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TOWARDS GOOD C ++ INTERVAL LIBRARIES: TRICKS AND TRAITS

Despite its usefulness for overcoming floating-point arithmetic defects, manipulating imprecise data, and performing non-linear global optimization, interval arithmetic is not yet a first-class type in any computer language. Some attempts are underway for Fortran and Java, not for C++. However, some add-on C++ interval libraries already exist though they do not respect the C++ standard library spirit since they are not generic (one cannot choose the type for the interval bounds). The design and implementation of JAIL, a C++ templated library based on the "traits" C++ programming technique, are presented in this paper; parameterization is shown to enhance the reliability, the versatily, and the portability of the library across multiple platforms. The impact on efficiency of parameterization through templated classes and of some implementation tricks is also investigated.

Introduction

Following Moore's Law, computers performances nearly double every 18 months. But, due to the recourse to floating-point arithmetic for numerical programs, it only means they compute plain wrong results faster and faster. In the sixties, another Moore 1 conceived of interval arithmetic as a means to compute with floats while controlling the accuracy of the results. Roughly speaking, interval arithmetic consists in replacing any real constant by an interval containing it, using extensions of real operations to intervals, and by preserving the inclusion of any intermediate result through outward rounding of the floating-point bounds. Interval arithmetic (shortened hereafter to IA) enjoys some very important properties:

• IA ensures completeness, such that no solution is ever lost. Consequently, any computation that leads to empty intervals for the domain of the variables involved is a proof for the non-existence of solutions; • many classical numerical algorithms, such as Gauss-Seidel's or Newton's, have been adapted to intervals, thereby benefiting from new properties. For example, the interval Newton algorithm has been proved to be convergent whenever the starting domains contain a solution. What is more, condition criteria-based on Miranda's and Brouwer's theorems-may be goualard-ascm2000: submitted to World Scientific on November 9, 2009 1 used to prove the existence and uniqueness of a solution in a computed interval; • IA permits reasoning on sets of values, thus allowing the devising of efficient procedures for nonlinear global optimization.

Proper implementation of interval arithmetic demands floating-point numbers properties and rounding facilities that are available from all IEEE 754 2 compliant computers-the great majority of them-since 1984. However, despite the above-mentioned qualities of interval arithmetic, there still does not exist any language providing intrinsic support for it-a mandatory condition for performance and correctness issues. Are the proposals for integrating interval support into Fortran 2000 a and Java 3 a harbinger of change? At least not for a widely used language such as C ++ , whose adopted standard does not state anything about IA, while defining a generic class for complex arithmetic (i.e. a template of class that can be instantiated with different float formats, depending on the required precision). Some C ++ interval libraries already exist 4,5 though they do not respect the spirit of standard C ++ libraries since they do not provide generic classes but a "hard-wired" class for intervals whose bounds are usually doubles.

In this paper, we present the design and implementation of JAIL b , a templated C ++ interval library, and we exhibit the benefits obtained from parameterization, namely: a runtime speed-up over non-templated libraries; a seamless integration into the C ++ Standard Template Library; an enhanced reliability and portability over different platforms; a better versatility, by allowing the use of different floating-point formats for the interval bounds, depending on the required precision. The impact of some implementation tricks is also investigated.

The rest of the paper is organized as follows: basics of interval arithmetic are briefly presented in Section 2; C ++ techniques to be used in designing JAIL are described in Section 3; Section 4 then introduces JAIL and presents some of the techniques used to improve both its speed and correctness; some experimental results are given and analysed in Section 5; last, directions for future researches are discussed in Section 6.

Interval arithmetic

An interval is a connected set of reals. While it may be closed or open, we will only consider closed intervals in the following, that is sets of the form:

a See http://interval.usl.edu/F90/f96-pro.asc b JAIL stands for "Just Another Interval Library".
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I = [a .. b] = {c ∈ R | a c
b}, where a and b must be floating-point numbers for intervals to be stored and manipulated on computers. Floatingpoint arithmetic features that are relevant to interval arithmetic are presented in Section 2.1 while interval arithmetic is surveyed in Section 2.2. Due to lack of space, both topics are but sketched in the following sections. The reader is referred to Goldberg's survey 6 and Moore's book 1 for thorough presentations of floating-point arithmetic and interval arithmetic.

Floating-point arithmetic

The finite nature of computers precludes them from representing the whole set R of real numbers. Modern computers handle floating-point numbers (or simply, floats) of various precisions, whose formats are precisely defined by the IEEE 754 standard 2 . A set F ⊂ R of floats in one of these given precisions must be closed under all supported operations in order not to break the computation stream. Practical consequences are:

• the compactification of F with two infinities (-∞ and +∞) with the rules: ∀a ∈ F, a > 0 : a/0 = +∞ and -a/0 = -∞. By symmetry, the IEEE 754 standard defines two zeroes (-0 and +0, with -0 = +0), such that: ∀a ∈ F, a > 0 : a/+∞ = +0 and a/-∞ = -0. In the sequel, let F ∞ be the set F ∪ {-∞, +∞}; • the introduction of special "numbers", NaNs c , that are the result of any otherwise undefined operation, such as extracting the square root of a negative number, or divisions like 0/0 and +∞/+∞; • the specification of rounding operations: given x ∈ R \ F a real number, the IEEE 754 defines four policies for rounding x to a float: rounding towards +∞, -∞, 0, and the nearest-even. The only ones of interest to us are rounding towards +∞ and towards -∞ that can be formally defined by:

Rounding towards -∞: ⌊ ⌋ : R -→ F ∞ , x -→ max{y ∈ F ∞ | y x} Rounding towards +∞: ⌈ ⌉ : R -→ F ∞ , x -→ min{y ∈ F ∞ | x y}
The IEEE 754 standard also stipulates that the real result of any of the five operations {+, -, ×, ÷, √ } must be correctly rounded, that is rounded by excess or by default to the nearest floating-point number. Due to the Table maker's dilemma 6 , no requirement of the sort is imposed on transcendental functions, whose precision is thus implementationdependent.

c NaN stands for "Not A Number ".
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Real and floating-point intervals

In this section, we will consider both the real interval set I R (i.e. intervals whose bounds are real numbers) and the floating-point interval set I F (i.e. intervals whose bounds are floats).

Real intervals. Real interval arithmetic is defined as follows: given by

I 1 = [a .. b] and I 2 = [c .. d] two intervals in I R , • ∈ {+, -, ×,
I 3 = {x • y | x ∈ I 1 , y ∈ I 2 } and I 4 = { ϕ (x) | x ∈ I 1 }.
From monotony considerations, one can easily deduce the following formulae from the above definitions:

[a .. b] + [c .. d] = [a + c .. b + d], [a .. b] -[c .. d] = [a -d .. b -c] [a .. b] × [c .. d] = [min(ac, ad, bc, bd) .. max(ac, ad, bc, bd)] [a .. b] ÷ [c .. d] = [min(a/c, a/d, b/c, b/d) .. max(a/c, a/d, b/c, b/d)], 0 / ∈ [c .. d] exp([a .. b]) = [exp(a) .. exp(b)]
Note that division may also be defined such that dividing by an interval spanning 0 is permitted. See Kahan's extended interval arithmetic 7 .

A weakness of interval arithmetic is that it is only sub-distributive:

∀I 1 , I 2 , I 3 ∈ I R : I 1 × (I 2 ± I 3 ) ⊆ I 1 × I 2 ± I 1 × I 3 .
On the other hand, its strength comes from the following theorem. Theorem 1 (IA fundamental theorem 1 ) Given F (X 1 , . . . , X n ) a rational expression on intervals X 1 ,. . . , X n , the following does hold for all

X ′ 1 , . . . , X ′ n ∈ I R : X ′ 1 ⊆ X 1 , . . . , X ′ n ⊆ X n ⇒ F (X ′ 1 , . . . , X ′ n ) ⊆ F (X 1 , . . . , X n )
Consequently, it is possible to compute the range of a rational expression over a given domain by merely evaluating its extension over intervals. Example 1 (Computing the range of a function) Given the function f (x) = (x + 1/2) 2 -1/4 and the interval I = [-1 .. 1], computing the range of f over I is as easy as evaluating the interval expression

I + [1/2 .. 1/2]) 2 - [1/4 .. 1/4], which leads to f (I) = [-1/4 .. 2].
Due to sub-distributivity, the form considered for evaluating f over intervals is important for tightness of the result. For example, evaluating f as x(x+1) would lead to

f (I) = [-2..2].
Floating-point intervals. In order to effectively compute with intervals, one has to make the shift from real intervals to floating-point intervals. This is achieved by outward rounding of real bounds to float bounds in order to ensure completeness. For example, the preceding definitions become:

[a .. b] + [c .. d] = [⌊a + c⌋ .. ⌈b + d⌉] [a .. b] -[c .. d] = [⌊a -d⌋ .. ⌈b -c⌉] . . . exp([a .. b]) = [⌊exp(a)⌋ .. ⌈exp(b)⌉]
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Due to IEEE 754 correct rounding requirement for +, -, ×, ÷, √ , the computed intervals for these operations are the smallest representable. This is not so for the other operators such as exp, whose precision is not specified. As a consequence, ⌊exp(a)⌋ may be a value greater than the true result, depending on the accuracy of the exp function on a given platform. In order to overcome this problem, implementors of interval libraries usually rely on epsilon-inflation: a small quantity is added or subtracted from the value of exp(a), depending on the intended rounding direction. However, the preceding formulae cannot be directly used for implementing floating-point interval arithmetic. For example, consider intervals

I 1 = [-∞ .. 3] and I 2 = [-1 .. 0].
Applying blindly the formula for the product of I 1 and I 2 leads to:

I1 × I2 = [ min(⌊-∞ × -1⌋, ⌊-∞ × 0⌋, ⌊3 × -1⌋, ⌊3 × 0)⌋.. max(⌈-∞ × -1⌉, ⌈-∞ × 0⌉, ⌈3 × -1⌉, ⌈3 × 0)⌉)]
IEEE 754 specifies that -∞ × 0 must be a NaN. Since NaNs are unordered, the result of I 1 ×I 2 depends on the implementation of min and max functions.

It is then crucial to avoid the arising of NaNs by testing bound values prior to float multiplication.

C ++ techniques

The C ++ techniques that are used in the design of JAIL are now presented in this section. Generic programming through templated classes is first introduced; the "traits 8 " method for defining interfaces much like signatures is then described.

Templated classes

A C ++ templated class is a pattern for an actual class that is parameterized by a type. It is not a valid class until instantiated. For example, one can instantiate a templated class list to define lists of integers list<int> or lists of characters list<char>. The whole C ++ standard library is composed of templated classes (containers such as lists, hash tables, . . . ) and templated functions (sorting procedures,. . . ). Parameterization through templated class allows factorizing code for many types. It may however lead to weird situations. For example, consider Prog. 1 for a C ++ class MyNumber whose intended use is to provide a means to count the number of calls to arithmetic operators. The class is parameterized by the type T of the actual values to be manipulated. Execution of Prog. 1 will print values 0.70867 (i.e. cos(5.5)) and 0 on the screen, where the 0 comes from the fact that the call to cos for b induces goualard-ascm2000: submitted to World Scientific on November 9, 2009 5 the promotion of the integer value 6 to a double for calling the "double cos(double)" function of the standard library at line 18, and then a cast of the result back to an int for returning a MyNumber<int> object.

Prog. 1. The MyNumber class without "traits" One would indeed like to have the ability to return a MyNumber<double> object from a MyNumber<int> for some operators, and specify which function cos() to use depending on type T. The "traits" technique devised by Myers 8 is an elegant solution to these requests.

The "traits" technique

A trait is a templated class collecting types and method names acting as an interface. Prog. 2 presents the MyNumber class implemented with traits. The traits class defines a type Real and a cos() function whose input and output have the same type by default. Lines 6 through 11 present a specialization of the trait for short ints. The MyNumber class then uses the traits class to know what should be the cos() function to use and what is the type of its result, depending on its parameter T. As a consequence, Prog. 2 prints the value 0.96017 (i.e. cos( 6)), since the cos() function for MyNumber<short> knows that it must invoke function "float cos(short)" and return a MyNumber<float> as a result.

The traits technique then permits optimizing the code by specializing the class for some types (for example, we use here a "float cos(short)" that should hopefully be faster than the standard "double cos(double)" function. Reliability is also enhanced since the user must explicitly specify which functions to call in the MyNumber methods, thereby avoiding ambiguities.

Design and implementation of JAIL

The heart of the JAIL library is the templated class Interval, that contains most of the interval operators and relations defined in the Basic Interval goualard-ascm2000: submitted to World Scientific on November 9, 2009 6 Arithmetic Specification 9 .

Prog. 2. The MyNumber class with "traits" The Interval class may be instantiated with any floating-point format by specializing the JailRealTraits trait (see Prog. 3) that specifies all constants and functions used in implementing interval functions. In particular, the trait requires specifying downward and upward rounded versions for each function whose accuracy is not specified by the IEEE 754 standard (e.g. cosDn() and cosUp()). Besides enhancing the versatility of the library by permitting generic programming with intervals, the use of traits also increases its reliability when porting it on different platforms by making explicit the need for correctly rounded functions. Depending on the possibilities at hand on a given platform, one can define a function such as cosDn() by using epsilon-inflation or by directly calling a cos() function in a mathematical library in which it is known to be correctly rounded. What is more, the amount of epsilon-inflation may thus be easily parameterized according to the precision of the available functions without modifying the Interval class itself.

Prog. 3. JAIL's trait specialized for the double type 1 struct JailRealTraits<double> { 2 typedef double JailReal; 3 static inline double NextFloat(double x); 4 static const double MAXREAL; 5 static inline double cosDn(double x); 6 static inline double cosUp(double x); 7 . . .

};

Modern FPUs are usually pipe-lined: at one time, the FPU contains several instructions at different decoding stages. Modifying the rounding direction for computing interval bounds requires flushing all these instructions, then modifying a flag before admitting new instructions in the pipe-line. Such an interruption of the stream greatly lessens performances. In order to overgoualard-ascm2000: submitted to World Scientific on November 9, 2009 7 come this problem, JAIL uses only rounding towards +∞ by relying on the following IEEE 754 guaranteed property: ⌊x • y⌋ = -⌈(-x) • y⌉, for • ∈ {+, -, ×, ÷} For the square root, we use the following property (the proof is easily done by using the definition of ⌈ ⌉ twice):

∀x ∈ F, x < 0 : - x √ -x √ -x
In order to avoid using the negation twice, we have chosen to directly represent the left bound of an interval by its opposite (e.g. the interval [-6..4] is internally represented by the pair 6, 4 . The code for computing the sum of two intervals is then as follows:

Addition(in I 1 , I 2 ; out I 3 = I 1 + I 2 ) begin RoundUp()

I 3 ← -(I 1 + I 2 ) I 3 ← I 1 + I 2 end
One thus halves the number of rounding direction switching. But one can do better still, provided that each function that modifies the rounding direction (basically, output routines) reset it to "towards +∞". It is then possible to switch the rounding towards +∞ only once at the beginning of the computation. This is what we call the trust on mode since the library trusts functions for preserving the rounding direction. By contrast, the trust off mode requires switching the rounding towards +∞ for each interval operation.

NaNs propagate along all the computation, as the empty interval do. We have then decided to use [N aN .. N aN ] for representing the empty interval (actually, suffices for one of the bounds to be a NaN). Since NaNs are not comparable, it is then necessary to negate tests such as test for emptiness: The test (-I 1 I 1 ) is false whenever one of the bounds is a NaN or the right bound is smaller than the left bound.

Since NaNs are only characterized by the the value of the exponent (suffices for the mantissa to be different from 0), one can use the bits of their mantissa for coding information recording when and why an empty interval appeared.
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In order to validate our implementation choices, we have developed five versions of our library: a templated version using the trust on mode and another using the trust off mode, and three non-templated versions (one in trust on mode, the second in trust off mode, and the last using downward rounding for computing left bounds and upward rounding for right bounds). We have then used a set of intervals exercising the whole code of the operators tested. Table 1 presents the computation times for this benchmark. One may easily see that the templated version using the trust on mode is the fastest of all. However, the compiling time suffers greatly from the use of templates (this is a well known drawback that should be made less accurate in the future with new generations of C ++ compilers). We have also compared JAIL with other available (non-templated) interval libraries, using the same benchmark as above. The results are summarized in Table 2. They show that the higher versatility of JAIL (genericity of the Interval class) does not prevent it from achieving good performances since it is the fastest of all the libraries tested on the elementary operations. There is still room for improvement as for the trigonometric functions, though. Note also that Profil is the fastest for computing powers, but it returns wider intervals (use of an adaptation of the Russian peasant method to exponentiation).

Conclusion

We have shown that a generic interval library for C ++ can be obtained at no extra cost as for the computation time, thereby permitting to seamlessly goualard-ascm2000: submitted to World Scientific on November 9, 2009 9 integrate it into the standard C ++ library. What is more, the use of templates and traits enhances the reliability of the resulting library.

Future works on JAIL include implementing the whole Basic Interval Arithmetic Specification 9 , and integrating directed interval arithmetic 10 , a variant of interval arithmetic that permits computing inner-approximations of the range of functions. 

  ÷}, and ϕ ∈ { √ , exp, ln, cos, . . . }, real intervals I 3 = I 1 • I 2 and I 4 = ϕ(I 1 ) are defined

  isEmpty(in: I 1 ; out: I 1 == ∅) begin return (¬(-I 1 I 1 )) end

Table 1 .

 1 Impact of the implementation choices for JAIL

		Parameterized version	Non-parameterized version
		trust on trust off t. on t. off Dn/Up
	x + y	19204	24175	34445	41281	49280
	x -y x × y x ÷ y √ x	17526 17220 33105 12829	24812 22559 33563 14451	34543 29709 39561 21412	41311 35383 40634 22942	42840 38121 41792 26693
	x 2	7309	9378	13827	15778	18071
	x -10 . . . x 10	13141	13913	15997	16572	11632
	e x	23915	23182	26262	24810	24545
	log x	18404	17934	21069	20769	20860
	cos x	19218	19577	19951	20421	20766
	sin x	21289	21628	22220	22581	32663
	tan x	14807	14970	15660	15608	16013
	compilation	11200	13300	4200	4100	4000
		Times in milliseconds on a SUN UltraSparc 1/167 MHz with egcs 2.91.66

Table 2 .

 2 Comparing interval arithmetic libraries on an UltraSparc 1/167 MHz Results in milliseconds with egcs 2.91.66 † Parameterized version with trust on

		Profil	RVInterval	fi lib	JAIL †
	x + y	26362	53400	48479	19204
	x -y x × y x ÷ y √ x	26317 25951 35521 321568	53102 40274 38245 12382	47637 35758 39538 23853	17526 17220 33105 12829
	x 2	16426	26819	14133	7309
	x -10 . . . x 10	6698	25747	-	13141
	e x	201797	23599	11605	23915
	log x	119980	20195	10940	18404
	cos x	109844	7963	6295	19218
	sin x	91883	16982	5953	21289
	tan x	41657	-	4117	14807