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Identification of heat source fields from infra-red

thermography: Determination of ‘self-heating’ in a

dual-phase steel by using a dog bone sample

by

C. Doudard, S. Calloch, F. Hild and S. Roux

Abstract:

From infra-red thermography, a quantitative analysis of heat dissipation

sources is proposed via the thermomechanical modeling of a fatigue test on

a specimen with a varying cross-section. A new procedure is introduced to

achieve this goal, and its application to an experimental case of self-heating at

a single load level is shown to provide complete identification of a probabilistic

model of micro-plasticity.

Key words: thermography, source identification, fatigue, self-heating.
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1 Introduction

The measurement and analysis of temperature fields during mechanical tests

are often used (i) to analyze a physical phenomenon (e.g., Portevin-Le

Châtelier (PLC) bands in aluminum alloys [1, 2], phase transformations in

shape memory alloys [3]), (ii) to validate hypotheses (e.g., self-heating lo-

calized in a structure to correlate with the region of fatigue initiation [4]),

(iii) to identify macroscopic parameters (e.g., velocity of PLC bands [1, 2],

fatigue properties [5–12], the scatter of fatigue limits [13], multiaxial fatigue

criteria [14, 15]), (iv) or to validate the thermodynamic framework of a macro-

scopic model [16]. As temperature variation is not totally intrinsic to the ma-

terial behavior (it depends on the diffusion properties of the materials but

also on thermal boundary conditions), the development of constitutive equa-

tions in a thermodynamic framework [17, 18] requires the determination of

the heat source field accompanying these phenomena (e.g., PLC bands, fa-

tigue properties). The heat source field is identified by analyzing temperature

fields obtained from infrared images. In this paper, a new method is proposed

to carry out this identification.

The reconstruction of heat source maps from the measurements of 2D tem-

perature fields is performed by solving the heat conduction equation. Many

different approaches are available to handle this inverse problem (reconstruc-

tion of heat source fields). Due to the ill-posed nature of such problems, an

introduction to regularizations and hypotheses about the heat source distribu-

tion is required. In the present paper, an analysis of the intrinsic dissipation

during cyclic loadings is proposed. Several authors have worked on an esti-

mation of high cycle fatigue properties based upon self-heating measurements
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[10]. The proposed test, hereafter called ‘self-heating test’, consists in observ-

ing thermal effects during cyclic loadings and is performed on a specimen with

a constant cross-section. A change of the steady-state temperature occurs be-

yond a given stress amplitude that is close to the fatigue limit. A model [10]

allows us, on the one hand, to describe thermal effects and, on the other hand,

to relate the thermal effects to the fatigue properties. The application of this

approach to a structure is possible but is not easily interpretable. For the

classic test, an analysis of the mean temperature of the specimen is sufficient

whereas an average analysis for a structure is seldom applicable [15] so that a

general study of the temperature field is necessary to identify the heat source

field.

Different methods have been proposed to solve this problem in the studied

case (determination of the intrinsic dissipation during cyclic loadings). Among

these, Fourier techniques using spectral solutions of the heat conduction equa-

tion [19] or special local least-squares fitting of the thermal signal [20] can

be mentioned. The first method uses a spectral basis composed of the eigen

functions that are compatible with the boundary conditions. In this paper a

similar approach is proposed. It is based on a combination of two bases for

the projection of the temperature field. The first one, which corresponds to

eigen functions not taking into account the boundary conditions, describes the

local variations. The second one describes the boundary conditions at the two

ends of the specimen. This analysis is performed for the particular case of a

‘dog bone’ specimen. A one-dimensional (1D) thermal diffusion approach is

sufficient for this study.

The paper is divided into three main sections. In the first, the thermodynamic

framework and the local heat conduction equation are introduced. To define a
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1D or a 0D thermal diffusion problem, this equation is averaged. In the second

section, the proposed approach is presented and illustrated by the study of

a 1D thermal diffusion problem. The same method can also be used in a 2D

study. The third section deals with the validation of the proposed approach.

The aim is to identify the self-heating properties of the material by using a

dog bone specimen.

2 Heat conduction equation

The thermodynamics of irreversible processes is used herein. The thermody-

namic equilibrium state of a volume element is defined at each instant t by

the current value of a set of state variables, namely, T , the temperature, ǫ, the

strain tensor, or the elastic strain tensor ǫ
e = ǫ−ǫ

p, with ǫ
p the plastic strain

tensor, and Vk internal variables. Internal variables are chosen in accordance

with the physical mechanisms within the studied material. Then, the first and

second principles of thermodynamics must be checked for any evolution.

2.1 Local form

The local heat conduction equation is deduced from the local form of energy

conservation

ρcṪ + div(q) = ∆ + r + ρT
∂2Ψ

∂Vk∂T
.V̇k + ρT

∂2Ψ

∂ǫe∂T
: ǫ̇e = st (1)

where Ψ denotes the specific Helmholtz free energy, c = −T∂2Ψ/∂T 2 the

specific heat capacity, ρ the mass density, q the heat flux vector, and st the

heat source that is broken down into three parts:
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• intrinsic dissipation ∆ = Σ :
.

ǫ
p − Ak.

.

Vk ≥ 0

with Σ = ρ
∂Ψ

∂ǫe
and Ak = ρ

∂Ψ

∂Vk

;

• external heat supply or density loss r;

• thermodynamic coupling source ρT
∂2Ψ

∂Vk∂T
V̇k + ρT

∂2Ψ

∂ǫe∂T
: ǫ̇e.

The heat conduction equation (1) allows us to relate the absorption heat

capacity (ρc
.

T ) to the losses by conduction (div(q)) and the heat sources.

2.2 Application to the self-heating test

In the case of a self heating test (i.e., the analysis of temperature fields dur-

ing cyclic mechanical loadings), small temperature variations are observed.

Consequently, it is assumed that [19]:

• c is independent of the internal state;

• the convection term included in the material time derivation is neglected

(i.e., dT/dt = ∂T/∂t);

• the external heat supply is time-independent;

• the thermodynamic coupling source is reduced to the thermoelastic contri-

bution (the other contributions are neglected).

The heat source evaluation is an ill-posed problem that is impossible to solve

without any information on the heat source distribution. During a classic

self-heating test (using a specimen with a constant cross-section) the stress

is uniform at a mesoscopic scale, so that the mean heat source is uniform

throughout the gauge volume. To identify the mean heat source, the inverse

problem may be solved by considering the mean temperature throughout the

gauge volume (0D thermal diffusion problem [10, 20]). The regularizing effect
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of heat diffusion limits the thermal gradients so that this mean temperature

is measured by a simple thermocouple. For a specimen with a varying cross-

section, the stress varies throughout the gauge volume so that the mean heat

source distribution is no longer uniform at the considered scale. However for

the particular case of the specimen shown in Figure 1, stress essentially de-

pends on height x. The inverse problem can be solved by considering the mean

temperature for each cross-sectional area, S(x), so that the temperature field

depends only on x (1D heat diffusion problem).

 

l0 

R

d 
e 

u

Fig. 1. ‘Dog bone’ specimen with Ru = 80 mm, and l0 = 10 mm.

To model local heat conduction, Fourier’s law is chosen

q = −λ′gradT (2)

where λ′ denotes the isotropic thermal conductivity. In the case of a 1D ther-

mal diffusion problem the conduction losses can be deduced from an analysis

of mean losses for a volume element S(x)dx

1

S(x)dx

∫
div(q)dV = φlong + φlat, (3)
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where φlong denotes the conduction losses for height x

φlong = − λ′

S(x)

∂

∂x

[
∂θ

∂x
(x, t)S(x)

]
, (4)

and φlat denotes the heat exchange with the surrounding environment [19, 21]

φlat =

[
2hl(e + l)

el

]
θ =

ρc

τ ′

eq

θ, (5)

with θ(x, t) =
∫
S △TdS, hl the heat exchange parameter between the specimen

and the surrounding air, and τ ′

eq a characteristic time. Thickness, width and

length are denoted by e, l and L, respectively.

The longitudinal boundary condition is written as

−λ′
∂θ

∂x
(±L/2, t) = ±h2θ(±L/2, t), (6)

where h2 is the heat-exchange parameter between the specimen and the grips

of the testing machine. The characteristic length of the longitudinal losses is

therefore defined by λ−1
2 = λ′/h2.

The heat conduction equation is written as a 1D thermal diffusion problem

ρcθ̇(x, t) +
ρcθ(x, t)

τ ′

eq

− λ′
∂2θ(x, t)

∂x2
− λ′

∂θ(x, t)

∂x

∂S(x)

∂x

1

S(x)
= St(x, t), (7)

where St(x, t) =
∫
S stdS, with the following boundary condition

−∂θ

∂x
(±L/2, t) = ±λ2θ(±L/2, t). (8)

The heat exchanges with the surrounding air are low compared with the longi-

tudinal losses. Consequently, the second term in the heat conduction equation

is neglected.
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In the case of a 0D thermal diffusion problem, a similar analysis of heat losses

by conduction allows us to define a characteristic time, τeq, given by

1

τeq
=

2hl(e + l)

el
+

2hM

L
, (9)

where hM is the heat exchange parameter between the grips and the specimen.

For a classic servo-hydraulic testing machine, τeq is equal to several tens of

seconds, and is low compared with τ ′

eq, that is equal to several hundreds of

seconds. Lastly, the local heat conduction is written as a 0D thermal diffusion

problem

ρc
˙̃
θ(t) +

ρcθ̃(t)

τeq
= S̃t(t), (10)

where S̃t(t) =
∫
V stdV and θ̃(t) =

∫
V △TdV .

The following section deals with the proposed method to solve a 1D thermal

diffusion problem (Equation (7)), namely, the identification of the heat source

distribution.

3 Proposed method for identification of heat source distribution

By using the above method, the present section aims at deducing the heat

source distribution from infrared images. This method is based on the prop-

erties of the Fourier series. As proposed by Chrysochoos and Louche [19],

the temperature distribution is expressed in the spectral basis composed of

the eigen functions that are compatible with the boundary conditions. Conse-

quently, the eigen frequencies depend on the heat exchange coefficients. It is

therefore necessary to estimate these coefficients accurately. In this paper, an

alternative method is proposed: an initial spectral basis disregarding boundary

conditions is combined with additional components to describe the exchanges.
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To present this method, a specimen with a constant cross-section is considered.

3.1 Spectral basis

For the considered basis, the 1D thermal diffusion problem is solved regardless

of boundary losses at x = ±L/2. The heat sources being neglected, the local

heat conduction equation becomes

.

θ(x, t) +
θ(x, t)

τ ′

eq

− λ′

ρc

∂2θ(x, t)

∂x2
= 0. (11)

If θ(x, t) = φ(t)w(x), Equation (11) reads

ρc

λ′

.

φ(t)

φ(t)
+

ρc

λ′τ ′

eq

=
1

w(x)

∂2w(x)

∂x2
= −δ. (12)

By choosing
√

δ = wi = 2πi/L, the solution is expressed as

w(x) =
∑

i

Ai sin(wix) + Bi cos(wix). (13)

where Ai and Bi are heat-source-dependent parameters. Consequently the

temperature is related to the thermal source by

θ(x, t) =
∑

i

[∫ t

0

〈
St(x, s)

ρc
, cos(wix)

〉
exp(−w′

i(t − s))ds

]
cos(wix)

+

[∫ t

0

〈
St(x, s)

ρc
, sin(wix)

〉
exp(−w′

i(t − s))ds

]
sin(wix),

(14)

where 〈a(x), b(x)〉 =
∫ L

2

−
L

2

a(x)b(x)dx and w′

i = w2
i λ

′/ρc + 1/τ ′

eq.

With the considered basis and a uniform heat source St0, the mean steady

state temperature variation is given by

θ̃ =
St0

ρc
τ ′

eq 6=
St0

ρc
τeq, (15)
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where St0τeq/ρc denotes the responses obtained with a 0D approach. This

result shows the need to take into account the heat losses due to exchanges

with the grips in order to estimate heat diffusion accurately. There are two

ways of solving this problem. The first consists in defining eigen functions

that are compatible with the boundary conditions. However, it is necessary

to evaluate the heat exchange coefficients beforehand. The second consists in

completing the initial basis. It is assumed that the boundary losses have a

significant influence on the mean response but a weaker influence on local

variation.

It is therefore proposed to complete the initial basis by a second degree poly-

nomial. This choice allows us to account for arbitrary heat fluxes at both ends

of the specimen x = ±L/2.

3.2 Polynomial basis

It is considered that θ(x) = ax2 + bx + c. Leaving aside the losses due to

exchanges with the surrounding air because they are lower than these caused

by exchanges with the grips, the steady state heat local conduction equation

is written as

St0 = −2aλ′ (16)

The boundary conditions are given by

−2a
L

2
+ b = λ2

[
a
L2

4
− b

L

2
+ c

]
, (17)

2a
L

2
+ b = −λ2

[
a
L2

4
+ b

L

2
+ c

]
. (18)
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These equations allow us to relate the three parameters a, b and c to the

uniform heat source and the heat exchange coefficients by

a = −St0
2λ′

, b = 0 , c = −
(

aL

λ2

+ a
L2

4

)
. (19)

In the considered case, the problem is symmetrical. Consequently b = 0. The

proposed polynomial basis allows therefore the description of the ‘mean’ be-

havior. In the following section, a solution to the 1D thermal diffusion problem

using the complete basis is proposed.

3.3 Orthogonal basis

The proposed basis to solve the 1D problem is not orthogonal because of the

linear and quadratic polynomial terms. It is therefore proposed to subtract

from them their projection over the Fourier series. The first order polynomial,

Q(x) = bx, can easily be projected over the eigen functions to give

Q/F =
∑

k

−bL(−1)k

πk
sin

(
2πkx

L

)
. (20)

The same computation can be performed for the second order polynomial

P (x) = ax2, whose projection can be written

P/F =
aL2

12
+
∑

k

aL2(−1)k

π2k2
cos

(
2πkx

L

)
. (21)

Consequently, the following orthogonal basis is chosen

[
Ua = P − P/F , Ub = Q − Q/F , U0 = 1,

Uk = cos

(
2πkx

L

)
, Vk = sin

(
2πkx

L

)]
, (22)

where k > 0. The projection of the temperature signal onto the three first

terms leads to the identification of a, b and c. θak and θbk denote the pro-
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jection onto the other terms. Consequently, the change of the steady-state

temperature variation is described by

θ = ax2 + bx + c +
∑

k>0

θ′ak cos

(
2πkx

L

)
+ θ′bk sin

(
2πkx

L

)
(23)

with θ′ak = θak −aL2(−1)k/π2k2 and θ′bk = θbk + bL(−1)k/πk. The heat source

distribution is then related to the temperature distribution by

St0 = −2aλ′ , Stak = ρcw̄2
kθ

′

ak , Stbk = ρcw̄2
kθ

′

bk (24)

with w̄k =

(
2πk

L

)2
λ′

ρc
.

The proposed basis allows us to take into account heat losses due to the ex-

change with the grips and is easy to implement (i.e., it is not necessary to

identify different parameters beforehand). An illustration of the present ap-

proach with the analysis of self-heating measurements of a ‘dog bone’ specimen

during cyclic loadings is proposed.

4 Self-heating properties in a ‘dog bone’ specimen

4.1 Self-heating test

The identification of high cycle fatigue (HCF) properties from traditional tests

is time consuming and very expensive. Alternative experimental methods were

developed to identify HCF characteristics [5, 7, 22–25] more rapidly. Among

these, the self-heating test monitors the specimen temperature changes during

cyclic loadings (usually a 0D approach is used to analyze tests). It consists in

applying successive series of cycles with different increasing stress amplitudes

on a specimen with a constant cross-section. For each stress amplitude, the
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change in the temperature variation, θ̃ is recorded. The mean temperature

becomes stable after several hundred cycles and equals θ̃ depending on stress

level Σ0 and loading frequency fr. Figure 2 shows the self-heating curve for a

dual-phase steel (i.e., the change of θ̃ with the load amplitude). Beyond a given

stress level the mean steady-state temperature starts to increase significantly.

This regime change corresponds to microplastic activation that induces an

intrinsic dissipation.

To describe the thermal effects, a probabilistic approach was put forward. If

it is assumed that HCF damage is caused by this microplastic activity, the

proposed approach allows the description of the fatigue behavior within the

same framework [13]. The dissipated energy density for a loading cycle Dcycle

is related to the stress amplitude by

Dcycle = δ Σm+2

0 , (25)

where δ is a parameter depending on the material and m the Weibull modulus.

The mean temperature variation induced by this dissipation is determined by

solving the local heat conduction equation (0D approach)

ρc
˙̃
θ(t) +

ρcθ̃(t)

τeq
= frDcycle. (26)

The mean steady-state temperature is also related to the stress amplitude by

θ̃ =
frδτeq

ρc
Σm+2

0 . (27)

Consequently the Weibull modulus can be identified from self-heating mea-

surements [13] (see Figure 2). For the considered material, a value m = 12.5

is obtained.

In the following section, an analysis of self-heating measurements is proposed
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Fig. 2. Self-heating curve of a dual-phase steel. Change of the steady-state mean

temperature with the stress amplitude (fr = 10Hz).

for a ‘dog bone’ specimen for which the 1D approach will be used.

4.2 ‘Dog bone’ specimen

For a ‘dog bone’ specimen shown in Figure 1, the longitudinal stress depends

only on the height x and the cross-sectional area is related to x by

S(x) = el0


1 +

2Ru

l0


1 −

√

1 −
(

x

Ru

)2




 , (28)

where x = 0 corresponds to the smaller cross-section. The stress amplitude is

also given by

Σ0(x) =
Σ0M[

1 +
2Ru

l0

(
1 −

√
1 −

(
x

Ru

)2
)] , (29)

where Σ0M is the largest stress amplitude (i.e., for x = 0).

Consequently, the heat source reads

St(x) = δfrΣ0(x)m+2 = δfr




Σ0M[
1 +

2Ru

l0

(
1 −

√
1 −

(
x

Ru

)2
)]




m+2

, (30)
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The self-heating test with a ‘dog bone’ specimen consists in applying one se-

ries of cycles with a constant stress amplitude. The heat source distribution is

obtained from infrared images by solving the local heat conduction equation.

The change of the heat source with the stress amplitude is deduced directly.

This result can thus be used to identify the Weibull modulus m. It is proposed

to validate this identification method of the Weibull modulus by comparing

the values of m obtained from a ‘dog bone’ specimen and another value with

a constant cross-section. However, it is necessary to develop the above identi-

fication method for the case of a specimen with a non-constant cross-section.

4.3 Application to a varying cross-section

The local heat conduction equation for a specimen with a non-constant cross-

section is given by (1D approach)

ρcθ̇(x, t) − λ′
∂2θ(x, t)

∂x2
− λ′

∂θ(x, t)

∂x

∂S(x)

∂x

1

S(x)
= St(x, t). (31)

If the temperature field is expanded as follows

θ = ax2 + bx + c +
∑

k>0

θ′ak cos (wkx) + θ′bk sin (wkx) , (32)

where wk = 2πk/L, Equation (31) becomes

−λ′2a (1 + g(x)) − λ′b
h(x)

L

+λ′

[
∑
k>0

w2
kθ

′

ak cos(wkx) + θ′bk sin(wkx)

]

+λ′

[
∑
k>0

wkθ
′

ak sin(wkx)
h(x)

L
− wkθ

′

bk cos(wkx)
h(x)

L

]
= St(x),

(33)

with

g(x) =
∂S(x)

∂x

x

S(x)
and h(x) =

∂S(x)

∂x

L

S(x)
. (34)
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Consequently, the following relationships are obtained

St0 = −2aλ′(1 + g0) − λ′b
h0

L
+ λ′


∑

k>0

wkθ
′

ak

hbk

2L
− wkθ

′

bk

hak

2L


 , (35)

Stak = λ′

(
w2

kθ
′

ak − 2agak − b
hak

L
+

∑

j>0

wj

2L

[
θ′aj(hbj−k + hbj+k) − θ′bj(haj+k + haj−k)

]

 , (36)

Stbk = λ′

(
w2

kθ
′

bk − 2agbk − b
hbk

L

+
∑

j>0

wj

2L

[
θ′aj(haj−k − haj+k) − θ′bj(hbj+k − hbj−k)

]

 . (37)

These three relationships allow us to relate the heat source distribution to the

temperature distribution.

Despite all the precautions used for data acquisition, temperature measure-

ments are noisy. In the following, it is proposed to determine the relevant

harmonic number to achieve a good estimation of the heat source distribu-

tion.

4.4 Relevant harmonic number

With the considered basis, the larger the harmonic of the eigen basis, the

smaller the signal-to-noise ratio (see Equation (14)). Consequently it is neces-

sary to choose the dimension of the eigen basis, klim. For a general study, it is

difficult to give a unique answer. However, in the case considered, the general

trend of the heat source distribution is given by Equation (30). It is thus pos-

sible to determine the relevant harmonic number to achieve a good estimation

of the Weibull modulus m by considering a temperature field without noise.
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This temperature distribution is obtained from FE simulations by considering

λ′ = 64 Wm−1K−1, λ2 = 70 m−1 and m = 12. Figure 3a shows the change

of the steady-state temperature variation with x obtained by this method.

From the temperature change, the proposed method allows the identification

of the heat source distribution for different values of klim (relevant number of

harmonics), see Figure 3b.
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Fig. 3. -a-Change of the steady-state temperature variation with x (fr = 10 Hz

and λ′ = 64 Wm−1K−1) obtained from a numerical simulation -b-Identified heat

source distribution from temperature changes for different values of klim. Dotted

line: klim = 1, dashed line: klim = 2, solid line: klim = 3.

For each heat source distribution, the value of m is determined (Table 1).

Consequently, klim = 3 is considered as sufficient for the following study.

klim 1 2 3 4

m 5.3 10.5 11.9 11.9

Table 1

Identified values of m from the heat source distribution for different values of klim

(considered number of harmonics). The reference is m = 12.
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4.5 Experiment on a dual-phase steel

A self-heating test is carried out on a servohydraulic testing machine. This

load-controlled test has a 320-MPa stress amplitude (when x = 0) and a 10-Hz

frequency. The temperature field is monitored using an infrared camera (JADE

IRFPA, resolution: 320 × 356 pixels, medium wave with a 3-5µm spectral

range). Figure 4a shows the change of the steady-state temperature variation

with x (average over 25 pixels in the width direction). By using the proposed

method, the heat source distribution is identified (Figure 4b).
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Fig. 4. -a-Change of the steady-state temperature variation with x given by an in-

frared camera (fr = 10Hz) -b-Identified heat source distribution from temperature

change with klim = 3 and λ′ = 64 Wm−1K−1.

Figure 5 shows the self-heating curve of the material considered deduced from

the present analysis (i.e., the heat source distribution with a unique stress

amplitude). A value of m = 12 is obtained. This value is in accordance with

that obtained from traditional self-heating tests (i.e., m = 12.5, Figure 2).

This result validates, on the one hand, the proposed identification method
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and, on the other hand, the use of a ‘dog bone’ specimen to identify the value

of the Weibull modulus.
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Fig. 5. Self-heating curve of a dual-phase steel (heat source change with the stress

amplitude (MPa)). Solid line: identified change (m = 12), Symbol +: experimental

data.

5 Conclusion

The method proposed herein to identify heat source distributions from infrared

images is based on the use of a new basis for the projection of the temperature

field. It is broken down into two parts. The first one, which corresponds to

an eigen basis regardless of the boundary conditions, is used to describe the

local variations of the temperature field. The second describes the boundary

conditions at the two ends. Three advantages can be underlined. First, this

approach is easy to implement. Second, it is not necessary to identify the heat

exchange parameters. Third, it is possible to define a region of interest that is

independent of the length of the specimen gauge part.

The validation of the proposed approach is performed by analyzing a self-

heating test of a ‘dog bone’ sample made of dual-phase steel. The results with
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this new method are in accordance with those determined from a traditional

configuration (i.e., specimen with a constant cross-section). The proposed

approach may be used to analyze the self-heating of structures and to identify

their fatigue properties.
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