for surfaces of nonpositive curvature, any vector in S∗

z,η1M becomes uniformly

close to the unstable subspace under the action of dρg
t (see lemma 2.1). As a consequence, under

the geodesic flow, a piece of sphere becomes uniformly close to the unstable foliation as j tends to
infinity. This point is the main difference with [4]. In fact, if we consider an Anosov geodesic flow,
we have the stronger property that a piece of sphere becomes exponentially close to the unstable
foliation, as j tends to infinity. However, we will check that this property is sufficient for our
needs.

Remark. At this point of the proof, we can ask about an extension of these results to mani-
folds without conjugate points. According to [21], the ‘uniform divergence’ property (given by
lemma 2.1) is true for surfaces without conjugate points. We mention that this property fails in
higher dimension for manifolds without conjugate points.

4.3. Estimates on the induced Jacobian. As was already mentioned, the Jacobian J tSj of
the map gtsj

appears in the WKB expansion of a Lagrangian state evolved under the operator
Pαj

UηPαj−1 · · ·UηPα0 . Precisely, by iterating the WKB Ansatz, we have to estimate the following
quantity (see equation 3.22 in [4]):

(23) Jk(x) :=
(

J−η
Sk−1(x)J

−η
Sk−2 (g

−η
Sk (x)) · · · J−η

S1 (g
(−k+2)η

Sk (x))
)

1
2

.

This Jacobian appears in each term of the WKB expansion of a Lagrangian state evolved under
the operator Pαk

UηPαk−1
· · ·UηPα0 (see the formulas for the ap). It is necessary to provide a way

to bound this quantity as it will appear in the control of every derivatives of the WKB expansion.
According to the proof in [4], if we are able to bound uniformly this quantity, the bound we will



16 G. RIVIÈRE

obtain is the one that will appear in theorem 4.1. This point of the proof is the main difference
with the proof in the Anosov case. So, our goal in this paragraph is to provide an upper bound
on (23). This last quantity can be rewritten

Jk(x) := exp

(

1

2

(

log J−η
Sk−1(x) + log J−η

Sk−2(g
−η
Sk (x)) · · · + log J−η

S1 (g
(−k+2)η

Sk (x))
)

)

.

As the Lagrangian Lj become uniformly close to the unstable foliation when j tends to infinity,
we know that, for every ε′ > 0, there exists some integer j(η, ε′) such that

∀j ≥ j(η, ε′), ∀ρ = (x, ξ) ∈ Lj(0), | log J−η
Sj (x) − log J−η

Su(ρ)(x)| ≤ ε′,

where Su(ρ) generates the local unstable manifold at point ρ (which is a Lagrangian submanifold).
Therefore, we find that there exists a constant C(ε′, η) (depending only on ε′ and η) such that,
uniformly with respect to k and to ρ in Lk(0),

Jk(x) ≤ C(ε′, η)ekε
′

k−1
∏

j=0

J−η
Su(g(−j+1)ηρ)

(g
(−j+1)η

Sk (x)) = C(ε′, η)ekε
′

J
(1−k)η
Su(ρ) (x).

The Jacobian J−η
Su(ρ) measures the contraction of g−η along the unstable direction. From the con-

struction of the unstable Riccati solution Uuρ (s), we know that Uuρ (s) also measures the contraction

of g−η along Eu(ρ). In fact, according to section 2.1, one has

‖dρg−t|Eu(ρ)‖ ≤
√

1 +K0e
R

−t

0
Uu

ρ (s)ds.

As a consequence, there exists an uniform constant C (depending only on the manifold) such that:

J
(1−k)η
Su(ρ) (x) ≤ Ce

R (1−k)η
0 Uu

ρ (s)ds.

Using then relation (4) between the discrete Riccati solution f and the continuous one, we find
that there exists a constant C(ǫ, η, ǫ0) such that, uniformly in k,

sup
x∈πLk(0)

Jk(x) ≤ C(ǫ, η, ǫ0)e
2kηǫǫ0 exp



−1

2

k−1
∑

j=0

f(σjα)



 .

Finally, this last inequality gives us a bound on the quantity (23). This estimate is not as sharp
as the one derived in [4] (equation 3.23 for instance) however it is sufficient as the correction term
is not too large: it is of order ~−ǫ.

Remark. We underline that we used the continuity of Uu to go from the continuous representation
of the upper bound of Jk to the one in terms of the discrete Riccati solution. We underline again
that this property fails for surfaces without conjugate points [5].

5. Applying the uncertainty principle for quantum pressures

In this section, we would like to prove inequality (20) which was a crucial step of our proof. To
do this, we follow the same lines as in [18] (section 5.3) and prove the following proposition:

Proposition 5.1. With the notations of section 3, one has:

(24) p
(

µ
Σ+

~
, C+

~

)

+ p
(

µ
Σ−

~
, C−

~

)

≥ − logC − (1 + ǫ′ + 4ǫ)nE(~),

where p is defined by (18) and where C ∈ R∗
+ does not depend on ~ (but depends on the other

parameters (ǫ, ǫ0, η)).

To prove this result, we will proceed in three steps. First, we will introduce an energy cutoff in
order to get the sharpest bound as possible in our application of the uncertainty principle. Then,

we will apply the uncertainty principle and derive a lower bound on p
(

µ
Σ+

~
, C+

~

)

+ p
(

µ
Σ−

~
, C−

~

)

.

Finally, we will use sharp estimates of theorem 4.1 to conclude.
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5.1. Energy cutoff. Before applying the uncertainty principle, we proceed to sharp energy cutoffs
so as to get precise lower bounds on the quantum pressure (as it was done in [2], [4] and [3]). These
cutoffs are made in our microlocal analysis in order to get as good exponential decrease as possible
of the norm of the refined quantum partition. This cutoff in energy is possible because even if the
distributions µ~ are defined on T ∗M , they concentrate on the energy layer S∗M . The following
energy localization is made in a way to compactify the phase space and in order to preserve the
semiclassical measure.
Let δ0 be a positive number less than 1 and χδ0(t) in C∞(R, [0, 1]). Moreover, χδ0(t) = 1 for
|t| ≤ e−δ0/2 and χδ0(t) = 0 for |t| ≥ 1. As in [4], the sharp ~-dependent cutoffs are then defined
in the following way:

∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ, ~) := χδ0(e
−nδ0~−1+δ0(H(ρ) − 1/2)).

For n fixed, the cutoff χ(n) is localized in an energy interval of length 2enδ0~1−δ0 centered around
the energy layer E . In this paper, indices n will satisfy 2enδ0~1−δ0 << 1. It implies that the widest
cutoff is supported in an energy interval of microscopic length and that n ≤ Kδ0 | log ~|, where
Kδ0 ≤ δ−1

0 . Using then a non standard pseudodifferential calculus (see [4] for a brief reminder of
the procedure from [23]), one can quantize these cutoffs into pseudodifferential operators. We will
denote Op(χ(n)) the quantization of χ(n). The main properties of this quantization are recalled in
the appendix of [18]. In particular, the quantization of these cutoffs preserves the eigenfunctions
of the Laplacian:

Proposition 5.2. [4] For any fixed L > 0, there exists ~L such that for any ~ ≤ ~L, any
n ≤ Kδ| log ~| and any sequence β of length n, the Laplacian eigenstate verify

∥

∥

∥

(

1 − Op
(

χ(n)
))

πβψ~

∥

∥

∥ ≤ ~L‖ψ~‖.

5.2. Applying theorem A.1. Let ‖ψ~‖ = 1 be a fixed element of the sequence of eigenfunctions
of the Laplacian defined earlier, associated to the eigenvalue − 1

~2 .
To get bound on the pressure of the suspension measure, the uncertainty principle should not be
applied to the eigenvectors ψ~ directly but it will be applied several times. Precisely, we will apply
it to each Pγψ~ := Pγ1Pγ0(−η)ψ~ where γ = (γ0, γ1) varies in {1, · · · ,K}2. In order to apply the
uncertainty principle to Pγψ~, we introduce new families of quantum partitions corresponding to
each γ.
Let γ = (γ0, γ1) be an element of {1, · · · ,K}2. We define γ.α′ = (γ0, γ1, α

′). Introduce the
following families of indices:

I~(γ) := {(α′) : γ.α′ ∈ Iη(~)} ,
K~(γ) := {(β′) : β′.γ ∈ Kη(~)} .

We underline that each sequence α of Iη(~) can be written under the form γ.α′ where α′ ∈ I~(γ).
The same works for Kη(~). The following partitions of identity can be associated to these new
families, for α′ ∈ I~(γ) and β′ ∈ K~(γ),

τ̃α′ = Pα′

n
(nη) · · ·Pα′

2
(2η),

π̃β′ = Pβ′

−n
(−nη) · · ·Pβ′

−2
(−2η).

The families (τ̃α′ )α′∈I~(γ) and (π̃β′)β′∈I~(γ) form quantum partitions of identity [18].
Given these new quantum partitions of identity, the unceratinty principle should be applied for
given initial conditions γ = (γ0, γ1) in times 0 and 1. We underline that for α′ ∈ I~(γ) and
β′ ∈ K~(γ):

(25) τ̃α′U−ηPγ = τγ.α′U−η and π̃β′Pγ = πβ′.γ ,

where γ.α′ ∈ Iη(~) and β′.γ ∈ Kη(~) by definition. In equality (25) appears the fact that the
definitions of τ and π are slightly different (see (9) and (10)). It is due to the fact that we want
to compose τ̃ and π̃ with the same operator Pγ .
Suppose now that ‖Pγψ~‖ is not equal to 0. We apply the quantum uncertainty principle A.1
using that

• (τ̃α′)α′∈I~(γ) and (π̃β′)β′∈K~(γ) are partitions of identity;
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• the cardinal of I~(γ) and K~(γ) is bounded by N ≃ ~−K0 where K0 is some fixed positive
number (depending on the cardinality of the partition K, on a0, on b0 and η);

• Op(χ(k′)) is a family of bounded bounded operators Oβ′ (where k′ is the length of β′);

• the constants W+
γ.α′ and W−

β.γ are bounded by ~
−

b0
2ǫ0 ;

• the parameter δ′ can be taken equal to ‖Pγψ~‖−1~L where L is such that ~
L−K0−

b0
2ǫ0 ≪

e2kηǫǫ0~−1/2−cδ0 for every k ≪ 1
ǫη | log ~| (see proposition 5.2 and the upper bound in

theorem 4.1);
• U−η is an isometry;

• ψ̃~ :=
Pγψ~

‖Pγψ~‖
is a normalized vector.

Applying the uncertainty principle A.1 for quantum pressures, one gets:

Corollary 5.3. Suppose that ‖Pγψ~‖ is not equal to 0. Then, one has

pτ̃ (U
−ηψ̃~) + pπ̃(ψ̃~) ≥ −2 log

(

cγχ(U
−η) + ~

L−K0−
b0
2ǫ0 ‖Pγψ~‖−1

)

,

where cγχ(U−η) = max
α′∈I~(γ),β′∈K~(γ)

(

W+
γ.α′W

−
β′.γ‖τ̃α′U−ηπ̃∗

β′Op(χ(k′))‖
)

.

Under this form, the quantity ‖Pγψ~‖−1 appears several times and we would like to get rid of
it. First, remark that the quantity cγχ(U

−η) can be easily replaced by

(26) cχ(U−η) := max
γ∈{1,··· ,K}2

max
α′∈I~(γ),β′∈K~(γ)

(

W+
γ.α′W

−
β′.γ‖τ̃α′U−ηπ̃∗

β′Op(χ(k′))‖
)

,

which is independent of γ. Then, one has the following lower bound:

(27) − 2 log
(

cγχ(U−η) + ~L−K0‖Pγψ~‖−1
)

≥ −2 log
(

cχ(U
−η) + ~

L−K0−
b0
2ǫ0

)

+ 2 log ‖Pγψ~‖2.

as ‖Pγψ~‖ ≤ 1. Now that we have given an alternative lower bound, we rewrite the entropy term

hτ̃ (U
−ηψ̃~) of the quantum pressure pτ̃ (U

−ηψ̃~) as follows:

hτ̃ (U
−ηψ̃~) = −

∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖τ̃α′U−ηPγψ~‖2 +
∑

α′∈I~(γ)

‖τ̃α′U−ηψ̃~‖2 log ‖Pγψ~‖2.

Using the fact that ψ~ is an eigenvector of Uη and that (τ̃α′)α′∈I~(γ) is a partition of identity, one
has:

hτ̃ (U
−ηψ̃~) = − 1

‖Pγψ~‖2

∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 + log ‖Pγψ~‖2.

The same holds for the entropy term hπ̃(ψ̃~) of the quantum pressure pπ̃(ψ̃~) (using here equal-
ity (25)):

hπ̃(ψ̃~) = − 1

‖Pγψ~‖2

∑

β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2 + log ‖Pγψ~‖2.

Combining these last two equalities with (27), we find that

(28) −
∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 log ‖τγ.α′ψ~‖2 − 2
∑

α′∈I~(γ)

‖τγ.α′ψ~‖2 logW+
γ.α′

−
∑

β′∈K~(γ)

‖πβ′.γψ~‖2 log ‖πβ′.γψ~‖2−2
∑

β′∈K~(γ)

‖πβ′.γψ~‖2 logW−
β′.γ ≥ −2‖Pγψ~‖2 log

(

cχ(U−η) + ~
L−K0−

b0
2ǫ0

)

.

This expression is very similar to the definition of the quantum pressure. We also underline that
this lower bound is trivial in the case where ‖Pγψ~‖ is equal to 0. Using the following numbers:

(29) cγ.α′ = cβ′.γ = cγ =
f(γ)

∑

γ′∈{1,··· ,K}2 f(γ′)‖Pγ′ψ~‖2
,

one can derive, as in [18], the following property:
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Corollary 5.4. One has:

(30) p
(

µ
Σ+

~
, C+

~

)

+ p
(

µ
Σ−

~
, C−

~

)

≥ −2 log
(

cχ(U−η) + ~
L−K0−

b0
2ǫ0

)

− log

(

max
γ

cγ

)

.

As expected, by a careful use of the entropic uncertainty principle, we have been able to obtain

a lower bound on the pressures of the measures µ
Σ+

~
and µ

Σ−

~
.

5.3. The conclusion. To conclude the proof of proposition 5.1, we use theorem 4.1 to give an

upper bound on cχ(U−η). From our assumption on L, we know that ~
L−K0−

b0
2ǫ0 ≪ cχ(U−η). As

kη ≤ nE(~)/ǫ0, we also have that

cχ(U
−η) ≤ CK(ǫ, η, ǫ0)~

− 1
2−cδ0e4ǫnE(~).

For δ0 small enough, we find the expected property.�

Appendix A. Uncertainty principle for the quantum pressure

In [4], generalizations of the entropic uncertainty principle were derived for quantum pressures.
We saw that the use of this thermodynamic formalism was crucial in our proof and we recall in
this section the main results from [4] (section 6) on quantum pressures. Consider two partitions
of identity (πk)

N
k=1 and (τj)

M
j=1 on L2(M), i.e.

N
∑

k=1

π∗
kπk = IdL2(M) and

M
∑

j=1

τ∗j τj = IdL2(M).

We also introduce two families of positive numbers: (Vk)
N
k=1 and (Wj)

M
j=1. We denote A :=

maxk Vk and B := maxjWj . One can then introduce the quantum pressures associated to these
families, for a normalized vector ψ in L2(M),

pπ(ψ) := −
N

∑

k=0

‖πkψ‖2
L2(M) log ‖πkψ‖2

L2(M) − 2

N
∑

k=0

‖πkψ‖2
L2(M) logVk

and

pτ (ψ) := −
M
∑

j=0

‖τjψ‖2
L2(M) log ‖τjψ‖2

L2(M) − 2

M
∑

j=0

‖τjψ‖2
L2(M) logWj .

The main result on these quantities that was derived in [4] was theorem 6.5:

Theorem A.1. Under the previous setting, suppose U is an isometry of L2(M) and suppose
(Ok)

N
k=1 is a family of bounded operators. Let δ′ be a positive number and ψ be a vector in H of

norm 1 such that
‖(Id−Ok)πkψ‖L2(M) ≤ δ′.

Then, one has

pτ (Uψ) + pπ(ψ) ≥ −2 log
(

cα,βO (U) + NABδ′
)

,

where cα,βO (U) := supj,k{VkWj‖τjUπ∗
kOk‖}.

Appendix B. Kolmogorov-Sinai entropy

Let us recall a few facts about Kolmogorov-Sinai (or metric) entropy that can be found for
example in [24]. Let (X,B, µ) be a measurable probability space, I a finite set and P := (Pα)α∈I
a finite measurable partition of X , i.e. a finite collection of measurable subsets that forms a
partition. Each Pα is called an atom of the partition. Assuming 0 log 0 = 0, one defines the
entropy of the partition as:

(31) H(µ, P ) := −
∑

α∈I

µ(Pα) logµ(Pα) ≥ 0.

Given two measurable partitions P := (Pα)α∈I and Q := (Qβ)β∈K , one says that P is a refinement
of Q if every element of Q can be written as the union of elements of P and it can be shown that
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H(µ,Q) ≤ H(µ, P ). Otherwise, one denotes P ∨Q := (Pα ∩Qβ)α∈I,β∈K their join (which is still
a partition) and one has H(µ, P ∨Q) ≤ H(µ, P ) +H(µ,Q) (subadditivity property). Let T be a
measure preserving transformation of X . The n-refined partition ∨n−1

i=0 T
−iP of P with respect to

T is then the partition made of the atoms (Pα0 ∩ · · · ∩T−(n−1)Pαn−1)α∈In . We define the entropy
with respect to this refined partition:

(32) Hn(µ, T, P ) = −
∑

|α|=n

µ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1) logµ(Pα0 ∩ · · · ∩ T−(n−1)Pαn−1).

Using the subadditivity property of entropy, we have for any integers n and m:

(33) Hn+m(µ, T, P ) ≤ Hn(µ, T, P ) +Hm(T n♯µ, T, P ) = Hn(µ, T, P ) +Hm(µ, T, P ).

For the last equality, it is important to underline that we really use the T -invariance of the measure
µ. A classical argument for subadditive sequences allows us to define the following quantity:

(34) hKS(µ, T, P ) := lim
n→∞

Hn (µ, T, P )

n
.

It is called the Kolmogorov Sinai entropy of (T, µ) with respect to the partition P . The Kol-
mogorov Sinai entropy hKS(µ, T ) of (µ, T ) is then defined as the supremum of hKS(µ, T, P ) over
all partitions P of X .
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167-196, Séminaire Bourbaki, (1996-1997)
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