
HAL Id: hal-00430568
https://hal.science/hal-00430568

Preprint submitted on 9 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Good C++ Interval Libraries: Tricks AND
Traits

Frédéric Goualard

To cite this version:

Frédéric Goualard. Towards Good C++ Interval Libraries: Tricks AND Traits. 2000. �hal-00430568�

https://hal.science/hal-00430568
https://hal.archives-ouvertes.fr

TOWARDS GOOD C++ INTERVAL LIBRARIES:
TRICKS AND TRAITS

FRÉDÉRIC GOUALARD

Institut de Recherche en Informatique de Nantes

2, rue de la Houssinière

F-44322 NANTES CEDEX 3

E-mail: Frederic.Goualard@irin.univ-nantes.fr

Accepted for publication at: 4th Asian Symposium on Com-
puter Mathematics (ASCM’2000), Thailand

Despite its usefulness for overcoming floating-point arithmetic defects, manipulat-
ing imprecise data, and performing non-linear global optimization, interval arith-
metic is not yet a first-class type in any computer language. Some attempts are
underway for Fortran and Java, not for C++. However, some add-on C++ interval
libraries already exist though they do not respect the C++ standard library spirit
since they are not generic (one cannot choose the type for the interval bounds).
The design and implementation of JAIL, a C++ templated library based on the
“traits” C++ programming technique, are presented in this paper; parameteriza-
tion is shown to enhance the reliability, the versatily, and the portability of the
library across multiple platforms. The impact on efficiency of parameterization
through templated classes and of some implementation tricks is also investigated.

1 Introduction

Following Moore’s Law, computers performances nearly double every 18
months. But, due to the recourse to floating-point arithmetic for numerical
programs, it only means they compute plain wrong results faster and faster.

In the sixties, another Moore 1 conceived of interval arithmetic as a means
to compute with floats while controlling the accuracy of the results. Roughly
speaking, interval arithmetic consists in replacing any real constant by an in-
terval containing it, using extensions of real operations to intervals, and by
preserving the inclusion of any intermediate result through outward rounding
of the floating-point bounds. Interval arithmetic (shortened hereafter to IA)
enjoys some very important properties:
• IA ensures completeness, such that no solution is ever lost. Consequently,

any computation that leads to empty intervals for the domain of the
variables involved is a proof for the non-existence of solutions;

• many classical numerical algorithms, such as Gauss-Seidel’s or Newton’s,
have been adapted to intervals, thereby benefiting from new properties.
For example, the interval Newton algorithm has been proved to be con-
vergent whenever the starting domains contain a solution. What is more,
condition criteria—based on Miranda’s and Brouwer’s theorems—may be

goualard-ascm2000: submitted to World Scientific on November 9, 2009 1

used to prove the existence and uniqueness of a solution in a computed
interval;

• IA permits reasoning on sets of values, thus allowing the devising of
efficient procedures for nonlinear global optimization.

Proper implementation of interval arithmetic demands floating-point
numbers properties and rounding facilities that are available from all

IEEE 754 2 compliant computers—the great majority of them—since 1984.
However, despite the above-mentioned qualities of interval arithmetic, there
still does not exist any language providing intrinsic support for it—a manda-
tory condition for performance and correctness issues. Are the proposals

for integrating interval support into Fortran 2000a and Java3 a harbinger of
change? At least not for a widely used language such as C++, whose adopted
standard does not state anything about IA, while defining a generic class for
complex arithmetic (i.e. a template of class that can be instantiated with dif-
ferent float formats, depending on the required precision). Some C++ interval

libraries already exist 4,5 though they do not respect the spirit of standard
C++ libraries since they do not provide generic classes but a “hard-wired”
class for intervals whose bounds are usually doubles.

In this paper, we present the design and implementation of JAILb, a
templated C++ interval library, and we exhibit the benefits obtained from
parameterization, namely: a runtime speed-up over non-templated libraries;
a seamless integration into the C++ Standard Template Library ; an enhanced
reliability and portability over different platforms; a better versatility, by
allowing the use of different floating-point formats for the interval bounds,
depending on the required precision. The impact of some implementation
tricks is also investigated.

The rest of the paper is organized as follows: basics of interval arithmetic
are briefly presented in Section 2; C++ techniques to be used in designing
JAIL are described in Section 3; Section 4 then introduces JAIL and presents
some of the techniques used to improve both its speed and correctness; some
experimental results are given and analysed in Section 5; last, directions for
future researches are discussed in Section 6.

2 Interval arithmetic

An interval is a connected set of reals. While it may be closed or open, we
will only consider closed intervals in the following, that is sets of the form:

aSee http://interval.usl.edu/F90/f96-pro.asc
bJAIL stands for “Just Another Interval Library”.

goualard-ascm2000: submitted to World Scientific on November 9, 2009 2

I = [a .. b] = {c ∈ R | a 6 c 6 b}, where a and b must be floating-point
numbers for intervals to be stored and manipulated on computers. Floating-
point arithmetic features that are relevant to interval arithmetic are presented
in Section 2.1 while interval arithmetic is surveyed in Section 2.2. Due to lack
of space, both topics are but sketched in the following sections. The reader is

referred to Goldberg’s survey 6 and Moore’s book 1 for thorough presentations
of floating-point arithmetic and interval arithmetic.

2.1 Floating-point arithmetic

The finite nature of computers precludes them from representing the whole
set R of real numbers. Modern computers handle floating-point numbers
(or simply, floats) of various precisions, whose formats are precisely defined

by the IEEE 754 standard 2. A set F ⊂ R of floats in one of these given
precisions must be closed under all supported operations in order not to break
the computation stream. Practical consequences are:

• the compactification of F with two infinities (−∞ and +∞) with the
rules: ∀a ∈ F, a > 0: a/0 = +∞ and −a/0 = −∞. By symmetry, the
IEEE 754 standard defines two zeroes (−0 and +0, with −0 = +0), such
that: ∀a ∈ F, a > 0: a/+∞ = +0 and a/−∞ = −0. In the sequel, let
F
∞ be the set F ∪ {−∞,+∞};

• the introduction of special “numbers”, NaNsc, that are the result of any
otherwise undefined operation, such as extracting the square root of a
negative number, or divisions like 0/0 and +∞/+∞;

• the specification of rounding operations: given x ∈ R \ F a real number,
the IEEE 754 defines four policies for rounding x to a float: rounding
towards +∞, −∞, 0, and the nearest-even. The only ones of interest
to us are rounding towards +∞ and towards −∞ that can be formally
defined by:

Rounding towards −∞: ⌊ ⌋ : R −→ F
∞, x 7−→ max{y ∈ F

∞ | y 6 x}
Rounding towards +∞: ⌈ ⌉ : R −→ F

∞, x 7−→ min{y ∈ F
∞ | x 6 y}

The IEEE 754 standard also stipulates that the real result of any of
the five operations {+,−,×,÷,

√ } must be correctly rounded, that is
rounded by excess or by default to the nearest floating-point number. Due

to the Table maker’s dilemma 6, no requirement of the sort is imposed
on transcendental functions, whose precision is thus implementation-
dependent.

cNaN stands for “Not A Number”.

goualard-ascm2000: submitted to World Scientific on November 9, 2009 3

2.2 Real and floating-point intervals

In this section, we will consider both the real interval set IR (i.e. intervals
whose bounds are real numbers) and the floating-point interval set IF (i.e.
intervals whose bounds are floats).
Real intervals. Real interval arithmetic is defined as follows: given I1 =
[a .. b] and I2 = [c .. d] two intervals in IR, ◦ ∈ {+,−,×,÷}, and ϕ ∈
{√ , exp, ln, cos, . . . }, real intervals I3 = I1 ◦ I2 and I4 = ϕ(I1) are defined

by I3 = {x ◦ y | x ∈ I1, y ∈ I2} and I4 = {ϕ(x) | x ∈ I1}. From monotony
considerations, one can easily deduce the following formulae from the above
definitions:

[a .. b] + [c .. d] = [a + c .. b + d], [a .. b] − [c .. d] = [a − d .. b − c]

[a .. b] × [c .. d] = [min(ac, ad, bc, bd) .. max(ac, ad, bc, bd)]

[a .. b] ÷ [c .. d] = [min(a/c, a/d, b/c, b/d) .. max(a/c, a/d, b/c, b/d)], 0 /∈ [c .. d]

exp([a .. b]) = [exp(a) .. exp(b)]

Note that division may also be defined such that dividing by an interval

spanning 0 is permitted. See Kahan’s extended interval arithmetic 7.
A weakness of interval arithmetic is that it is only sub-distributive:

∀I1, I2, I3 ∈ IR : I1 × (I2 ± I3) ⊆ I1 × I2 ± I1 × I3. On the other hand,
its strength comes from the following theorem.

Theorem 1 (IA fundamental theorem 1) Given F (X1, . . . ,Xn) a ratio-

nal expression on intervals X1,. . . , Xn, the following does hold for all

X ′
1, . . . ,X

′
n ∈ IR: X ′

1 ⊆ X1, . . . ,X
′
n ⊆ Xn ⇒ F (X ′

1, . . . ,X
′
n) ⊆

F (X1, . . . ,Xn)
Consequently, it is possible to compute the range of a rational expression

over a given domain by merely evaluating its extension over intervals.

Example 1 (Computing the range of a function) Given the function

f(x) = (x + 1/2)2 − 1/4 and the interval I = [−1 .. 1], computing the range

of f over I is as easy as evaluating the interval expression I + [1/2 .. 1/2])2 −
[1/4 .. 1/4], which leads to f(I) = [−1/4 .. 2]. Due to sub-distributivity, the

form considered for evaluating f over intervals is important for tightness of

the result. For example, evaluating f as x(x+1) would lead to f(I) = [−2 ..2].

Floating-point intervals. In order to effectively compute with intervals,
one has to make the shift from real intervals to floating-point intervals. This
is achieved by outward rounding of real bounds to float bounds in order to
ensure completeness. For example, the preceding definitions become:

[a .. b] + [c .. d] = [⌊a + c⌋ .. ⌈b + d⌉] [a .. b] − [c .. d] = [⌊a − d⌋ .. ⌈b − c⌉]
. . . exp([a .. b]) = [⌊exp(a)⌋ .. ⌈exp(b)⌉]

goualard-ascm2000: submitted to World Scientific on November 9, 2009 4

Due to IEEE 754 correct rounding requirement for +,−,×,÷,
√

, the
computed intervals for these operations are the smallest representable. This
is not so for the other operators such as exp, whose precision is not specified.
As a consequence, ⌊exp(a)⌋ may be a value greater than the true result, de-
pending on the accuracy of the exp function on a given platform. In order
to overcome this problem, implementors of interval libraries usually rely on
epsilon-inflation: a small quantity is added or subtracted from the value of
exp(a), depending on the intended rounding direction. However, the preced-
ing formulae cannot be directly used for implementing floating-point interval
arithmetic. For example, consider intervals I1 = [−∞ .. 3] and I2 = [−1 .. 0].
Applying blindly the formula for the product of I1 and I2 leads to:

I1 × I2 = [min(⌊−∞×−1⌋, ⌊−∞× 0⌋, ⌊3 ×−1⌋, ⌊3 × 0)⌋..

max(⌈−∞×−1⌉, ⌈−∞× 0⌉, ⌈3 ×−1⌉, ⌈3 × 0)⌉)]

IEEE 754 specifies that −∞× 0 must be a NaN. Since NaNs are unordered,
the result of I1×I2 depends on the implementation of min and max functions.
It is then crucial to avoid the arising of NaNs by testing bound values prior
to float multiplication.

3 C++ techniques

The C++ techniques that are used in the design of JAIL are now presented
in this section. Generic programming through templated classes is first intro-

duced; the “traits 8” method for defining interfaces much like signatures is
then described.

3.1 Templated classes

A C++ templated class is a pattern for an actual class that is parameter-
ized by a type. It is not a valid class until instantiated. For example, one
can instantiate a templated class list to define lists of integers list<int>

or lists of characters list<char>. The whole C++ standard library is com-
posed of templated classes (containers such as lists, hash tables, . . .) and
templated functions (sorting procedures,. . .). Parameterization through tem-
plated class allows factorizing code for many types. It may however lead to
weird situations. For example, consider Prog. 1 for a C++ class MyNumber

whose intended use is to provide a means to count the number of calls to
arithmetic operators. The class is parameterized by the type T of the actual
values to be manipulated.

Execution of Prog. 1 will print values 0.70867 (i.e. cos(5.5)) and 0 on the
screen, where the 0 comes from the fact that the call to cos for b induces

goualard-ascm2000: submitted to World Scientific on November 9, 2009 5

the promotion of the integer value 6 to a double for calling the “double
cos(double)” function of the standard library at line 18, and then a cast of
the result back to an int for returning a MyNumber<int> object.

Prog. 1. The MyNumber class without “traits”

1 template<class T>

2 class MyNumber {
3 public:

4 MyNumber(const T& x) : val(x) { }
5 friend MyNumber

6 cos<>(const MyNumber& x);

7 private:

8 T val;

9 static unsigned int nbCallsCos;

10 };
11

12 template<class T> unsigned int

13 MyNumber<T>::nbCallsCos=0;

14

15 template<class T> MyNumber<T>

16 cos(const MyNumber<T>& x) {
17 ++MyNumber<T>::nbCallsCos;

18 return MyNumber<T>(::cos(x.val));

19 }
20

21 int main() {
22 MyNumber<double> a(5.5);

23 MyNumber<int> b(6);

24

25 cout ≪ cos(a) ≪ cos(b) ≪ endl;

26 }
27

One would indeed like to have the ability to return a MyNumber<double>

object from a MyNumber<int> for some operators, and specify which function

cos() to use depending on type T. The “traits” technique devised by Myers 8

is an elegant solution to these requests.

3.2 The “traits” technique

A trait is a templated class collecting types and method names acting as
an interface. Prog. 2 presents the MyNumber class implemented with traits.
The traits class defines a type Real and a cos() function whose input
and output have the same type by default. Lines 6 through 11 present a
specialization of the trait for short ints. The MyNumber class then uses the
traits class to know what should be the cos() function to use and what
is the type of its result, depending on its parameter T. As a consequence,
Prog. 2 prints the value 0.96017 (i.e. cos(6)), since the cos() function for
MyNumber<short> knows that it must invoke function “float cos(short)”
and return a MyNumber<float> as a result.

The traits technique then permits optimizing the code by specializing the
class for some types (for example, we use here a “float cos(short)” that
should hopefully be faster than the standard “double cos(double)” func-
tion. Reliability is also enhanced since the user must explicitly specify which
functions to call in the MyNumber methods, thereby avoiding ambiguities.

4 Design and implementation of JAIL

The heart of the JAIL library is the templated class Interval, that contains
most of the interval operators and relations defined in the Basic Interval

goualard-ascm2000: submitted to World Scientific on November 9, 2009 6

Arithmetic Specification 9.

Prog. 2. The MyNumber class with “traits”

1 template<class T> struct traits {
2 typedef T Real;

3 static T cos(T x);

4 };
5

6 template<> struct traits<short> {
7 typedef float Real;

8 static float cos(short x) {
9 return ::cos(float(x));

10 }
11 };
12

13 template<class T> class MyNumber {
14 public:

15 typedef traits<T>::Real

16 Real;

17 MyNumber(const T& x) : val(x) { }
18 friend MyNumber<Real>

19 cos<>(const MyNumber<T>& x);

20 private:

21 T val;

22 static unsigned int nbCallsCos;

23 };
24

25 template<class T>

26 MyNumber<typename traits<T>::Real>

27 cos(const MyNumber<T>& x) {
28 ++MyNumber<T>::nbCallsCos;

29 return MyNumber<typename

30 traits<T>::Real>(

31 traits<T>::cos(x.val));

32 }
33

34 int main() {
35 MyNumber<short> b(6);

36 cout ≪ cos(b) ≪ endl;

37 }
38

The Interval class may be instantiated with any floating-point format by
specializing the JailRealTraits trait (see Prog. 3) that specifies all constants
and functions used in implementing interval functions. In particular, the trait
requires specifying downward and upward rounded versions for each func-
tion whose accuracy is not specified by the IEEE 754 standard (e.g. cosDn()
and cosUp()). Besides enhancing the versatility of the library by permitting
generic programming with intervals, the use of traits also increases its relia-
bility when porting it on different platforms by making explicit the need for
correctly rounded functions. Depending on the possibilities at hand on a given
platform, one can define a function such as cosDn() by using epsilon-inflation
or by directly calling a cos() function in a mathematical library in which it is
known to be correctly rounded. What is more, the amount of epsilon-inflation
may thus be easily parameterized according to the precision of the available
functions without modifying the Interval class itself.

Prog. 3. JAIL’s trait specialized for the double type

1 struct JailRealTraits<double> {
2 typedef double JailReal;

3 static inline double NextFloat(double x);

4 static const double MAXREAL;

5 static inline double cosDn(double x);

6 static inline double cosUp(double x);

7 . . .

8 };

Modern FPUs are usually pipe-lined: at one time, the FPU contains
several instructions at different decoding stages. Modifying the rounding di-
rection for computing interval bounds requires flushing all these instructions,
then modifying a flag before admitting new instructions in the pipe-line. Such
an interruption of the stream greatly lessens performances. In order to over-

goualard-ascm2000: submitted to World Scientific on November 9, 2009 7

come this problem, JAIL uses only rounding towards +∞ by relying on the
following IEEE 754 guaranteed property:

⌊x ◦ y⌋ = −⌈(−x) ◦ y⌉, for ◦ ∈ {+,−,×,÷}
For the square root, we use the following property (the proof is easily

done by using the definition of ⌈ ⌉ twice):

∀x ∈ F, x < 0: −
⌈

x
⌈√

−x
⌉

⌉

6
⌊√

−x
⌋

In order to avoid using the negation twice, we have chosen to directly
represent the left bound of an interval by its opposite (e.g. the interval [−6 ..4]
is internally represented by the pair 〈6, 4〉. The code for computing the sum
of two intervals is then as follows:

Addition(in I1, I2; out I3 = I1 + I2)

begin

RoundUp()

I3 ← −(I1 + I2)

I3 ← I1 + I2

end

One thus halves the number of rounding direction switching. But one
can do better still, provided that each function that modifies the rounding
direction (basically, output routines) reset it to “towards +∞”. It is then
possible to switch the rounding towards +∞ only once at the beginning of the
computation. This is what we call the trust on mode since the library trusts
functions for preserving the rounding direction. By contrast, the trust off

mode requires switching the rounding towards +∞ for each interval operation.

NaNs propagate along all the computation, as the empty interval do. We
have then decided to use [NaN .. NaN] for representing the empty interval
(actually, suffices for one of the bounds to be a NaN). Since NaNs are not
comparable, it is then necessary to negate tests such as test for emptiness:

isEmpty(in: I1; out: I1 == ∅)

begin

return (¬(−I1 6 I1))

end

The test (−I1 6 I1) is false whenever one of the bounds is a NaN or the
right bound is smaller than the left bound.

Since NaNs are only characterized by the the value of the exponent (suf-
fices for the mantissa to be different from 0), one can use the bits of their
mantissa for coding information recording when and why an empty interval
appeared.

goualard-ascm2000: submitted to World Scientific on November 9, 2009 8

5 Experimental results

In order to validate our implementation choices, we have developed five ver-
sions of our library: a templated version using the trust on mode and another
using the trust off mode, and three non-templated versions (one in trust on

mode, the second in trust off mode, and the last using downward rounding
for computing left bounds and upward rounding for right bounds). We have
then used a set of intervals exercising the whole code of the operators tested.
Table 1 presents the computation times for this benchmark. One may easily
see that the templated version using the trust on mode is the fastest of all.
However, the compiling time suffers greatly from the use of templates (this is
a well known drawback that should be made less accurate in the future with
new generations of C++ compilers).

Table 1. Impact of the implementation choices for JAIL

Parameterized version Non-parameterized version

trust on trust off t. on t. off Dn/Up
x + y 19204 24175 34445 41281 49280

x − y 17526 24812 34543 41311 42840

x × y 17220 22559 29709 35383 38121

x ÷ y 33105 33563 39561 40634 41792√
x 12829 14451 21412 22942 26693

x2 7309 9378 13827 15778 18071

x−10 . . . x10 13141 13913 15997 16572 11632

ex 23915 23182 26262 24810 24545

log x 18404 17934 21069 20769 20860

cos x 19218 19577 19951 20421 20766

sin x 21289 21628 22220 22581 32663

tan x 14807 14970 15660 15608 16013

compilation 11200 13300 4200 4100 4000

Times in milliseconds on a SUN UltraSparc 1/167MHz with egcs 2.91.66

We have also compared JAIL with other available (non-templated) inter-
val libraries, using the same benchmark as above. The results are summarized
in Table 2. They show that the higher versatility of JAIL (genericity of the
Interval class) does not prevent it from achieving good performances since
it is the fastest of all the libraries tested on the elementary operations. There
is still room for improvement as for the trigonometric functions, though. Note
also that Profil is the fastest for computing powers, but it returns wider inter-
vals (use of an adaptation of the Russian peasant method to exponentiation).

6 Conclusion

We have shown that a generic interval library for C++ can be obtained at
no extra cost as for the computation time, thereby permitting to seamlessly

goualard-ascm2000: submitted to World Scientific on November 9, 2009 9

integrate it into the standard C++ library. What is more, the use of templates
and traits enhances the reliability of the resulting library.

Future works on JAIL include implementing the whole Basic Interval

Arithmetic Specification 9, and integrating directed interval arithmetic 10, a
variant of interval arithmetic that permits computing inner-approximations
of the range of functions.

Table 2. Comparing interval arithmetic libraries on an UltraSparc 1/167 MHz

Profil RVInterval fi lib JAIL
†

x + y 26362 53400 48479 19204

x − y 26317 53102 47637 17526

x × y 25951 40274 35758 17220

x ÷ y 35521 38245 39538 33105√
x 321568 12382 23853 12829

x2 16426 26819 14133 7309

x−10 . . . x10 6698 25747 — 13141

ex 201797 23599 11605 23915

log x 119980 20195 10940 18404

cos x 109844 7963 6295 19218

sin x 91883 16982 5953 21289

tan x 41657 — 4117 14807
Results in milliseconds with egcs 2.91.66
†Parameterized version with trust on

References

1. R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
2. IEEE. IEEE standard for binary floating-point arithmetic. Ieee std

754-1985, Instit. Electrical and Electronics Engineers, 1985.
3. J. D. Darcy. Borneo 1.0.2: Adding IEEE 754 floating point support to

Java. Univ. California, Berkeley, May 1998.
4. O. Knüppel. PROFIL/BIAS—a fast interval library. Computing, 53:277–

287, 1996.
5. W. Hofschuster and W. Kraemer. A fast public domain interval library

in ANSI C. In Procs. 15th IMACS World Congress on Scientific Compu-

tation, Modelling and Applied Maths., volume 2 of Num. Maths., pages
395–400, 1997.

6. D. M. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Comp. Surveys, 23(1):5–48, March 1991.

7. W. M. Kahan. A more complete interval arithmetic. Tech. report, Univ.
toronto, 1968.

8. N. C. Myers. A new and useful technique: “traits”. C++ Report,
7(5):32–35, June 1995.

9. D. Chiriaev and G. W. Walster. Interval arithmetic specifications.
Manuscript J3/97-199 for ANSI X3J3, July 1997.

goualard-ascm2000: submitted to World Scientific on November 9, 200910

10. S. M. Markov. On directed interval arithmetic and its applications. J.

Univ. Comp. Sci., 1(7):514–526, 1995.

goualard-ascm2000: submitted to World Scientific on November 9, 200911

