
HAL Id: hal-00430490
https://hal.science/hal-00430490

Submitted on 7 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of shear localization in a Zr-based bulk
metallic glass

Jing Zhang, Patrick Aimedieu, François Hild, Stéphane Roux, Txxxx Zhang

To cite this version:
Jing Zhang, Patrick Aimedieu, François Hild, Stéphane Roux, Txxxx Zhang. Complexity of
shear localization in a Zr-based bulk metallic glass. Scripta Materialia, 2009, 61, pp.1145-1148.
�10.1016/j.scriptamat.2009.08.041�. �hal-00430490�

https://hal.science/hal-00430490
https://hal.archives-ouvertes.fr


1 

Complexity of shear localization in  

a Zr-based bulk metallic glass 

J. Zhang,
a,b

 P. Aimedieu,
a
 F. Hild,

a
 S. Roux

a,*
 and T. Zhang

b
 

aLMT-Cachan, ENS Cachan/CNRS/UPMC/PRES UniverSud Paris, 61 avenue du Président Wilson,  

F-94235 Cachan Cedex, France 

bDepartment of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics,  

Beijing 100191, China 

The compressive behaviour of a Zr-based metallic glass was studied in situ through 

optical and infra-red imaging. Results show that localization bands are more complex 

than simple planes, and interactions between different slip systems are an essential 

ingredient to understand slip arrest and hence the ultimate strain such materials sustain. 

Roughness, which is responsible for both damage and arrest mechanism, is argued to be 

another key feature to enhance the ultimate macroscopic shear strain. 
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Metallic glasses have been the subject of numerous studies. After their discovery [1], 

they used to be considered as exotic materials that required such a quick quenching rate 

to preserve the amorphous structure that the processing conditions drastically limited 

their potential usage. A significant advance occurred when compositions and copper 

mold casting method allowing for bulk material synthesis were found [2]. The 

amorphous structure of bulk metallic glasses (BMG) prevents the occurrence of large 

defects such as dislocations. Yet, plasticity is still possible because of local structural 

rearrangements, but the yield stress is much higher than that of the corresponding 

crystalline phases. This remarkable feature is very attractive and motivates further 

research for high performance applications. However, above the yield stress, the plastic 
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flow of BMGs tends to localize into shear bands, and hence the onset of yielding may 

appear as leading to fast, brittle-like, failure. It thus appears as essential to understand 

and master this localization process to enhance the mechanical properties of BMGs.  

The highly localized heterogeneous deformation behaviour of the BMG samples 

is usually manifested by serrated plastic flow [3-6]. After yielding, plastic flow is 

observed by irregular and regular serrations that are characterized by sudden load/stress 

drops separated by elastic reloading. Different interpretations on the persistence or 

renewal of slip bands corresponding to the stress drops are still debated. The occurrence 

of multiple shear bands is already reported in the literature, but no convincing 

explanation was suggested as to why these shear bands, akin to brittle cracks, do not 

lead to failure as soon as they appear. How is it possible that the sample may sustain so 

many of these shear bands? 

Experimental evidence was also published confirming an intense heat release 

along shear bands. This dissipation is extremely localized in space and time. Observed 

temperature rises with IR thermography are small (about 1 K [8,10]) because of the time 

and space integration. Extrapolations to the source lead to very high temperature rises 

(more than a few hundred K), an interpretation supported by the observation of melting 

of a very thin tin coating close to shear bands [7]. Moreover the fractured surface does 

reveal river-like patterns that suggest that the extreme surface (the “heart” of the final 

localization band) has experienced a temperature level close to or above the glass 

transition temperature. However, although this high dissipation undoubtedly takes place, 

the issue of whether adiabatic localization is the primary mechanism for initiating 

(rather than the consequence of) macroscopic shear banding remains unclear. It is 

therefore important to carry out in situ observations of plastic deformation processes of 

BMGs using various characterization means [8-12]. 
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For this work, Zr62Cu15.5Ni12.5Al10 BMG was chosen for its good glass forming 

ability and outstanding plastic deformability [13]. Uniaxial compression tests with 

synchronized observation by both infrared (IR) and digital cameras were carried out in 

order to investigate the deformation mechanism.  

The as-cast 2-mm in diameter rods with an aspect ratio of 2:1 were carefully 

sliced by diamond tip disc saw. The cross section of each sample was polished to almost 

a mirror finish using 2000 grit paper. The amorphous structure of the as-cast samples 

was confirmed by X-ray diffraction (XRD). Test samples were ultrasonically cleaned in 

acetone. Then, one half of the cylindrical surfaces of the samples was coated with a thin 

layer of colloidal white paint onto which a black paint was sprayed to form a texture 

suited for digital image correlation (DIC), and the other half with only a thin layer of 

carbon black coating in order to optimize emissivity for IR imaging.  

Compression tests were carried out on a servohydraulic testing machine with a 

macroscopic strain rate of 1.25 × 10
-3

 s
-1

. Digital and IR cameras were employed face to 

face along a direction perpendicular to the cylindrical axis for in situ observations. The 

resolution of the former is 1300  1950 pixels
2
 and the dynamic range is 12 bits per 

colour. For DIC analyses, the pictures were converted to a gray level image, and the 

magnification was set to 4.3 µm / pixel. An IR camera with both silicon and ZnSe 

lenses was used. This device detects IR radiations in the 3.6-5.1µm wavelength range. 

The temperature resolution of the IR camera is less than 0.05 K, while the spatial 

resolution of the image is about 30 μm / pixel. This camera was used to capture 

92 × 208 pixel
2
 images at a rate of 100 frame / s. The surface morphology of deformed 

samples was characterized through Scanning Electron Microscopy (SEM). 

The apparent (macroscopic) stress-strain displays an elastic behaviour up to 

ca. 1.5 GPa, followed by an extended plastic plateau with numerous serrations and 

finally an apparent decrease in the flow stress just prior to failure. A local temperature 
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rise occurs simultaneously with each stress drop, confirming that the shear bands are 

detected from the temperature history; the higher the stress drop, the larger the 

temperature increment, as could have been anticipated. It is thus possible to capture the 

shear band associated with each serration.  

At those instants, the temperature maps shown in Figure 1 clearly show a hot trace 

appearing on the surface of the sample with an approximate elliptical shape 

corresponding to a slip along a maximum shear plane (at 45° with respect to the 

compression axis). In spite of the short inter-frame time, the spatial extent of these 

bands appears broad essentially because of heat diffusion from the slip plane. Some 

pictures show remarkable features, namely, the temperature increment appears to be 

highly asymmetric signalling non uniform slip (Fig. 1 left). At some other times, a kink 

is observed in the trace of the slip band, suggesting that the support of slip consists of at 

least two such planes crossing each other (Fig. 1 right). This reveals an unexpected 

complexity in the geometry of these slip events. 

It is also worth noting that at the initial stage of plasticity many slip events take 

place, with minute, barely detectable stress drops. The surface trace of these bands 

appears to be spread over a large region. As the total strain increases, some of these 

bands become more persistent. At the final stage, the last slip events occur at the same 

location. In particular, the ultimate failure plane is activated many times, akin to stick-

slip phenomena. 

A series of 57 digital images were acquired using a digital camera such that the 

physical size of one pixel is 4.3 μm. DIC is a technique that allows one to measure the 

displacement field between consecutive images of a mechanical test by looking for the 

best match between these images after a correction by this displacement field [14]. To 

the authors’ knowledge, such a technique has never been used in the context of BMGs.  
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Figure 2 shows incremental strain maps, where the strain refers to the component 

zz along the compression axis, z. Incremental in this context means in between two 

consecutive images taken along the test. DIC reaches subpixel resolution from the 

integration of the displacement over a zone that has a finite extent. In the present case, 

we used a code such that the displacement is decomposed over square bi-linear finite-

element shape functions [15], whose size is 35 × 35 μm
2
 for which typical displacement 

uncertainties are of the order of 0.5 µm. It is observed that the strains are concentrated 

into very thin (one finite-element wide, or 35 µm) structures that are the trace of a 

kinematic discontinuity. A refined analysis leads to the conclusion that the support of 

the discontinuity is of the order of 5-10 µm (1-2 pixels) at most. The actual size may be 

much smaller but it cannot be resolved with the present technique. The apparent vertical 

amplitude of the displacement discontinuity is of the order of 5-10 µm depending on the 

studied band. The geometry of the bands is much more accurately determined than that 

obtained from the temperature maps because of heat diffusion. The above reported 

observations concerning the overall variability and persistence of the different shear 

bands are confirmed through this analysis, with a much better accuracy. The final slip 

system, for example, that appears as a smooth elliptical shape from temperature maps, is 

here observed to be much rougher, with kink and branching as shown in Fig. 2. This 

roughness is not an artefact of the DIC analysis, as will be shown hereafter. 

The most salient feature of this analysis is that it reveals a much more complex 

slip system than could have been guessed from the temperature maps. Bifurcations of 

shear bands, multiple slip systems, are clearly observed. It is to be noted that in contrast 

with IR pictures, the time interval (2 s) between consecutive images is such that several 

(2 to 5) slip events may develop. The cumulative effect of these mechanisms is 

observed, and one cannot separate them into individual events.  
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The multiplicity of different and parallel shear bands has already been mentioned 

several times in the literature [16-18] but only from post-mortem surface observations 

without any information on the time sequence of these bands. SEM images of the 

sample after failure show on the sample side the traces of shear bands. A large number 

of quasi parallel shear bands do support the previous observation of scatter of the shear 

band location. Moreover, if the dominant geometry of these surfaces is roughly planar 

and forming an angle of ca. 45° with respect to the compression axis (maximum shear 

stress), other traces correspond to a significantly different angle. It is also to be observed 

that the sample is finally broken mostly through slip along surfaces that correspond to 

such shear bands, but these surfaces are connected by a step that is essentially a mode I 

crack as can be seen in Figure 3. From these low magnification SEM images, it is 

concluded that the failure surface (besides the above mentioned step) is not a perfect 

plane, but rather a rough surface.  

The specimen side displays very irregular patterns of discontinuities with multiple 

crossings of very rough traces of slip surfaces. One also observes side branching, again 

confirming that the different slip events are not as simple as a planar slip system or a 

mode II or III crack. This observation also provides a plausible explanation for the 

formation of such a significant roughness, namely, the multiplicity of different weak 

surfaces created by past discontinuities promotes the partial mobilization of different 

slip systems that may not be completely kinematically compatible. This will further 

induce localization on side branches, micro-crack openings, and contacting asperities. 

The post-mortem observation of the fractured surface is also quite enlightening. 

On most of the surface (Fig. 4) characteristic “river” patterns appear, as often reported 

in the literature. They correspond to the separation of the two surfaces along an 

interface where the material has been brought up to the glass transition temperature 

where viscous flow could take place. At very small scales, the surface smoothness is 
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due to surface tension driven flow that requires a very low viscosity because of the very 

short duration of slip. The origin of these lines is due to cavity (or bubble) nucleation 

and growth that drag the viscous phase at the junction between neighbouring porosities. 

When the patterns are isotropic, it means that it was produced under mostly normal 

separation of the surfaces. However, it is often seen that the “river” pattern is markedly 

anisotropic. This corresponds to a separation involving both normal and tangential 

displacement discontinuities (mixed mode cracks in the language of fracture 

mechanics). In Fig. 4 a more surprising feature is observed, namely some parts of the 

surface show different slip directions forming a large angle (presumably in different 

episodes) in different zones of the final failure surface. Moreover, in addition to such 

river patterns, more brittle-like areas develop, which reveal some micro-cracking. 

These observations suggest a mechanism for the arrest of a slip event, and hence 

the fact that the material may withstand a number of these micro-instabilities without 

failure. The surface roughness along the discontinuity cannot allow for a pure tangential 

discontinuity. Hence some parts of the surface will tend to separate while others will 

slip with an increasing normal pressure. While the former will lead to void nucleation 

(or damage), the latter is responsible for a hardening behaviour. Damage helps 

understanding the final part of the load-displacement curve where the stress level at 

which the last events are initiated drops significantly as compared to the plateau regime. 

However, for the larger part of the plastic plateau, no apparent decrease in the flow 

stress is observed. This may be due to two reasons. First, initially, the roughness-

induced dilatant behaviour is weak, and second, because of large heat dissipation, 

melting of the material in the sheared region will allow for a good healing of the 

material after slip. If however cavitation initiates, then surface tension will allow for the 

relaxation of stress concentration factors. 
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The reported observations, which come from the unique combination of fast IR 

images, DIC of photographic images, and SEM scans, show that the shear failure of 

BMGs is more complex than anticipated in terms of geometry and sequence of localized 

strain regions. The multiplicity of different slip surfaces being activated at different 

times, the roughness of these surfaces, provide a possible mechanism for the arrest of 

slip, and hence the large apparent strain to failure that was observed for this material.  
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Figure 1:  

Three infra-Red camera images after shear band slips along the experimental test. Note that the left image 

shows a partial slip or rotation, while the right one displays a kink (shown with an arrow) which can be 

interpreted as the mobilization of two slip planes. 
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Figure 2:  

(left) Three consecutive incremental strain maps obtained from DIC showing multiple slip systems being 

simultaneously active. (right) Strain map prior to failure where A shows a branching point, and B a kink 

produced by the intersection of two slip bands. The colorbar indicates the apparent strain level computed 

over 35 µm wide elements. 
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Figure 3: 

Failure surface showing both brittle micro-cracks (top and lower part of the picture) and river patterns 

characteristic of the separation of the surfaces along a region where viscous flow took place. 
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Figure 4:  

SEM observation of the specimen free surface after failure.  Different slip directions can be distinguished 

over the final failure surface. 

 


