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Abstract. In this study, we develop a methodology based on computational intelligence
concepts, for decision making tools using simulation of self-organized complex systems.
Land-use management is considered here as the output of sustainable development strate-
gies, dealing with the achievement of many objectives, interacting in a complex way,
like environmental, economical and social objectives. The methodology presented here
can be considered as a conceptual evolution in simulation processes from the simulations
based on rule systems over geographical cellular automata toward the simulations involv-
ing self-organized agent-based systems over geographical information systems (GIS). Our
methodology is based on self-organization patterns detection which emerge from spatial
and behavioral systems. According to the complex systems modelling principles, we let
the system evolve by itself with only partial control implemented here by an evolutive and

selective process based on a fitness function over the whole system.

Keywords. Land-use, self-organization, geographical information systems, agent-based

modeling, automata with multiplicities, community detection, territorial intelligence.

1 Introduction: Complexity Concept Approach
for Land-Use Management

Land-use management, in regional or urban development, deals with Territo-
rial Intelligence concepts. The word “Intelligence” has to be considered from
its latin root, “Intelligere”, which means understanding. So, our purpose is to
understand the territorial management by the complex interaction of many
kinds of phenomena. The description proposed here for territorial manage-
ment is based on the Sustainable Development strategies which try to avoid
naive solutions which may appear at first efficient to solve specific problems
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in short a term vision. Without understanding the complex implication of
some naive solutions, the whole system can lead to irreversible evolutions,
making it fail on long term development for social or environmental features.
Sustainable development has mainly three objectives which are environmen-
tal, economical and social ones. The complexity of the interaction network
between these objectives leads to the necessity to develop decision making
tools based on simulation to help understand the system evolution on a spa-
tial and a temporal multi-scale description.

The complexity analysis on which we focus our attention to develop the
methodology is based on multi-description approaches : (i) the multi-scale
modelling is here essential and an example of this need can be illustrated
by the climatic change problem as a global Earth phenomenon which can
induce modifications on urban management. (ii) The multi-actors modelling
is also needed for resources management which is affected or concerned by
farmers, economists and politicians. (iii) A Multi-disciplinary approach is
also needed to take into account environment, economy and social dynamics,
using multi-modelling methods, to mix differential and individual-based mod-
els. To conclude, we finally deal with an integrative description simulation
which is based on very specific features related to complex systems modelling.

The complexity analysis that we have to integrate in our way of modelling
must contain some conceptual functions based on emergent self-organized
systems and their associated dynamical morphologies. We have to implement
micro-macro interactions in multi-scale description which are generally the
basis of the dynamic of the emergent organizations. By these functions, we
must be able to understand evolution and adaptation properties of theses
organizations. These evolutions generally lead to hierarchical structures of
the organizations themselves, like in geographical systems where simulations
may need descriptions from urban districts to regional or international area.
Organization feed-back of these herarchical structures on the entities are also
essential to understand the organization evolution (in multi-scale approaches)
like, for example, how country laws can feed-back on the cities management.

2 Modelling and Simulation Approaches

We will present, in the first section, a short review of the main features con-
cerning land-use management modelling. Then, in the following sections, we
will develop our own approach, based on agent-based modelling for complex
systems using automata with multiplicities.

2.1 Land-use systems modelling

Following the review proposed by Itzhak Benenson [2], we can classify the
different approaches of territorial systems modelling in two main classes: the
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“Black-box” macro-modeling and the individual-based micro-modeling.

The first category of approaches concerns mainly “stock and flow” de-
scriptions of socio-economic indicators. The main first contributors generally
mentionned, are I.S.Lowry [20] and J.W. Forrester [10]. Lowry’s model of
urban system, applied to the city of Pittsburg, proposed some “integrated”
model, defining a flow chart between the three main indicator classes: (i)
the basic sector of industrial and business activities, (ii) the householder
sector and (iii) the retail sector concerning the local population. This flow
chart model already deals with a mile-square decomposition similar to spatial
decomposition used later as an adaptation of cellular automata grid to geo-
graphical real space. The final output of the modeling process leads to a kind
of socio-economic equilibrium state. This approach finds its limit because of
its static description and dynamical models are essential to understand the
city evolution. Forrester proposed a dynamical modeling based on the appli-
cation of industrial dynamics on urban dynamics. His model is based on non
spatial stock and flow models. Stocks are exchanged within a three income
levels decomposition over housing, jobs and population. This model based on
simple urban description was aimed at generating simulation and Forrester
claims the benefit of computer simulation to understand the city evolution
and how we can predict its evolution by the modification of guiding policies
within the system.

The stock and flow models continue to be improved and to propose more
and more details, including transportation subsystem or land market, for
example. One of the most complete, called Integrated Urban Model (IUM)
was proposed by Bertuglia et al. [4]. The computational complexity increases
with the accuracity of the description and finally avoids to obtain reasonable
estimates of the parameters. These models are more representational tools
than simulation tools [2].

To buid efficient simulation models, the idea was to simplify the descrip-
tion, using a more global one facilitating the analytical description. From
the inspiration of dynamics of population theory, some researchers proposed
to build urban dynamic models from ecological modeling. The paradigm of
prey-predators systems is then used to give efficient simulation tools to in-
vestigate the main feature allowing then to understand the global dynamics.
For example, Dendrinos and Mulally [8] use a prey-predator model, assum-
ing that the increase of city population make decrease the economic status.
The predator represents the urban population and the preys, the per capita
income.

All the previous described models are based on top-down approaches to
model the system dynamics. We first consider the whole phenomenon and
we propose a way of how to split it in many sub-problems and then in stocks
and flows or in different terms contituting the equational system. Another
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class of modeling is based on micro-modeling and bottom-up representation
of the city as a collection of individual-based descriptions, behavioral rule-
based descriptions and interaction systems. From this constructive approach,
we want to obtain an emergent description of the whole system or of some
sub-systems included in a hierarchical process. Two complementary method-
ologies can be used for that and we detail them in the following paragraphs.

The first methodology consists in generating a simulation where all the
components, behaviors and rule-based, interact over a environment, perceiv-
ing and acting on it. The environment evolving is the support of emergent
properties. The cellular automata modeling deals with this kind of simula-
tions. The basic definition of cellular automata for urban or regional mod-
eling, for exemple, consists in the decomposition of the city, region or any
geographical area in a lattice of cells. Each cell is in some state which belongs
to a finite set S. At each time step, the cells change their own state accord-
ing to some transition rule based on their previous state and their neighbor
cells. Many works based on cellular automata, have been developped for ge-
ographical systems and urban dynamics [1,9]. Extensions on environmental
problems like water streaming are using these medels as efficient tools [19].
Cellular automata can be seen mainly as distributed tools to model diffusive
penomena using rule-based systems. One of the first researchers in human
sciences who proposed models based on diffusive rule-based systems is T.
Hégerstrand in a very early period, during 50’ [17] but his work itself started
to be diffused over the science community more than 15 years later, when
the computer development became able to implement its model in realistic
studies. One of the most famous cellular-based model for social modeling
is du to T. Schelling [21], describing the segregation process. But with the
implementation of this model, we face an important extension to cellular
automata where we need to represent individuals moving after a simple de-
liberative process. The mixing of spatial data and cellular automata with
autonomous entities, like agents, is here needed [7].

The second methodology to deal with emergent description in micro-
modelling, consists in completing the previous approach based on simula-
tion, by introducing some computational processes which are able to detect
emergent systems or organizations. The final goal of this method is then to
be able to re-introduce these emergent systems or organizations inside the
simulation and manage their evolutions and their interactions with the com-
ponents of the system. The re-integration of the emergent systems, during
the simulation, can be explicitely expressed like in the multiscale fluid flow
simulation proposed by P. Tranouez [23] or it can be implicitly expressed
using a self-controled process as we describe in the following, using genetic
algorithms.
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2.2 Basic agent-based concepts and complex systems
modelling

In this section, we give the basis of the conceptual tools which allow to extend
the reactive and diffusive grid cases behavior to more sophisticated entities,
using agent-based models. We propose to model the agent behavior with
automata with multiplicities which are powerful algebraic stuctures.

According to General System Theory [18], a complex system is composed
of entities in mutual interaction and interacting with the outside environ-
ment. A system has some characteristic properties which confer its structural
aspects, as schematically described in part (a) of Figure 1:

e The set elements or entities are in interactive dependance. The alter-
ation of only one entity or one interaction reverberates on the whole
system.

e A global organization emerges from interacting constitutive elements.
This organization can be identified and carries its own autonomous be-
havior while it is in relation and dependance with its environment. The
emergent organization possesses new properties that its own constitu-
tive entities do not have.

e The global organization retro-acts over its constitutive components.

The interacting entities network as described in part (b) of Figure 1 leads
each entity to perceive informations or actions from other entities or from
the whole system. Each entity also acts on the interaction network or on the
environment.

A well-adapted modeling consists in using an agent-based system repre-
sentation which is composed of a set of entities called agent. Each entity
perceives and acts on an environment, using an autonomous behaviour as
described in part (c) of Figure 1.

To compute a simulation composed of such entities, we need to describe
the behaviour of each agent. This one can be schematically described using
internal states and transition processes between these states, as described in
part (d) of Figure 1. So an automaton with multiplicities as described in
the following section is well-adapted for the agent behavior modelling. Each
transition is labelled by an input as the agent perception and an output as
the agent action.
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Figure 1: Multi-scale complex system description: from global to individual
models

2.3 Automata-based modelling for agent behavior

An automaton with multiplicities is based on the fact that the output data of
the automata belongs to a specific algebraic structure, a semiring, including
real, complex, probabilistic, non commutative semantic outputs (transduc-
ers) [15,22]. In that way, we will be able to build effective operations on such
automata, using the power of the algebraic structures of the output data.
We are specifically able to describe automata by means of a matrix represen-
tation with all the power of the new (i.e. with semirings) linear algebra.

Definition 2.1 (Automaton with multiplicities)
An automaton with multiplicities over an alphabet ¥ and a semiring K is the
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5-uple (X,Q,1,T, F) where
o Q={51,5---S,} is the finite set of state;

e [:Q — K is a function over the set of states, which associates to each
initial state a value of K, called entry cost, and to non- initial state a
zero value ;

e I': () — K is a function over the set states, which associates to each
final state a value of K, called final cost, and to non-final state a zero
value;

o T is the transition function, that is T : Q X ¥ X Q — K which to a
state S;, a letter a and a state S; associates a value z of K (the cost of
the transition) if it exist a transition labelled with a from the state S;
to the state S; and and zero otherwise.

Remark 2.2 We have not yet, on purpose, defined what a semiring was.
Roughly it is the least structure which allows the matriz “calculus” with unit
(one can think of a ring without the "minus” operation). The previous au-
tomata with multiplicities can be, equivalently, expressed by a matrix repre-
sentation which is a triplet

e )\ € K@ which is a row-vector which coefficients are \; = I1(S;),
o v € K% is a column-vector which coefficients are v; = F(S;),

o 1 : Y — KX 4s a morphism of monoids (indeed K9*? is endowed
with the product of matrices) such that the coefficient on the g;th row
and gjth column of p(a) is T(g;, a, q;)

Definition 2.3 (Automata-Based Agent Behavior)
We represent the agent behavior by automata with multiplicities (3, Q, I, T, F')
over a semiring K :

e The agent behavior is composed of a states set QQ and of rule-based
transitions between them. These transitions are represented by T; I
and F represent the initial and final transitions;

e Alphabet ¥ corresponds to the agent perceptions set;

o The semiring K is the set of agent actions, sometimes associated to a
probabilistic value which is the action realization probability (as defined
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2.4 Agent Behavior Metric Space

The main advantage of automata-based agent modelling is their efficient op-
erators. We deal is this paragraph with an innovative way to define a behav-
ioral semi-distance as the essential key of self-organization processes proposed
later.

Definition 2.4 (Evaluation function for automata-based behavior)
Let x be an agent whose behavior is defined by A, an automaton with multi-
plicities over the semiring K, we define the evaluation function e(x) by:

where V(A) stands for the stringing-up of all coefficients of (A, u,7y), the
linear representation of A, defined in remark 2.2.

Definition 2.5 (Behavioral semi-distance)

Let x and y two agents and e(x) and e(y) their respective evaluations as
described in the previous definition 2.4. We define d(z,y) a semi-distance or
pseudometrics b between the two agents x and y as

d(x,y) = |le(z) —e(y)l-

The notation ||.|| standing for any vector norm.

3 Spatial and Behavioral Modeling Based on
Community Detection

In this section, we give an operational definition of a community in terms
of functional concepts dealing with complex and social modelling. To model
such communities, we have to complete the concept of automata behavior
with some spatial aspects and with some adaptive capabilities that genetic
operators can allow to implement. With these concepts, we can model com-
munities by evolutive population of these genetic spatial automata.

Definition 3.1 (Community operational definition)
A community is a system or an organization which is characterized by a
spatial property, a behavior property and the interaction between both.

Example 3.2 In ecology, a community is a group of plants or animals living
in a specific region, each interacting with the others.

The spatial patterns generated by Schelling models are some examples
of communities and these spatial patterns are linked with the very specific
behavioral rules implemented for each grid case. Our purpose here is to

Isee [6] ch IX
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give a more generic processus which can be mixed with sophisticated agent
behaviors. Using agent communication protocol, we can extend the diffusion
process linked with cellular automata to more distant communications and
interaction between spatial agents. In the following, we define this notion
of spatial automata-based agents and then we develop the genetic operators
allowing to transform automata with multiplicities to genetic automata. We
will explain how the definition of adapted fitness will generate the detection
processus.

Definition 3.3 (Spatial Automata-Based Agent)
A spatial automata-based agent is defined by its structural representation:

o An automaton with multiplicities corresponding to its behavior as a
whole processus managing its perceptions and its actions over its envi-
ronment. They include its communication capabilities and so its social
behavior;

o A spatial location defined on some specific metric space.

3.1 Genetic operators on automata population

We consider, in the following, a population of automata with multiplicities
which are each represented by a chromosome, following the genetic algorithm
principles. We define the chromosome for each automata with multiplicities
as the sequence of all matrices associated to each letter from the (linearly
ordered) alphabet. The chromosomes are composed with alleles which are
here the lines of the matrix [5].

In the following, genetic algorithms are going to generate new automata
containing possibly new transitions from the ones included in the initial au-
tomata.

The genetic algorithm over the population of automata with multiplicities
follows a reproduction iteration dividing in three steps [16]:

e Duplication: each automaton generates a clone of itself;

e (rossing-over: for each couple of automata, we consider a sequence of
lines of their matrix. A permutation on the lines of this sequence is
made between the analogue matrices of this couple of automata;

e Mutation: a line of each matrix is choosen at random and a sequence
of new values is given for this line.

Finally, the whole genetic algorithm scheduling for a full process of re-
production over all the population of agents is the evolutionary algorithm:
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1. For all couple of agents, two children are created by duplication, crossover
and mutation mechanisms over their behavioral automata. The loca-
tion of the children can be choosen in many ways: on the linear segment
defined by the parents location or as the node of a square described by
them and their parents (more details are given in [14]);

2. The fitness for each automaton is computed;

3. For all 4-uple composed of parents and children, the performless agents,
in term of fitness computed in the previous step, are suppressed. The
two agents, still living, result from the evolution of the two initial par-
ents.

Remark 3.4 The fitness is not defined at this level of abstract formulation,
but it is defined corresponding to the context for which the automaton is a
model, as we will do in the next section.

3.2 Adaptive processus to implement community detec-
tion

The community detection is based on a genetic algorithm over a population
of spatial automata-based agents. The formation of the community is the
result of the population evolution crossing by a selection process computed
with the fitness function defined in the following.

For this computation, we deal with two distances defined on the set of
agents. The first is the spatial distance associated to the agent spatial loca-
tion and the second is the behavioral semi-distance defined in the definition
2.5.

Definition 3.5 Community clustering and detection fitness
Let V; a neighbourhood of the agent x, relatively to its spatial location. We
define f(x) the agent fitness of the agent x as :

z% if > d(x,y)*#0
f(z) = L, Yi Yi€Va
00 otherwise

where d(x,y) is the behavioral semi-distance between the two agents x and y.

As such, the agent fitness f(z), increases when the automaton finds sim-
ilar behaviors within its neighbourhood.
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Figure 2: Fitness evaluation for community detection

On figure 2, we represent a population of automata where each automa-
ton is a colored chain representing its chromosom. Automata with similar
colored chain must be understood as similar behavioral automata. In the
left part of the figure, we focus on one high fitness individual after comput-
ing its spatial neighbourhood and observing the behavioral similarity of all
automata included in this neighbourhood. In the right part of the figure,
composed of the same population, we focus on a low fitness individual, show-
ing a behavior dissimilar to the other automata of its neighbourhood.

The genetic evolution of the spatial automata-based agents leads to a
self-organization which creates a clustering of the agents set in such way
that each cluster contains agents of similar behavior. During the evaluation
process, genetic algorithms can be tuned such that individuals outside their
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communities be attracted by them. The center of the clusters, the size of
the clusters and the behavior of the agents within the center of each cluster
are the result of the overall genetic process which generates self-organization
communities.

4 Conclusion and Perspective : Integrating
Self-Organization Simulations within Geo-
graphical Information Systems

As explained in the end of the section 2.1, social and environmental simula-
tions can need to mix spatial data with autonomous entities, like agents. Both
the agent programming and the spatial data available have been increased
since the last decade. On the one hand, we present in the previous section
some innovative approaches to deal with agent programming, fusing artificial
intelligence, automata modelling, distributed computing, swarm intelligence
and genetic algorithms to solve complex systems based phenomena. On the
other hand, geographical information becomes a very wide and huge database
following the impressive development of Geographical Information Systems
(GIS). Land-use management has now to deal with a very huge amount of
heterogeneous geographical, economical and social data which are expected
to be used for relevant analysis allowing efficient decision making. The goal
of our new methodology based on the community swarm optimization is to
include the community detection as a agent-based self-organization proces-
sus inside GIS, including spatial adaptation. It is an open way to implement
intelligent tools inside decision making systems for urban or territorial man-
agement, respecting their complexity.
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