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Abstract

Large-scale individual-based simulations can benefit a lot from high perfor-

mance computing environments. The benefit that can be hopped depends greatly

on a good load distribution among the processing ressources together with the

minimization of the communication overhead. However, minimizing both idle

time and communication overhead requires the search for a trade-off.

Inspired by complex systems, the approach described in this paper aims at

minimizing the volume of data exchanged over the network between tasks of a

distributed application, while balancing the load between available computing
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ressources. The method lies on the trail-laying trail-following paradigm used in

algorithms based on artificial ants.

Keywords: Complex Systems, Self-Organization, Artificial Ants, Dynamic Graph,

Community Structures, Dynamic Load Balancing, Individual-Based Model,

Ecological Simulations.

1 Introduction

There exist many application classes whose structural as well as numerical char-

acteristics may change during their execution. Simulations are one of these

classes, they cover a wide range of domains: from life and Earth sciences to social

sciences. Many applications rest on a mathematical analysis and formulation of

the global process to be simulated with systems of differential equations. An al-

ternative or a complementary way of modeling problems for simulation purposes

consists in modeling the environment, each entity moving and evolving within

this environment, and the mechanisms needed for computing entities evolution,

their activities and their interactions. Entities may be living beings, particles,

or may represent non-material elements (vortices, winds, streams...). Individual-

based models (IBM) belong to this category. Within such models, interactions

between the environment and the individuals are explicit as well as interactions

among individuals themselves. During the simulation, some individuals may ap-

pear and/or disappear without prior notice, and interactions may change, leading

to the emergence of unpredictable organizations at different description levels.

Many recent studies have adopted this approach. The motivation is that “sim-

ulating the actions of single organisms allows to study how the properties of

higher level ecological entities like swarms, populations, trophic networks and

regional distribution patterns emerge” [4]. Instead of using systems of differen-

tial equations, an individual based model provides a representation of each entity,
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interactions between the environment and the individuals and among individu-

als themselves. From the computer science point of view, multi-agent systems

coupled with discrete-time simulation constitutes an obvious way of implement-

ing IBMs. Several tools and frameworks have already been proposed for that

purpose as reported in [14]. What motivates our work comes from a series of

observations. In order to observe emergent properties in IBMs, many individuals

have to be considered, the use of discrete classes instead of individuals may lead

to wrong results [6]: “If IBMs treat individuals as members of classes, rather

than as unique organisms, predictions of population size and variability may be

wrong”. In addition, “a successful application of the approach requires detailed

biological information about the represented species.” [4]. As a consequence,

since the number of entities may reach thousands to millions, distributed sim-

ulations running on high performance computing environments is unavoidable

in order to obtain results in a reasonable time. However, the benefit that can

be hopped depends greatly on a good load distribution among the processing

ressources together with the minimization of the communication overhead. In

order to limit/avoid performance degradations due to the dynamics of such ap-

plications, the possible re-allocation of existing entities and the allocation of new

ones have to be continuously managed. But that’s not enough, for observing

emergent organizations and structures in the system, the scientists need another

software for detecting such properties. The tool presented in this paper, AntCO2,

advises for both: dynamic allocation and re-allocation of individuals and detec-

tion of application-level organizations. AntCO2 is a bio-inspired algorithm based

on numerical ants. It gives global information in a decentralized way that indi-

cate a possible better location of some existing entities or a good location for new

ones, according to processors load, inter-entities communications and existing

application-level organizations. But it also gives global information for detecting

new application-level organizations.
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The next section presents the general context of ecological simulations and

specifies the problem of dynamic load balancing, in particular for individual-

based ecological models. In section 3, the problem is formalized and the method

is presented. Some experiments are reported in Section 4 and the last Section

discusses open perspectives for this work.

2 General Context

The problem we are interested in is the distribution of entities composing a sys-

tem conceived for simulating ecosystems using individual-based models. Before

entering in the details of the distribution strategy, the following section presents

the target applications.

2.1 Individual-Based Ecological Simulation

Mechanisms leading to the global behavior of ecological systems often remain

unclear, due to the large number of interactions and feedbacks processes. Dif-

ferential equation-based models may be sometimes unsuited since the system is

often characterized by different organization levels and by changing structures.

For many years, it has been accepted that some high level properties of ecologi-

cal systems emerge from interactions among lower level components, but it has

recently gain an important effort in the community [27, 25, 21, 20, 24, 4]. In

order to better understand the mechanisms at the origin of the emergence of these

properties and to capture ecological dynamics over several levels of organization,

ecologists use individual-based models [8, 18]. These models allow the exam-

ination of explicit spatial and temporal variation on the scale of the individual.

This approach allows scientists to build virtual laboratories to test different sce-

narii of the population evolution, and help them to understand the variations of
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some specific parameters of individuals (length, weight...) depending or not on

environmental characteristics.

For example, in [20], the authors present a spatiotemporal IBM of roach to

study emergent properties at the individual and the population level. The fish

model includes swimming mode that may lead to shoal formation, habitat se-

lection according to food availability, temperature, light and age, bioenergetics,

responsible for growth and that specifies energy storage, food consumption, and

extra metabolic functions (respiration...). They also provide a model of the envi-

ronment (Lake Belau). Their study shows that some interesting emergent prop-

erties can be obtained from the simulation. At the individual level, they notice

that spatial behavior, as well as growth and food consumption fit with empirical

studies. At the population level, among other properties, they show that the fishes

self-sort themselves in shoals according to their length, they also remark a length

variability into the population, and they show that this variability depends on the

lake morphology.

Our motivation for that work comes from a series of remarks. At first, a

noticeable point is that some processes occurring in IBMs are non linear and very

sensitive to initial conditions. As a consequence, two runs of the same simulation,

with similar initial conditions, may lead to different global situations. Secondly,

some parts of the simulation depend on random choices, and this leads ecologists

to perform many runs starting from the same parameters set but with different

values of the random seed. Thirdly, running individual-based simulations may

require a lot of time with respect to the temporal as well as the space scales

considered.

Finally, as said by Dunstan and Johnson in [24]: “in real ecologies, space

does matter: real assemblages typically manifest non-random spatial pattern at

a range of scales, which underpins patterns of spatial variability, and individual

organisms are more likely to interact with neighbouring than with distant indi-
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viduals”.

We can summarize all these remarks saying that individual-based ecological

applications are time-consuming, characterized by dynamically changing struc-

tures, and made of sets of locally interacting entities.

So, in the context of a distributed/parallel implementation of such applica-

tions, a desirable feature of a dynamic load-balancing method should be the de-

tection of emerging structures based on interactions in order to map these struc-

tures on different computing resources with the aim of balancing the load. The

remaining part of this paper is dedicated to the description and analysis of such a

method.

2.2 Dynamic Load Balancing

The execution of an application in a parallel environment is efficient if the inac-

tivity periods of the different computing resources are small with respect to the

total execution duration. The two main sources of overhead for a given processor

are idleness due to a lack of work, and time spent waiting for data from another

processor (a.k.a. communication overhead). When the application is fully defined

before the execution (precedence task graph, tasks durations and communication

delays), an a priori computation of a schedule is possible. But, when the applica-

tion is partially known or undefined before the execution, an on-line strategy with

the aim of reducing both idleness and communication overhead has to be consid-

ered. This is dynamic load balancing (DLB). The problem may be described as

the on-line allocation or migration of tasks to computing resources. It is usually

assumed that communications between tasks located on the same processor may

be neglected. The communications that may entail overhead occur between tasks

located on distinct computing resources. Thus, the quality of a dynamic load bal-

ancing strategy rests on its capacity of combining local decisions (communicating
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tasks gathered into clusters) with global ones (load balancing). Partitioning of the

application graph seems to be a suitable starting point for that purpose, since clus-

tering may be driven by the objective of minimizing the communications, and the

load balancing may be achieved by fixing the number of clusters.

There are two main approaches to the problem. In the first one, relevant in-

formation is gathered and the load balancing is computed by only one processor:

this is the centralized scheme. Advantadges: the decision is taken according to

the full knowledge of the system and classical quality-proven algorithms can be

used. But, keeping and/or gathering updated information generates an important

network traffic and the decision process (collect of information and decision mak-

ing) has to be faster than changes in the application. The decentralized scheme is

the second approach. Most of distributed DLB strategies rely on load exchanges

between neighbor computing resources. For instance, in the method proposed

by Heiss and Schmitz [19], each computing resource possesses a load balancing

procedure which is activated when a change of the load occurs in the neighbor-

hood. They address the problem of dynamically load balancing several applica-

tions, and their approach is based on an analogy with physics. Each application

is considered as a fluid characterized by a viscosity factor modelling communi-

cation density between tasks forming the application. Fluids are added to a flat

container (corresponding to the computing resources). Two kinds of forces are

considered: gravitational forces that entails a spreading of the fluid, and frictional

resistance and cohesion forces (related to the viscosity) that keep the fluid dense.

The former force leads to more parallelism while the latter aim at minimizing

inter-processors communications. However, in their work, the behavior of each

application is supposed fixed during the application execution, so for them, “load

balancing should take place when the load situation has changed. The load situ-

ation changes when tasks are generated or finished”, while for us, load balancing

should take place when either the load situation changes or when the communi-
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cation characteristics (numerical as well as structural) change.

Another interesting method was proposed by Fenet and Hassas [26] who use

numerical ants. Ants are used for process migration, according to pheromones

concentration on the arcs of the computing environment topology. Pheromones

code for the load of the processors and different kinds of pheromones are at-

tributed to different groups of processes, given that processes inside a group aim

at communicate with each other.

Our goal is to implement such a DLB method that is additionally able to

detect interacting groups instead of identifying them a priori.

3 Organization Detection and Load Balancing

Large-scale ecological simulations are natural candidates for distributed discrete

event simulation [15]. However, such simulations may also be performed through

a series of discrete time steps [28]. In both cases, the same graph model can be

considered: a dynamic interaction graph, that is a graph varying along time.

Individual-based ecological models are made of an environment and many

entities interacting with the environment and each other. We are in front of com-

plex systems in which there are numerous interactions. As the system evolves,

communications between entities change. Entities and their interactions appear

and disappear creating stable or unstable organizations. Each entity, in IBMs, is

simulated at the level of the individual organism rather than the population level,

and the model allows individual variation to be simulated [1]. Thus, during the

simulation process some entities may appear or disappear without prior notice,

groups of entities with weak interactions may meet, leading to an important in-

crease of the number of communications between them.

8



3.1 Problem formulation

While highly dynamic, the whole system may be modeled using a classical undi-

rected graph whose structural and numerical characteristics may change during

the simulation.

Within such a graph, each vertex is associated to an element of the simula-

tion that may be a biological entity or any environmental element, and an edge

materializes an interaction between two elements of the simulation, mapped to a

communication in lower levels of the implementation.

More formally, the considered simulations are composed of a number n at

time t of interacting entities, which we wish to distribute over a number of p pro-

cessing resources. Entities do not necessarily communicate with all the others

and their numbers and the communications may vary during the application ex-

ecution. The pattern of communications can be represented by a dynamic graph

(network) in which entities are mapped one-to-one with vertices and communi-

cations with edges.

We distinguish communications occuring inside a single computing resource,

that is between entities in executing on the same computer, from communications

that must cross the network between distinct computing resources. We call the

later actual communications.

Dynamic graph: A dynamic graph G(t) = (V(t), E(t)) is a weighted undi-

rected graph such that:

• V(t) is the set of vertices at time t.

• E(t) is the set of edges at time t. Each edge (u, v) is characterized by:

– a weight w(t, u, v) ∈ N − {0}.

The problem is to distribute entities of the application at anytime in such

a way to balance the load on each processing resources and at the same time to

minimize the actual communications. To solve this problem, we search a partition
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of the graph G(t) defined as follows:

Let G(t) = (V(t), E(t)) a dynamic graph, a partition D(t) of G is composed

by k disjointed subsets Di(t) of V(t) called domains with :

k > 0,
⋃

i=1..k

Di(t) = V(t)

Where the set of edges connecting the domains of a partition (i.e. edges cut

by the partition) D(t) is called an edge-cut denoted by B(t).

The objective is therefore to find a k-partition, at anytime, which evenly bal-

ances the vertex weight among the processing resources while minimizing the to-

tal weight of B(t). The number of domains k must be greater or equal than p the

number of processing resources. For example, in figure 1, we have 4-partitions

and three domains identied by three colors.

3.2 AntCO2, an ant algorithm

Ant algorithms are a class of meta-heuristics based on a population of agents

exhibiting a cooperative behaviour [23]. Ants are social insects which manifest

a collective problem-solving ability [9]. They continuously forage their terri-

tories to find food [16] visiting paths, creating bridges, constructing nests, etc.

This form of self-organization appears from interactions that can be either direct

(e.g. mandibular, visual) or indirect. Indirect communications arise from indi-

viduals changing the environment and other responding to these changes: this

is called stigmergy1. There are two forms of stigmergy, sematectonic stigmergy

produces changes in the physical environment - building the nest for example -

and stigmergy based on signal which uses environment as support. Thus, for ex-

ample, ants perform such indirect communications using chemical signals called

1PP. Grassé, in Insectes Sociaux, 6, (1959), p. 41-80, introduced this notion to describe termite

building activity.
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pheromones. The larger the quantity of pheromones on a path, the larger the

number of ants visit this path. As pheromone evaporates, long paths tend to have

less pheromone than short ones, and therefore are less used than others (binary

bridge experiment [17])). Such an approach is robust and well supports parame-

ter changes in the problem. Besides, it is intrinsically distributed and scalable. It

uses only local information (required for a continuously changing environment),

and find near-optimal solutions. Ant algorithms have been applied successfully to

various combinatorial optimization problems like the Travelling Salesman Prob-

lem [10], routing in networks [5, 29], clustering [13], graph coloring [7], graph

partitioning [22], and more recently DNA sequencing [2], dynamic load balanc-

ing falls into the category of optimization problems.

Dorigo et al. [12], define an approach named Ant Colony Optimization (ACO)

that may be applied to a given problem if it is possible to define: the problem rep-

resentation as a graph, the heuristic desirability of edges, a constraint satisfaction,

a pheromone updating rule and a probabilistic transition rule.

Our approach, AntCO2, is an ant algorithm that exhibits great similarities with

ACO, excepted that it has no satisfaction constraint, and detects organizations

with several colonies in competition, each of a distinct color.

Organizations are seen as a sub-graph, set of vertices that are more densely

connected each other, both in number of links, and eventually in the importance

of the links, while being slightly connected with the other vertices that do not

belong to the considered sub-graph.

We search such organizations since they concentrate communications inside

themselves. As we want to reduce communication costs, identifying high com-

munication areas allows to better distribute them. Furthermore the graph being

dynamic, such organizations will present a more stable form than edges and ver-

tices taken alone.

Indeed, communications on a single host are often considered negligible,
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whereas communications between hosts are more costly. Therefore placing orga-

nizations on hosts may provide a good communication cost reduction. We must

also take into account the possible overhead of the different computing resources.

To reach this objective we have to determine a good load balancing between com-

puting resources. Unfortunately, this objective is in conflict with the other which

is to minimize the communication costs. A good trade-off must be find. Thus

if to find organizations with collaborative ants offer a good solution to reduce

the communication costs, competition with colored ants is introduced to obtain a

good load balancing.

3.3 Colored ants

The method proposed by Kuntz et al. [22] for graph partitioning is able to detect

clusters within a graph and it also has the ability of gathering vertices such that:

1. if they belong to the same cluster they are gathered in the same place,

2. the number of intercluster edges is minimized and,

3. distinct clusters are located in different places in the space.

Points 1. and 2. are relevant for our application, however, additional issues have

to be considered:

1. the number of clusters may be different of the number of processing re-

sources,

2. the sum of the sizes of the clusters allocated to each processing resource

has to be similar (considering the resource computing capacity),

3. and their number as well as the graph structure may change.

For the first issue, in [12], the authors mentioned the possibility to parametrize

their algorithm in order to choose the number of clusters to build. Unfortunately,

for our application, we do not know in advance what should be the best number
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of clusters for achieving the best load balancing, as shown in Figure 1, where

elements of the two opposite and not directly linked clusters should be allocated

to the same processing resource.
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Figure 1: Example for which the best number of clusters is different of the number of process-

ing resources.

As the number of processing resources available at a given moment is known,

this problem may be identified as a competition between processing resources for

computing as many elements as possible. This may be directly included in the

ant approach by considering competing ant colonies. In our approach, a distinct

color is associated to each computing resource, and an ant colony is attached to

each resource. Each ant is also colored, and drops pheromones of its color.

So, in addition to the classical collaborative nature of ant colonies we have

added the competition aspect to the method. In fact, this reflects exactly the

trade-off previously discussed about dynamic load-balancing. On one hand, the

collaborative aspect of ants allows the minimization of communications by gath-

ering into clusters elements that communicate a lot, while, on the other hand,

the competition aspect of colored ants allows the balancing of the load between
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computing resources.

The technical issues about the management of ants, colors and pheromones

are described in detail in the next sections.

3.4 Graph description and notations

As previously mentioned, we consider an undirected graph which structural as

well as numerical characteristics may be subject to changes during the execu-

tion. Colored ants walk within this graph, crossing edges and dropping colored

pheromones on them.

Dynamic Communication Colored Graph: A dynamic communication col-

ored graph is a dynamic graph G(t) = (V(t), E(t), C(t)) such that:

• C(t) is a set of p colors where p is the number of available processing

resources of the distributed system at time t.

• V(t) is the set of vertices at time t. Each vertex v is characterized by:

– a color c ∈ C(t),

• E(t) is the set of edges at time t. Each edge (u, v) is characterized by:

– a weight w(t)(u, v) ∈ N − {0} that corresponds to the volume and/or

the frequency and/or the delay of communications between the ele-

ments associated to vertices u and v,

– a quantity of pheromones of each color.

The figure 1 shows an example of a dynamic communication colored graph

where the proposed method described in the following, changes the color of ver-

tices if this improve communications or processing resource load. The algorithm

tries to color vertices of highly communicating clusters with the same colors.

Therefore a vertex may change color several times, depending on the variations

of data exchange between entities. On the figure we can see three colors only,
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one for each computing resource, and four clusters. Indeed it can be necessary,

in order to maintain a good load balancing to have several distinct clusters of the

same color.

3.5 Pheromones management

We denote by F(t) the population of ants at time t, and Fc(t) the set of ants

of color c at time t. Pheromones are dropped on edges by ants crossing them.

Pheromones are colored. An ant x of color c crossing an edge (u, v) between

steps t−1 and t will drop a given quantity of pheromone of color c. This quantity

is denoted by ∆
(t)
x (u, v, c), and the quantity of pheromones of color c dropped by

ants when they crossed edge (u, v) during time interval ]t − 1, t] is equal to:

∆(t)(u, v, c) =
∑

x∈Fc(t)

∆(t)
x (u, v, c) (1)

The total quantity of pheromones of all colors dropped by ants on edge (u, v)

during ]t − 1, t] is equal to

∆(t)(u, v) =
∑

c∈C(t)

∆(t)(u, v, c) (2)

If ∆(t)(u, v) 6= 0, the rate of dropped pheromones of color c on (u, v) during

]t − 1, t] is equal to:

K(t)
c (u, v) =

∆(t)(u, v, c)

∆(t)(u, v)
with K(t)

c (u, v) ∈ [0, 1] (3)

The quantity of pheromone of color c present on the edge (u, v) at time t is

denoted by τ (t)(u, v, c). At the beginning τ (0)(u, v) = 0 and this value changes
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according to the following recurrent equation:

τ (t)(u, v, c) = ρτ (t−1)(u, v, c) + ∆(t)(u, v, c) (4)

Where ρ ∈ ]0, 1] denotes the persistence of the pheromones on the edges, that

is the proportion of pheromones which has not been removed by the evaporation

phenomenon.

τ (t)(u, v, c) may be considered as a reinforcement factor for clustering ver-

tices based on colored paths. However, due to the presence of several colors, this

reinforcement factor is corrected according to K
(t)
c (u, v) that represents the rela-

tive importance of the considered color with respect to all colors. This corrected

reinforcement factor is noted:

Ω(t)(u, v, c) = K(t)
c (u, v)τ (t)(u, v, c)

Then, if we denote by Vu the set of vertices adjacent to u at t, the color ξ(t)(u)

of this vertex is obtained from the main color of its incident edges:

ξ(t)(u) = arg max
c∈C(t)

∑

v∈Vu

τ (t)(u, v, c) (5)

3.6 Ants moving and population management

Ants move according to local information present in the graph. Each processing

resource is assigned to a color. Each vertex gets its initial color from the process-

ing resource it was allocated to. Initially the number of ants of a given color is

proportional to the processing resource power that they represent.
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3.6.1 Population management

The process is iterative, between two steps, each ant crosses one edge and reaches

a vertex. When there are too few ants, evaporation makes pheromones disap-

pear and the method behaves as a greedy algorithm. If there are too many ants,

pheromones play a predominant role and the system efficiency may decreases.

Furthermore, the population is regulated with respect to the number of process-

ing resources and to the number of entities.

Initially, our algorithm creates a fixed number of ants per vertex, which de-

pends on processing ressources power. Vertices are, in the same way, proportion-

ally associated to processing resources. Then, during the execution, our method

tries to keep the population density constant in the graph. When some new ver-

tices are created, new ants are created in order to maintain the population density,

and some ants are removed from the population when some vertices disappear.

When one new processing resource becomes available, the number of colors in-

creases by one. However, the population has to be modified in order to take into

account this new color. This is done by changing the color of an equal number of

ants of each current color into the new color. Symmetrically, when a processing

resource, associated to color c, disappears from the environment, either because

of a failure or because this resource is out of reach in case of wireless environ-

ments, all ants of color c change their color into the remaining ones. The creation

and the removing of edges have no effect on the population.

3.6.2 Ants moves

The moving decision of one ant located on vertex vk is taken according to its color

and to the concentration of the corresponding colored pheromones on adjacent

edges of u. Let us define p(t)(u, vk, c) the probability for one arbitrary ant of

color c, located on the vertex u, to cross edge vk during the next time interval
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[t, t + 1[. If we denote w(t)(u, vk) the weight associated to this edge at time t,

then:































p(t)(u, vk, c) =
w(0)(u, vk)
∑

v∈Vu

w(0)(u, v)
if t = 0

p(t)(u, vk, c) =
(Ω(t)(u, vk, c))

α(w(t)(u, vk))
β

∑

v∈Vu

(Ω(t)(u, v, c))α(w(t)(u, v))β
if t 6= 0

(6)

The parameters α and β (both > 0) allow the weighting of the relative im-

portance of pheromones and respectively weights. However, if ants choices were

only driven by this probability formula, there would be no way for avoiding os-

cillatory moves. So, we introduce a penalisation factor in equation (6) η ∈ ]0, 1]

aiming at preventing ants from using previously crossed edges. The idea is very

similar to the tabu list used in tabu search heuristic, but we add this constraint

directly into the probability formula. Each ant has the ability to remember the

k last vertices it has crossed. These vertices are stored into a list: Wx with

card(Wx) < M (M constant). Then, the value of η for an ant x considering

an edge (u, v) is equal to:

ηx(v) =











1 if v /∈ Wx

η if v ∈ Wx

(7)

Then, for the ant x, the probability of choosing edge (u, v) during time interval

[t, t + 1[ is equal to:

p(t)
x (u, vk, c) =

(Ω(t)(u, vk, c))
α(w(t)(u, vk))

βηx(vk)
∑

vq∈Vu

(Ω(t)(u, vq, c))
α(w(t)(u, vq))

βηx(vq)
(8)

To complete this, we introduce a demographic pressure to avoid vertices that

already contain too many ants of another color. This better spread ants in the
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graph to balance the load. It is modeled by an another penalisation factor γ(v)

on vertices that have a population greater than a given threshold. This factor is

introduced in the formula (8). Given N(v) the ant count on the vertex v and N∗

the threshold.

γ(v) =











1 if N(v) ≤ N∗

γ ∈]0, 1] else

(9)

The formula (8) becomes :

p(t)
x (u, vk, c) =

(Ω(t)(u, vk, c))
α(w(t)(u, vk))

βηx(vk)γ(vk)
∑

vq∈Vu

(Ω(t)(u, vq, c))
α(w(t)(u, vq))

βηx(vq)γ(vq)
(10)

3.6.3 Ants way of life

The algorithm is based on an iterative process. During the time interval [t, t + 1[,

each ant may either, hatch, move, or die.

An ant of color c, located on a vertex u dies if the proportion of color c on

adjacent edges is under a threshold. If φ ∈ [0, 1] is the threshold, then, the ant of

color c located on u dies if:

∑

v∈Vu

τ (t)(u, v, c)

∑

c∈C(t)

(

∑

v∈Vu

τ (t)(u, v, c)

) < φ (11)

A new ant is then created in another location. This “jumping” mechanism

improves the global algorithm behavior. For instance, when the graph becomes

unconnected, some ants may be prisoners of isolated clusters, and the die-and-

hatch sequence allow them to escape.

The mechanism, while keeping population constant, also avoids locked situ-

ations : grabs, overpopulation, starvation as shown on figure 2. These problems

occur when the system meets local minima. For example, when a set of red
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ants are circled by a set of blue ants inside the same organization, or when too

many ants of the same color are captured in an area because of a too large volume

pheromones at this place. This phenomenon is amplified by retroactions with ants

attracted by pheromone, depositing more pheromones, that attracts more ants etc.

It also allows to avoid areas without any ants, that are the counterparts of over-

populated areas. Moreover, this improves the reactivity of our algorithm that runs

continuously, not to find the best solution for a static graph but, for providing any-

time solutions to a continuously changing environment.

Figure 2: Problems solved by jumping mechanism.

3.7 AntCO2 architecture an implementation

Figure 3 shows the AntCO2 architecture. In this diagram AntCO2 is seen both

as a service inside a middleware and as a user of this middleware. The middle-

ware allows communications between AntCO2 and the distributed application,

providing entity migration and communication measurement. It also serves as an

interface to the computing environment providing event notification like the ap-

parition or disappearance of resources. For the application, AntCO2 is a service

of the middleware that offers entity migration suggestions.
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Figure 3: AntCO2 architecture.

As the application is distributed, AntCO2 is also distributed, possibly with

an instance on each computing resource used by the application. Each instance

of AntCO2 has a set of ants and a sub-graph representing the part of the ap-

plication it is serving. Across iterations ants are exchanged between AntCO2

instances, information events are received from the application (node or edge

creation/deletion, edge valuations, etc.). Events are also received from the com-

puting environment (computing resources added or removed for example).

At regular intervals, or when queryed by the application, AntCO2 instances

send migration advices to the application. A migration is advised, when an vertex

color changes, therefore indicating that the corresponding entity in the application

should be on another computing resource. The application is free to follow or

ignore this advice according to specific information or constraint it has.

Several methods can be used to distribute AntCO2 as shown on figures 4, 5

and 6. The first figure depicts an environment where the application uses the

whole cluster of computers for its own use, excepted on computer dedicated to

AntCO2. The second figure shows the same architecture but with several com-

puters for AntCO2. Finally, the last figure, shows a possible better distribution

architecture, where each AntCO2 instance would be located on the same com-

puter as each application part it serves.
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Algorithm 1 show the ant behavior and ant environment evolution. Algorithm

2 shows the application interactions through the middleware with AntCO2.

Algorithm 1: AntCO2 instance

forever

for all ants do

if the ant does not die (eq. 11) then

Choose the next vertex to visit according to pheromone level

and edge weight (eq. 10)

for each edge do

Apply persistence factor ρ on pheromones τ (t−1) (eq. 4)

for each node do

Search dominant pheromone color on all incident edges (eq. 5)

and color the node with it;

Look at application and computing environment events arrived and

modify the sub-graph and the ant population accordingly

Send migration suggestions to the application

end

Algorithm 2: Application instance

forever
...

Look at suggestions from AntCO2 and migrate entities accordingly

Send measures, events and eventual migration decisions to AntCO2

end

Here is an example of an usage scenario. We take a distribution architecture

as depicted in figure 6, where each computing resource holds both a part of the

application and an instance of AntCO2. To simplify explanations we will use

only two computing resources, R1 and R2.

The application starts its two instances on App1 and App2 (Figure 7). Two

corresponding instances of AntCO2 are created accordingly Ant1 and Ant2. En-
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Figure 4: Distribution model, one computer dedicated to AntCO2.

Figure 5: Distribution model, a set of computers dedicated to AntCO2.

tities of the application start to appear on instance App1 and notifies Ant1 of this.

The color theses entities is therefore known directly. Identically, entities appear

on App2.

Each time entities of App1 interact one whith another, Ant1 is notified and
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Figure 6: Distribution model, an AntCO2 instance runs on all computers.

an edge is created between this entities. Several organizations may appear in

the application, with entities more closely interacting with other entities of the

organization than with other entities.

If an entity of App1 in an organization interact with an entity of App2 in an

other organization, both Ant1 and Ant2 are notifyed. If this interaction becomes

more an more important, the edge on both Ant1 and Ant2 will be notified and its

importance will be updated. More an more ants will cross it. It is possible thant

other links appear between these two organizations, leading to a colonization by

ants of one color/computing resource of the two organizations. At this point a

set of entities on one computing resource will be colored by the color identifying

the other resource. This color change will indicate that these entities should be

migrated. Indeed, they are in high interaction, they should then probably run on

the same computing resource.

Identically an organization, running for example on R1, may be split in two

since the the application notifies AntCO2 that the importance of set of edge (in-
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teractions) inside the organization decrease, or disapear. If one part of this split

organization has some weak relations with another organization on R2, it may be

colonized by ants of R2 and again, AntCO2 will detect a color change and advice

the application App1 to migrate the entities on R2.

Figure 7: Sequence diagram of AntCO2 and an application running in parallel.

4 Experiments and results

Dynamic load balancing falls into the category of distributed time-varying prob-

lems. It seems difficult, unless impossible, to perform a comparison to optimal

solutions on dynamic graphs, because of our incapacity to compute such optimal

solutions. Indeed, suppose that we were able to divide the dynamic problem into

a series of static statements. Finding an optimal solution for each static statement

is by itself a difficult problem, but let us assume that it would be possible. It may

happen that applying the optimal solutions for two consecutive steps is not opti-

mal because of the amount of migrations entailed by the static choices. Moreover,

the structures should be kept from one step to the next one.
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A dynamic graph should take into account at once also inter-steps This is

why the first part of the performance analysis is dedicated to the comparison

of allocations computed by our method for some classes of static graphs with

optimal allocations. The second part of the analysis focuses on the reactivity and

on the adaptability of our algorithm for some relevant dynamic graphs.

Before entering into details, some performance measures are defined in the

next section.

4.1 Quality analysis

As previously said, two measures are relevant for qualifying the quality of a dy-

namic load balancing:

• The global costs of communications;

• The load-balancing of the application.

They are antagonist. So, in order to evaluate our solution we first define two

quality criteria r1 and r2.

The first criterion r1 ≥ 0 corresponds to the ratio of actual communications

(see section 3.1) over the total number of communications occurring in the graph.

Solutions are better when r1 is smaller.

r1 =

∑

B(t)

w(u, v, t)

∑

E(t)

w(u, v, t)

The second criterion r2 measures how the load is balanced among the avail-

able processing ressources, independently of the communications. For each color

c, we have Vc(t) the set of vertices having color c at time t. Then we have:

r2 =
minK

maxK
where K = card(Vc(t))
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The load-balancing is better when r2 is close to 1.

In case of static graphs, these criteria, enable us to store the best solutions

obtained so far, that makes the method anytime.

Since we seek to find organizations, r1 is considered to be a more important

criterion. Indeed, it is explicitly defined in ant behavior, unlike r2 that is implicitly

optimized by competition mechanisms.

4.2 Dynamic Graphs

Here are two experiments we made with dynamic graphs. For these tests, we

used program that simulate the application by creating a graph and then applying

events to it. Events are the appearance or disappearance of an edge, a vertex or a

processing resource, but also functions that change weights on edges.

The first dynamic graph represents a static grid above which another smaller

grid moves. The smaller grid continuously connects and disconnects to the lower

one as it moves. Typically this represents a small organization exploring a larger

set of interacting entities (see figure 8)2.

The small graph keeps the same color along the experiment while it crosses

different domains of the grid having a distinct color because communications in

the small graph are stronger and communication with the larger graph are less

durable. Therefore, the organization formed by the small graph is not perturbed

by its interactions with the grid. This graph could represent an aquatic simulation

application where a fish school passes in an environment. Interactions in the fish

school are based on the fish vision area and are more important, and durable,

inside the school than with the environment.

It must be noted that the dynamics of the graph helps creating correct clusters,

indeed this is the dynamics, and the short durability of interactions between the

2You can see a video of this experiment at the following URL http://litis.

univ-lehavre.fr/~dutot/videos/MovingStruct2.avi.
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larger graph and the smaller that allow to define the organization of the smaller

graph. Not only the graph topology is taken into account, but the evolution of the

graph in time is used.

Here are the parameters used:

Parameter α β ρ N∗ M φ ants per vertex

Value 1 4 0.8 5 4 0.3 10

he second graph is not dynamic in its topology, however, the application it repre-

sents is executed on a set of processors whose number varies. As said previously,

there are several forms of dynamics and the dynamic of the computational envi-

ronment must also be taken into account. The application entities are mapped as

a grid (for example, many numerical physics simulations that use a mesh).

In figure 9, a 30 × 30 static grid is used, introducing new colonies, that is

computing resources, at regular intervals every 1000 steps. We can compare this

approach to a recursive bisection, but using a non power of two number of parti-

tions. This test simulates a computing environment inside which more and more

computing resources become available. The figure also shows the evolution of

the two quality criteria r1 and r2 during this test. We can see that besides the

small size of the grid that brings solutions at a lower rate at each new computing

resource added, the algorithm stabilizes on good quality solutions.

It is interesting to notice that no global reorganization of the graph : organi-

zation are globally maintained in place when a new computing resource is added.

Indeed some areas are cut whereas the other parts stay in position therefore lim-

iting the number of migrations.

The same test has been made on a quite larger graph containing 2851 vertices

and 15093 edges (figure 10 that only shows the evolution of criteria r1 and r2).

The parameters used where :
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Figure 9: Adding a colony every 1000 steps in a 30 × 30 grid.
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Figure 10: Adding a colony every 1000 steps on a large graph (2851 vertices and 15093

edges).
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Parameter α β ρ N∗ M φ ants per vertex

Value 1 3 0.8 10 3 0.3 8

4.3 Distributed simulations

Our algorithm is particularly suited for dynamic graphs. The relevance of our

method lies in the incremental computation of the solution. A change in the

input (the dynamic graph, the number of computing resources) can interrupt the

computation at any time, it will continue from here to compute a new solution (as

seen in the previous section).

Indeed, at the base component level, the dynamic graph is constantly being

reconfigured. At the contrary, taken as a whole, long lasting organizations ap-

pear. They are the image of organizations appearing in the distributed application

whose the graph is a representation. Such organizations often have a larger time

to live than the average duration of edges or vertices of the graph. Inside these

organizations, communication is higher both in terms of volume and connectivity.

And these two last points are criteria used by ants to form clusters.

We tested our algorithm on graphs deduced from an ecosystem simulation

where entities have a boid-like behavior, made of three rules:

• avoidance: they try to stay at a small distance of perceived boids,

• cohesion: they try to fly toward the average position of all perceived boids,

• alignment: they try to match velocity with perceived boids.

These rules create one or several groups of boids. Furthermore, boids try to avoid

predators introduced in the simulation. Predators destroy some boids, and cut

boids groups in sub-groups.

Each boid is modeled by a vertex in the dynamic graph. When a boids comes

into the field of view of another this create an interaction (boids reacting to others

in their field of view) and therefore an edge in the graph. Figures 11 and 12 show
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both the boids simulation and the corresponding colored dynamic graph. On

figure 12 boids group formed, and the graph shows the corresponding clusters,

detected by AntCO2 as shown by colors.

We compared the distribution found by AntCO2 with the two other methods:

1. random,

2. and using a grid-like environment.

In random mode, as soon as a boid appear, a processor is assigned to it and

it will never change afterward. In the simulations we used, the boid count is

fixed once and for all, therefore this load balancing mode is at any time optimal.

Each processor is charged the same (depending on respective powers), however

communication costs are not taken into account. Inside an organization there

are chances that two communicating boids are on two distinct processors. This

distribution mode is therefore the worst concerning the network load.

The grid-like environment cuts the space in rectangular cells, and each cell

is assigned to a computing resource. Boids execute on the resource of the cell

they cross. This mode improve communication minimization but degrades load

balancing compared to the random mode. Indeed, with this mode, as boids travel

without constraints, it is possible that all individuals migrate to the same grid

cell, hence on the same processor. Moreover, concerning communications, it is

possible that an organization stay on the frontier of two cells handled by two

distinct processors hence forcing high communications to use the network.

These two methods have been compared to the results produced by AntCO2.

We see that this last one gives a good trade-off between load balancing and com-

munication minimization. Concerning quality criterion r1, communications, re-

sults are better than the two other approaches. For r2, load balancing, AntCO2

is better than the grid-like distribution mode. It cannot be better than the random

distribution mode that is optimal when considering only load balancing.
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(b) Colored relation graph between entities of the simulation

Figure 11: At the beginning of the simulation.
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(b) Graph

Figure 12: Later on in the simulation.
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Figure 13: Comparison on criterion r1 between distribution modes “random”, “grid-

like” and AntCO2 with 200 boids.

Figures 13 and 14 show the evolution of criteria r1 and r2 respectively on

a test with 200 boids spread in 4 species during 5000 time steps. These figures

compare the three distribution modes described above. For r2 the random model,

always optimal, is not shown.

The parameters that where used for AntCO2 are:

Parameter α β ρ N∗ M φ ants per vertex

Value 1 1 0.6 5 3 0.25 4

5 Conclusion

In this paper we presented an colored ant algorithm allowing to detect and dis-

tribute dynamic organizations. The algorithm offers advices for entity migration

in a distributed system taking care of the load and communication balancing.

We described a base colored algorithm, observed its behaviour with static and

dynamic graphs and provided methods to handle them.
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Figure 14: Comparison on criterion r2 between distribution modes “grid-like” and

AntCO2 with 200 boids.

Our algorithm handles dynamic graphs. Two properties of the algorithm al-

low this: positive feedback maintain paths in the graph between highly correlated

vertices, negative feedback isolate these communities. The first is controlled by

ants (pheromone drops), while the other is completely driven by the environment

(evaporation, edge deletion, weights). Negative feedback is what makes our al-

gorithm truly adaptive to dynamic graphs, allowing to forget bad communities

introduced by dynamics.

Organizations emerge from the ant behavior. Such an emergence is not ex-

plicitly implemented. These organizations make up solutions, which is the reason

why we don’t need an objective function at the contrary of traditional ant systems

[11].

We favor the r1 criterion, communication minimisation, above the r2 crite-

rion, load balancing, since the algorithm searches for organizations. The r1 crite-

rion is explicitly defined in ant behavior whereas r2 is only implicitly expressed
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by colored ant competition.

We develop actually an heuristic layer allowing to handle some constraints

tied to the application, like entities that cannot migrate (e.g. bound to a database),

but also information peculiar to the application.

This work takes place within the context of aquatic ecosystem models[3],

where we are faced to a very large number of heterogeneous auto-organizing

entities, from fluids representatives to living creatures presenting a peculiar be-

haviour.
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6 Notations

Notation Signification

G(t) = (V(t), E(t)) Dynamic communication graph at time t.

G(t) = (V(t), E(t), C(t)) Dynamic colored communication graph at time t.

u, v ∈ V(t) Vertices.

e = (u, v) ∈ E(t) An undirected edge.

c ∈ C(t) A color.

n ∈ N
+ Vertex count.

p ∈ N
+ Colors / computing resource count.

t ∈ N
+ Time.

x Usually an ant.

N(v) ∈ N Ant count for vertex v.

w(t)(e) ∈ N
+ Weight of edge e at time t.

V(t) Set of vertex at time t.

Vc(t) Set of vertices having color c at time t.

E(t) Set of edges at time t.

Eu(t) Set of edges adjacent to vertex u at time t.

A(t) Set of actual communication edges at time t.

C(t) Set of colors at time t.

B(t) Edge-cut at time t.

D(t) Partition of G(t) at time t.

Di(t) Domain making up partition D(t).

F(t) Ant population at time t.

Fc(t) Ant population having color c at time t.

∆
(t)
x (e, c) Pheromone quantity of color c dropped by ant x on

edge e during time interval ]t − 1, t].

∆(t)(e, c) Pheromone quantity of color c dropped by all (c col-

ored) ants on edge e during time interval ]t − 1, t].

∆(t)(e) Pheromone quantity dropped by all ants on edge e
during time interval ]t − 1, t].

K
(t)
c (e) Pheromone of color c rate on edge e at time t.

τ (t)(e, c) Total pheromone quantity of color c on edge e at time

t.

τ (t)(e) Total pheromone quantity on edge e at time t.
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Notation Signification

Ω(t)(e, c) Corrected reinforcement factor.

ξ(t)(u) Color of vertex u at time t.

p
(t)
x (e, c) Probability for an ant of color c to cross edge e

at time t.

α Pheromone importance.

β Weight importance.

ρ ∈]0, 1] Pheromone persistence factor.

γ(v) Vertex v demographical pressure.

N∗ Demographic pressure threshold.

Wx Tabu list for ant x.

M Tabu list size.

ηx(u) Penalisation factor for ant x to visit vertex u
again.

φ Jump threshold.

r1 Actual communications proportion over all com-

munications.

r2 Minimal partition size over maximal partition

size.
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