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Abstract The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic

synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchro-

nization of two identical systems via a suitable linear controller applied to the response system. Based on

the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these

systems are given. Control laws are derived analytically to achieve synchronization of the chaotic fractional-

order Chen, Rössler and modified Chua systems. Numerical simulations are provided to verify the theoretical

analysis.
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1 Introduction

Chaos, as an important topic in nonlinear science,

has been investigated and studied in mathematical

and physical communities in the last few decades and

the research efforts have devoted to chaos control and

chaos synchronization problems in many dynamical

systems. During the last two decades, synchroniza-

tion in chaotic dynamical systems has attracted a

great deal of attention [Yamada & Fujisaka, 1983;

Pecora & Carrol, 1990; Ott et al., 1990; Chen & Dong,

1998; Derivière & Aziz-Alaoui, 2003; Aziz-Alaoui,

2006] since the seminal papers by Yamada and Fu-

jisaka [1983] and Pecora and Carrol [1990]. A way to

study synchronization is to use a controller to make

the output of the slave (reponse) system copy in some

manner the master (drive) system one.

On the other hand, the development of models based

on fractional-order differential systems has recently

gained popularity in the investigation of dynamical

systems. Fractional derivatives provide an excellent

instrument to describe memory and hereditary prop-

erties of various materials and processes. The main

reason for using the integer-order models was the ab-

sence of solution methods for fractional differential

equations. The advantages or the real objects of the

fractional-order systems [Petráš, 2008] are that we

have more degrees of freedom in the model and that a

“memory” is included in the model (fractional-order

systems have an unlimited memory).

Recently, studying fractional-order systems has

become an active research area. The chaotic dy-

namics of fractional-order systems began to attract

much attention in recent years [Podlubny, 1999; Hil-
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fer, 2000]. It has been shown that fractional-order

systems, as generalizations of many well-known sys-

tems, can also behave chaotically, such as the frac-

tional Duffing system [Ge & Ou, 2007], the fractional

Chua system [Petráš, 2008; Hartley et al., 1995], the

fractional Rössler system [Li & Chen, 2004a], the frac-

tional Chen system [Li & Peng, 2004; Li & Chen,

2004b; Lu & Chen, 2006], the fractional Lorenz sys-

tem [Grigorenko & Grigorenko, 2003], the fractional

Arneodo system [Arneodo et al., 1985] and the frac-

tional Lü system [Deng & Li, 2005]. In [Hartley et al.,

1995; Li & Chen, 2004a; Li & Peng, 2004; Li & Chen,

2004b] it has been shown that some fractional-order

systems can produce chaotic attractors with order less

than 3.

Recent studies show that chaotic fractional-order sys-

tems can also be synchronized [Lu & Chen, 2006;

Deng & Li, 2005; Li et al., 2003; Li & Zhou, 2005;

Zhou et al., 2008; Peng, 2007]. In many litera-

tures, synchronization among fractional-order sys-

tems is only investigated through numerical simu-

lations. A simple method to synchronize chaotic

fractional-order systems based on the stability crite-

ria of linear differential systems, see [Matignon, 1996;

Deng et al., 2007], is presented in [Sheu et al., 2007;

Yan & Li, 2007; Li & Yan, 2007]. Numerical algo-

rithms for chaos synchronization of fractional-order

systems based on Laplace transform theory are pre-

sented in [Wang et al., 2006; Li et al., 2006; Zhu et al.,

in press; Wu et al., 2008; Yu & Li, 2008].

In this paper, we recall and present some stabil-

ity results for linear fractional-order systems. Then,

based on these results, we study the chaos synchro-

nization of fractional-order systems. Using the drive-

response concept, a linear feedback control law is de-

rived to achieve synchronization of the two chaotic

fractional-order systems. The synchronization con-

trollers are investigated theoretically and numeri-

cal simulations are then presented in the case of

fractional-order Chen, Rössler and modified Chua sys-

tems.

2 Preliminaries and definitions

There are several definitions of a fractional deriva-

tive of order α > 0 [Podlubny, 1999; Caputo, 1967].

The two most commonly used are the Riemann-

Liouville and Caputo definitions. Each definition uses

Riemann-Liouville fractional integration and deriva-

tives of whole order. The difference between the two

definitions appears in the order of evaluation. The

Riemann-Liouville fractional integral operator of or-

der α ≥ 0 of the function f(t) is defined as,

Jαf(t) =
1

Γ(α)

∫ t

0

(t − τ)α−1f(τ)dτ, t > 0. (1)

Some properties of the operator Jα can be found, for

example, in [Podlubny, 1999; Gorenflo & Mainardi,

1997; Oldham & Spanier, 1974]. We recall only the

two following properties. For µ ≥ −1, α, β ≥ 0 and

γ > −1, we have,

JαJβf(t) = Jα+βf(t),

Jαtγ =
Γ(γ + 1)

Γ(α + γ + 1)
tα+γ .

In this study, Caputo definition is used and the frac-

tional derivative of f(t) is defined as, Jm−αDmf(t),

Dαf(t) =
1

Γ(m − α)

∫ t

0

f (m)(τ)

(t − τ)α−m+1
dτ, (2)

for m − 1 < α ≤ m, m ∈ IN, t > 0.

Caputo definition has the advantage of dealing prop-

erly with initial value problems in which the initial

conditions are given in terms of the field variables with

their integer order which is the case in most physical

processes. Fortunately, the Laplace transform of the

Caputo fractional derivative satisfies,

L{Dαf(t)} = sα
L{f(t)} −

m−1
∑

k=0

f (k)(0+)sα−1−k, (3)

where m − 1 < α ≤ m.

The Laplace transform of Caputo fractional derivative

requires the knowledge of the (bounded) initial values

of the function and of its integer derivatives of order

k = 1, 2, · · · , m−1. It has been found that the solution

of many fractional-order differential equations can be

written in terms of Mittag-Leffler functions, which are

relevant for their connection with fractional calculus.

The one-parameter Mittag-Leffler function Eα(z) is

defined by [Podlubny, 1999],
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Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C, (4)

which is an entire function. The Laplace transform

for Eα(z) is given by [Podlubny, 1999],

L{Eα(−λtα)} =
sα−1

sα + λ
. (5)

The Mittag-Leffler function provides a simple general-

ization of the exponential function. For studying the

stability of fractional order systems, we need the final

value theorem.

Theorem 1 Let F (s) be the Laplace transform of

function f(t). If all poles of sF (s) are in the open

left half plane, then,

lim
t−→∞

f(t) = lim
s−→0

sF (s). (6)

The final value theorem gives information about the

asymptotic behavior of f(t) (how f(t) behaves as

t −→ +∞) directly from F (s). This result plays an

important role in the derivation of the linear feedback

control laws to achieve synchronization of the chaotic

fractional-order systems.

3 Stability results of linear frac-

tional systems

Stability of linear fractional systems, which is of main

interest in control theory, has been thoroughly inves-

tigated where necessary and sufficient conditions have

been derived, see [Matignon, 1996; Deng et al., 2007]

or references therein. In [Matignon, 1996], Matignon

introduced the stability properties for some linear

fractional-order systems. In [Deng et al., 2007], Deng

et al. studied the stability of n-dimensional linear

fractional differential equations with time delays. In

this section, we recall the main stability properties

and then, we present a new property for a general

class of fractional-order systems. For this object, we

consider the following linear system of fractional dif-

ferential equations,

dα

dtα
x(t) = Ax(t), x(0) = x0, (7)

where x ∈ IRn, the matrix A ∈ IRn × IRn, α =

[α1, α2, · · · , αn] indicates the fractional orders, dα

dtα
=

[ dα1

dtα1
,

dα2

dtα2
, · · · , dαn

dtαn
] and dαi

dtαi
is the Caputo frac-

tional derivative of order αi, where 0 < αi ≤ 1 for

i = 1, 2, · · · , n. If α = α1 = α2 = · · · = αn, then the

stability of the fractional-order system (7) has been

studied in [Matignon, 1996], where necessary and suf-

ficient conditions have been introduced. The following

stability result was derived in [Matignon, 1996].

Theorem 2 The autonomous fractional-order sys-

tem (7), when α = α1 = α2 = · · · = αn, is asymptot-

ically stable iff |arg(spec(A))| > απ/2. In this case

the components of the state decay towards 0 like t
−α

.

In case of α = 1, the stability occurs if no poles of the

linear system (7) lie in the closed right half plane of

the Laplace plane which agrees with well-known re-

sults for ordinary linear differential systems.

If α1, α2, · · ·, αn are rational positive numbers, then

we have the following result, which is introduced in

[Deng et al., 2007].

Theorem 3 Suppose that αi’s are rational numbers

between 0 and 1, for i = 1, 2, · · · , n. Let γ = 1/m

where m is the least common multiple of the denom-

inators mi of αi’s, where αi = ki/mi, ki, mi ∈ IN ,

i = 1, 2, · · · , n. Then system (7) is asymptotically sta-

ble if all roots λ of the equation det
(

diag(λmα1 , λmα2 ,

· · · , λmαn) − A
)

= 0 satisfy |arg(λ)| > γπ/2.

Now, if α1, α2, · · ·, αn are any positive numbers

between 0 and 1, not necessary equals or rational

numbers, then we have the following new result.

Theorem 4 The autonomous fractional-order sys-

tem (7) is asymptotically stable if |arg(spec(A))| >

π/2, that is a11, a22, · · · , ann < 0, when A is an up-

per or lower triangular matrix.

Proof. For simplicity, we give the proof when A is an

3 × 3 lower triangular matrix. A similar way can be

followed to prove the general theorem. Consider the

fractional-order system,















dα1x

dtα1

dα2y

dtα2

dα3z

dtα3















=







a11 0 0

a21 a22 0

a31 a32 a33













x

y

z






(8)
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Applying Laplace transform to system (8), letting

X(s) = L((x(t)), Y (s) = L(y(t)), Z(s) = L(z(t)) and

using formula (3), we obtain,



































sα1X(s) − sα1−1x(0) = a11X(s)

sα2Y (s) − sα2−1y(0) = a21X(s) + a22Y (s)

sα3Z(s) − sα3−1z(0) = a31X(s) + a32Y (s)

+ a33Z(s)

(9)

It follows from Eqs. (9) that,






















































































X(s) =
sα1−1x(0)

sα1 − a11

Y (s) =
sα2−1y(0)

sα2 − a22

+
a21s

α1−1x(0)

(sα1 − a11)(sα2 − a22)

Z(s) =
sα3−1z(0)

sα3 − a33

+
a31s

α1−1x(0)

(sα1 − a11)(sα3 − a33)

+
a32s

α2−1y(0)

(sα2 − a22)(sα3 − a33)

+
a21a32s

α1−1x(0)

(sα1 − a11)(sα2 − a22)(sα3 − a33)

(10)

In particular, using (5), we have x(t) = x(0)

Eα1
(a11t

α1), where Eα(t) is the Mittag-Leffler func-

tion. From the properties of this function, see [Goren-

flo & Mainardi, 1997], we can conclude that x(t) −→ 0

as t −→ +∞ if a11 < 0. In view of (10), all poles of

sX(s), sY (s) and sZ(s) lie in the open left half plane

if a11, a22, a33 < 0. Hence, using the final value the-

orem we get,















limt−→∞ x(t) = lims−→0 sX(s) = 0,

limt−→∞ y(t) = lims−→0 sY (s) = 0,

limt−→∞ z(t) = lims−→0 sZ(s) = 0.

(11)

As a result, the states x(t), y(t), z(t) decay towards 0,

as t −→ +∞, if a11, a22, a33 < 0. Therefore, in this

case, system (8) is asymptotically stable.

4 Synchronization of fractional-

order systems

In this section, based on the stability results of frac-

tional differential equations, we briefly discuss the is-

sue of controlling fractional-order chaotic systems to

realize synchronization with linear error feedback con-

trol. In order to observe synchronization behavior, we

construct the master (drive) system and the slave (re-

sponse) system as,

Master







































































dα1xm

dtα1

= b11xm + b12ym + b13zm

+g1(xm, ym, zm, t)

dα2ym

dtα2

= b21xm + b22ym + b23zm

+g2(xm, ym, zm, t)

dα3zm

dtα3

= b31xm + b32ym + b33zm

+g3(xm, ym, zm, t)

(12)

Slave



































































dα1xs

dtα1

= b11xs + b12ys + b13zs

+g1(xm, ym, zm, t) + u1(t)

dα2ys

dtα2

= b21xs + b22ys + b23zs

+g2(xm, ym, zm, t) + u2(t)

dα3zs

dtα3

= b31xs + b32ys + b33zs

+g3(xm, ym, zm, t) + u3(t)

(13)

where d
αi

dtαi
is the fractional differential operator in Ca-

puto sense, 0 < αi ≤ 1, gi is a nonlinear function and

bij are real constants, for i, j = 1, 2, 3. Subscripts m

and s stand for the master system and slave system,

respectively, u(t) = [u1(t), u2(t), u3(t)]
T is the linear

controller to be designed such that these two chaotic

systems synchronize. Defining the synchronization er-

ror as,

e1(t) = xs(t) − xm(t)

e2(t) = ys(t) − ym(t)

e3(t) = zs(t) − zm(t)

we get the error system,
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









































dα1e1

dtα1

= b11e1 + b12e2 + b13e3 + u1(t)

dα2e2

dtα2

= b21e1 + b22e2 + b23e3 + u2(t)

dα3e3

dtα3

= b31e1 + b32e2 + b33e3 + u3(t)

(14)

Our aim is to determine the controller u(t), given

below, such that the drive system (12) and the re-

sponse system (13) are synchronized (‖e(t)‖ −→ 0, as

t −→ +∞).

u(t) =







u1(t)

u2(t)

u3(t)







=







a11 a12 a13

a21 a22 a23

a31 a32 a33






·







e1(t)

e2(t)

e3(t)






(15)

where aij are real constants. For this purpose, we

design the controller u(t) = [u1(t), u2(t), u3(t)]
T such

that the solutions of the error system ei(t) go to 0,

i = 1, 2, 3, as t goes to +∞. In this paper, three cases

are studied to design the controller u(t).

Case 1. If α = α1 = α2 = α3 then, using Theo-

rem 2, the drive system (12) and the response system

(13) are synchronized when |arg(spec(Au))| > απ/2,

where,

Au =







a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33






(16)

In this case, we choose the controller u(t) such that

|arg(λ)| > απ/2 for every eigenvalue λ of the matrix

Au. Of course, if all eigenvalues of Au are negative

real numbers then both systems achieve synchroniza-

tion.

Case 2. If αi’s are rational numbers such that

αi = ki/mi, γ = 1/m where m is the least common

multiple of the denominators mi of αi’s, ki, mi ∈ IN ,

for i = 1, 2, 3, then, using Theorem 3, the drive sys-

tem (12) and the response system (13) are synchro-

nized when all roots λ of the characteristic equa-

tion det
(

diag(λmα1 , λmα2 , λmα3) − Au

)

= 0 satisfy

|arg(λ)| > γπ/2. In this case, we choose the con-

troller u(t) such that all the roots of the equation

det
(

diag(λr1 , λr2 , λr3) − Au

)

= 0 satisfy |arg(λ)| >

γπ/2, where ri = mki/mi.

Case 3. In particular, if α1, α2, α3 are any positive

real numbers between 0 and 1 then, using Theorem

4, the drive system (12) and the response system (13)

are synchronized when Au is an upper or lower tri-

angular matrix and all eigenvalues of Au are negative

real numbers. In this case we choose the controller

u(t) such that Au becomes an upper or lower triangu-

lar matrix and all roots of the characteristic equation

(λ − a11 − b11)(λ − a22 − b22)(λ − a33 − b33) = 0 are

negative real numbers.

To demonstrate these techniques, some examples

of synchronization for two identical fractional-order

chaotic systems are discussed in the following sections.

5 Synchronization of fractional-

order Chen systems

Here, we consider Chen system, which has been found

by Chen and Ueta [1999] in 1999. Its fractional ver-

sion reads as,











































dα1x

dtα1

= a(y − x)

dα2y

dtα2

= (c − a)x − xz + cy

dα3z

dtα3

= xy − bz

(17)

where α = (α1, α2, α3) is subject to 0 < α1, α2, α3 ≤
1. When α = (1, 1, 1), system (17) is the origi-

nal integer order Chen system, which is chaotic,

for example, when (a, b, c) = (35, 3, 28), see [Chen

& Ueta, 1999]. Simulations are performed to ob-

tain chaotic behavior of the fractional-order Chen

system for different fractional orders α. Simulation

results demonstrate that chaos indeed exists in the

fractional-order Chen system with order less than
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3 (i.e. α1 + α2 + α3 < 3). For example, chaotic

attractors are found in [Yan & Li, 2007] when

α = (0.95, 0.95, 0.95) and (a, b, c) = (35, 3, 28). In

[Li & Chen, 2004b] chaotic behaviors are found when

α = (0.9, 0.9, 0.9) and (a, b, c) = (35, 3, 28).

Moreover, in [Wang et al., 2006], it is found that

for the parameters α = (0.985, 0.99, 0.98) and

(a, b, c) = (35, 3, 28) the fractional-order Chen system

can display chaotic attractors. The chaotic attractors

of fractional Chen system (17) for some fractional

orders are shown in Figs. 1-4.

Figure 1

Figure 2

Figure 3

Figure 4

According to our approach, the drive and the response

fractional-order Chen systems are described as,













dα1xm

dtα1

dα2ym

dtα2

dα3zm

dtα3













=





−a a 0

c − a c 0

0 0 −b









xm

ym

zm





+





0

−xmzm

xmym



 (18)













dα1xs

dtα1

dα2ys

dtα2

dα3zs

dtα3













=





−a a 0

c − a c 0

0 0 −b









xs

ys

zs





+





0

−xmzm

xmym



 +





u1(t)

u2(t)

u3(t)



 (19)

where the controller u(t) = [u1(t), u2(t), u3(t)]
T is de-

fined in (15). Then the error system gives,

dα

dtα
e(t) = Bu e(t), (20)

where e(t) = (e1(t), e2(t), e3(t)) and,

Bu =







a11 − a a12 + a a13

a21 + c − a a22 + c a23

a31 a32 a33 − b






.

In view of case 1, if α1 = α2 = α3 = α, then the drive

system (18) and the response system (19) are synchro-

nized if all roots of the equation det
(

λI −Bu

)

= 0 lie

in the region |arg(λ)| > απ/2, see examples 1 and 2

below.

Also, in view of case 2, if α1 = k1/m1, α2 = k2/m2

and α3 = k3/m3 are rational numbers, then both

systems are synchronized if all roots of the equation

det
(

diag(λr1 , λr2 , λr3) − Bu

)

= 0 lie in the region

|arg(λ)| > π/2m, where m is the least common mul-

tiple of {m1, m2, m3} and ri = mαi, see example 3

below.

Moreover, in particular and according to case 3, as in

examples 3 and 4 below , if α1, α2, α3 are any positive

real numbers between 0 and 1, then synchronization

of the drive system (18) and the response system (19)

is sufficiently achieved under the control laws,



































a12 = −a

a13 = 0

a23 = 0

a11 < a

a22 < −c

a33 < b

(21)

or,



































a21 = a − c

a31 = 0

a32 = 0

a11 < a

a22 < −c

a33 < b

(22)

Example 1 Taking α = (0.95, 0.95, 0.95), (a, b, c) =

(35, 3, 28) and u(t) =
[

(37,−33, 0), (2,−31, 0),

(0, 0,−5)
]

e(t), then the roots of the equation det
(

λI−
Bu

)

= 0 are,

λ1 = −5,

λ2 =
1

2

(

− 1 +
√

15i
)

,

λ3 =
1

2

(

− 1 −
√

15i
)

,

where i2 = −1. Of course, all roots λ1, λ2, λ3 have

negative real parts, and so they lie in the region

|arg(λ)| > (0.95)π/2. Therefore, the drive system

(18) and the response system (19) are synchronized.
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The error functions evolution, in this case, is shown

in Fig. 5 (a).

Example 2 If we take α = (0.9, 0.9, 0.9), (a, b, c) =

(35, 3, 28) and u(t) =
[

(32,−35, 0), (7,−26,−20),

(0, 30, 2)
]

e(t), then the roots of the equation det
(

λI −
Bu

)

= 0 are,

λ1 = −3,

λ2 =
1

2

(

1 +
√

2391 i
)

,

λ3 =
1

2

(

1 −
√

2391 i
)

.

Even the eigenvalues λ2 and λ3 have positive real

parts, systems (18) and (19) are synchronized since

|arg(λ2,3)| > (0.9)π/2. The error functions evolution,

in this case, is shown in Fig. 5 (b).

Example 3 If we take α = (0.985, 0.99, 0.98),

(a, b, c) = (35, 3, 28) and u(t) =
[

(25, 0, 0), (7,−33, 5),

(0, 0, 1)
]

e(t), we have r1 = 985, r2 = 990,

r3 = 980 and m = 1000 and then the equation

det
(

diag(λ985, λ990, λ980) − Bu

)

= 0 can be written

as,

(λ985 + 10)(λ990 + 5)(λ980 + 2) = 0.

Using simple calculations, we can show that all roots

of above equation lie in the region |arg(λ)| > π/2000.

Therefore, both systems (18) and (19) are synchro-

nized. Also, we can conclude that the systems are syn-

chronized since the controller u(t) satisfies the control

law (22). The error functions evolution, in this case,

is shown in Fig. 5 (c).

Example 4 If we take α = (0.985, 0.99, 0.98),

(a, b, c) = (35, 3, 28) and u(t) =
[

(27,−35, 0), (8,−30,

0), (5, 0, 2.5)
]

e(t), then u(t) satisfies the control law

(21), and so both systems (18) and (19) are synchro-

nized. The error functions evolution, in this case, is

shown in Fig. 5 (d).

Figure 5

From Fig. 5, it is obvious that the components

of the error system (20) decay towards zero as t goes

to +∞. Therefore, we can numerically conclude that

the designed linear controller can effectively control

the chaotic fractional-order Chen system to achieve

synchronization between the drive system (18) and

the response system (19).

6 Synchronization of fractional-

order Rössler systems

Now, we consider the Rössler system, which has been

found by Rössler [1976] in 1976. Its fractional version

reads as,











































dα1x

dtα1

= −(y + z)

dα2y

dtα2

= x + ay

dα3z

dtα3

= z(x − c) + b

(23)

where α = (α1, α2, α3) is subject to 0 < α1, α2, α3 ≤
1. When α = (1, 1, 1), system (23) is the original

integer order Rössler system, which is chaotic, for

example, when (a, b, c) = (0.2, 0.2, 5), see Fig 6. Sim-

ulations are performed to obtain chaotic behavior

of the fractional-order Rössler system and the re-

sults demonstrate that chaos indeed exists with order

less than 3 (i.e. α1 + α2 + α3 < 3). For example,

chaotic attractors are found in [Li & Chen, 2004a]

when α = (0.9, 0.9, 0.9) and (a, b, c) = (0.4, 0.2, 10).

Also, in [Peng, 2007] it is found that for the param-

eters α = (1, 1, 0.8) and (a, b, c) = (0.2, 0.2, 5) the

fractional-order Rössler system can display chaotic

behaviors. Moreover, we find that chaotic be-

haviors can be displayed for the fractional-order

Rössler system when (a, b, c) = (0.2, 0.2, 5) and

α = (0.95, 0.95, 0.95) or α = (0.9, 0.9, 0.9), see Figs. 7

and 8.

Figure 6

Figure 7

Figure 8

According to our approach, the drive and the re-

sponse fractional-order Rössler systems are described

as,
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











dα1xm

dtα1

dα2ym

dtα2

dα3zm

dtα3













=





0 −1 −1

1 a 0

0 0 −c









xm

ym

zm





+





0

0

xmzm + b



 (24)













dα1xs

dtα1

dα2ys

dtα2

dα3zs

dtα3













=





0 −1 −1

1 a 0

0 0 −c









xs

ys

zs





+





0

0

xmzm + b



 +





u1(t)

u2(t)

u3(t)



 (25)

where the controller u(t) = [u1(t), u2(t), u3(t)]
T is de-

fined in (15). Then the error system gives,

dα

dtα
e(t) = Cu e(t), (26)

where,

Cu =







a11 a12 − 1 a13 − 1

a21 + 1 a22 + a a23

a31 a32 a33 − c






.

In view of case 1, if α1 = α2 = α3 = α,

then the drive system (24) and the response sys-

tem (25) are synchronized if all roots of the equation

det
(

λI − Cu

)

= 0 lie in the region |arg(λ)| > απ/2,

see example 5 below.

Also, in view of case 2, if α1 = k1/m1, α2 = k2/m2

and α3 = k3/m3 are rational numbers, then both

systems are synchronized if all roots of the equation

det
(

diag(λr1 , λr2 , λr3) − Cu

)

= 0 lie in the region

|arg(λ)| > π/2m, where m is the least common mul-

tiple of {m1, m2, m3} and ri = mαi, see example 6

below.

Moreover, in particular and according to case 3, if α1,

α2, α3 are any positive real numbers between 0 and

1, then synchronization of the drive system (24) and

the response system (25) is sufficiently achieved under

the control laws,



































a12 = −1

a13 = 1

a23 = 0

a11 < 0

a22 < −a

a33 < c

(27)

or,



































a21 = −1

a31 = 0

a32 = 0

a11 < 0

a22 < −a

a33 < c

(28)

Example 5 Taking α = (0.9, 0.9, 0.9), (a, b, c) =

(0.4, 0.2, 10) and u(t) =
[

(2, 9, 1), (−18,−2.4, 0),

(0, 0, 7)
]

e(t), then the roots of the equation det
(

λI −
Cu

)

= 0 are,

λ1 = −3, λ2 =
√

132 i, λ3 = −
√

132 i.

Since |arg(λ1,2,3)| > (0.9)π/2, the drive system (24)

and the response system (25) are synchronized. The

error functions evolution, in this case, is shown in

Fig. 9 (a).

Example 6 If we take α = (1, 1, 0.8), (a, b, c) =

(0.2, 0.2, 5) and u(t) =
[

(−2,−2, 1), (6,−1.2, 0), (0, 0,

−2)
]

e(t), we have r1 = 10, r2 = 10, r3 = 8 and

m = 10 and then the equation det
(

diag(λ10, λ10, λ8)−
Cu

)

= 0 can be written as,

(λ8 + 2)(λ20 + 3λ10 + 20) = 0.

Simply, we can show that all roots of above equation

lie in the region |arg(λ)| > π/20. Therefore, both

systems (24) and (25) are synchronized. The error

functions evolution, in this case, is shown in Fig. 9

(b).

Figure 9

From Fig. 9, for the given parameters, we can con-

clude that the components of the error system (26)

decay towards zero as t goes to +∞, and so the drive

system (24) and the response system (25) are synchro-

nized.
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7 Synchronization of fractional-

order cubic Chua systems

Now, we consider the Chua’s equations [Chua & Lin,

1990; Chua et al., 1993] with cubic nonlinearity (i.e.

cubic Chua system), see for example [Huang et al.,

1996]. Its fractional version reads as,











































dα1x

dtα1

= a(y + bx + cx3)

dα2y

dtα2

= x − y + z

dα3z

dtα3

= −βy − γz

(29)

where α = (α1, α2, α3) is subject to 0 < α1, α2, α3 ≤
1. We fix the parameters as,

(a, b, c) = (9.5, 0.15,−0.3) , (β, γ) = (14, 0.02), (30)

and we perform numerical simulations to obtain

chaotic behaviors of the fractional-order cubic Chua

system. First of all, the integer case α = (1, 1, 1) is

studied and chaotic attractors are found as shown

in Fig. 10. Then, in the fractional-order case, with

α = (0.98, 0.98, 0.98) or α = (0.96, 0.96, 0.96), chaotic

behaviors are also obtained as shown in Figs. 11 and

12.

Figure 10

Figure 11

Figure 12

According to our approach, the drive and the re-

sponse systems for the fractional-order cubic Chua

system are described as,













dα1xm

dtα1

dα2ym

dtα2

dα3zm

dtα3













=





−ab a 0

1 −1 1

0 −β −γ









xm

ym

zm





+





−acx3

m

0

0



 (31)













dα1xs

dtα1

dα2ys

dtα2

dα3zs

dtα3













=





−ab a 0

1 −1 1

0 −β −γ









xs

ys

zs





+





−acx3

m

0

0



 +





u1(t)

u2(t)

u3(t)



 (32)

Then, the error system gives,

dα

dtα
e(t) = Du e(t), (33)

where,

Du =







a11 − ab a12 + a a13

a21 + 1 a22 − 1 a23 + 1

a31 a32 − β a33 − γ






.

Similar to the previous systems, in view of case 1,

if α1 = α2 = α3 = α, then the drive system (31) and

the response system (32) are synchronized if all roots

of the equation det
(

λI − Du

)

= 0 lie in the region

|arg(λ)| > απ/2.

Also, in view of case 2, if α1 = k1/m1, α2 = k2/m2

and α3 = k3/m3 are rational numbers, then both

systems are synchronized if all roots of the equation

det
(

diag(λr1 , λr2 , λr3) − Du

)

= 0 lie in the region

|arg(λ)| > π/2m, where m is the least common mul-

tiple of {m1, m2, m3} and ri = mαi.

Moreover, in particular and according to case 3, as

in examples 7 and 8, if α1, α2, α3 are any positive

real numbers between 0 and 1, then synchronization

of the drive system (31) and the response system (32)

is sufficiently achieved under the control laws,



































a12 = −a

a13 = 0

a23 = −1

a11 < ab

a22 < 1

a33 < γ

(34)

or,
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

































a21 = −1

a31 = 0

a32 = β

a11 < ab

a22 < 1

a33 < γ

(35)

Example 7 Taking α = (0.98, 0.98, 0.98), the same

parameters as given in Eq. (30) and u(t) =
[

(−2.5,−9.5, 0), (2,−3,−1), (5, 3,−2)
]

e(t), then u(t)

satisfies the control law (34), and so both systems (31)

and (32) are synchronized. The error functions evo-

lution, in this case, is shown in Fig. 13 (a).

Example 8 If we take α = (0.96, 0.96, 0.96), the

same parameters as given in Eq. (30) and u(t) =
[

(−4, 3, 5), (−1, 0.2, 1), (0, 14,−3)
]

e(t), then u(t) sat-

isfies the control law (35), and so both systems (31)

and (32) are synchronized. The error functions evo-

lution, in this case, is shown in Fig. 13 (b).

Figure 13

From Fig. 13, for the given parameters, we can

conclude that the components of the error system (33)

decay towards zero as t −→ +∞, and so the drive sys-

tem (31) and the response system (32) are synchro-

nized.

8 Conclusion

In this paper, we present theoretical results for

drive-response synchronization between fractional-

order systems, based on stability results of linear

fractional-order systems. Suitable sufficient condi-

tions for achieving synchronization of two identical

fractional-order systems via a suitable linear con-

troller applied to the response system are derived. We

briefly discuss the issue of controlling fractional-order

chaotic Chen, Rössler and modified Chua systems to

realize synchronization with linear error feedback con-

trol. For this purpose, we design the controller such

that the components of the error system decay to-

wards zero as t goes to +∞. Numerical simulations

are given to verify the effectiveness of the proposed

synchronization scheme and to show that some typ-

ical chaotic systems can be synchronized. We em-

phasize that this scheme of of synchronization can be

extended to other chaotic fractional-order systems.
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Figure 1: Chaotic attractor of the Chen system (17), when α = (1, 1, 1) and (a, b, c) = (35, 3, 28).
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Figure 2: Chaotic attractor of the Chen system (17), when α = (0.9, 0.9, 0.9) and (a, b, c) = (35, 3, 28).

-20 -10 10 20
x

-20

-10

10

20

y

-20 -10 10 20
x

15

20

25

30

35

40

z

-20 -10 10 20
y

15

20

25

30

35

40

z

Figure 3: Chaotic attractor of the Chen system (17), when α = (0.85, 0.85, 0.85) and (a, b, c) = (35, 3, 28).
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Figure 4: Chaotic attractor of the Chen system (17), when α = (0.985, 0.99, 0.98) and (a, b, c) = (35, 3, 28).
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Figure 5: Synchronization of the fractional-order Chen system (17). It is obvious that the evolution of the error

functions e1(t), e2(t), e3(t) → 0 as t → +∞.
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Figure 6: Chaotic attractor of the Rössler system (23), when α = (1, 1, 1) and (a, b, c) = (0.2, 0.2, 5).
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Figure 7: Chaotic attractor of the Rössler system (23), when α = (0.95, 0.95, 0.95) and (a, b, c) = (0.2, 0.2, 5).
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Figure 8: Chaotic attractor of the Rössler system (23), when α = (0.9, 0.9, 0.9) and (a, b, c) = (0.2, 0.2, 5).
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Figure 9: Synchronization of the fractional-order Rössler system (23). It is obvious that the evolution of the error

functions e1(t), e2(t), e3(t) → 0 as t → +∞.
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Figure 10: Chaotic attractor of the Chua cubic system (29), when α = (1, 1, 1) and the parameters given in Eq. (30).
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Figure 11: Chaotic attractor of the fractional Chua cubic system (29), when α = (0.98, 0.98, 0.98) and the parameters

given in Eq. (30).
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Figure 12: Chaotic attractor of the fractional Chua cubic system (29), when α = (0.96, 0.96, 0.96) and the parameters

given in Eq. (30).
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Figure 13: Synchronization of the fractional-order Chua cubic system (29). It is obvious that the evolution of the error

functions e1(t), e2(t), e3(t) → 0 as t → +∞.


