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Abstract This paper presents an anisotropic damage model to deal with the fragmen-

tation induced by impact loadings on glass samples. As small-scale (i.e., sub-element)

damage is described as well as cracks extending above the element scale, an approach

referred to as “meso-damage” is developed. The latter, which is based on the knowledge

of random distributions of initiation sites, predicts different regimes such as single or

multiple fragmentation. The experimental opening crack pattern obtained in edge-on-

impact test is reproduced numerically.
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1 Introduction

Impact resistant materials are being developed for armor applications [1,2]. For exam-

ple, glass is used against ballistic threats (e.g., in windshields). For the latter appli-

cation, multi-layered armor materials are used (with polycarbonate, PC, as back layer

and polyurethane, PU, between glass plies) to optimize the ballistic performance. The

use of PU and PC is essential for maintaining the fragments when glass is impacted,

especially for the back layer that ensures the structural integrity and absorbs part of

the impact energy. The work presented herein aims at modeling the fragmentation

of sodalime silicate glass impacted by a bullet of .44 Magnum type. Edge-on-impact

(EOI) configurations [3–6] allow for the visualization of cracking during the experi-

ment by using a high-speed camera, or thereafter when a sarcophagus configuration

is utilized [7]. Different cracking patterns are observed. The present work intends to

describe numerically the cracking features observed experimentally.

To predict crack patterns in brittle materials dynamic loading conditions, sev-

eral approaches are followed [8]. Some computational modeling directly uses discrete

descriptions of fracture [9–12], or models based upon Smoothed Particle Hydrodynam-

ics [13,14] to simulate the behavior of brittle materials under shock loading [15]. On the

other side of the modeling spectrum, continuum models have been used for glass (e.g.,

Ref. [16]) but the relationship with the microstructure is remote, and the description

of damage is implicit. To account for multiple microcracking under dynamic loading

conditions, the early models are based upon the analysis of cracked systems [17,18] on a
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continuum level at which constitutive equations are written. The models developed by

Taylor et al. [19] and Rajendran [20] use the previous framework. This approach usually

leads to an isotropic description of damage. Cracking is essentially anisotropic and the

model needs to account for it to be realistic in terms of actual damage predictions [21,

22]. Combining discrete features and continuum descriptions are also possible [23,22].

The latter approach will be followed herein.

Based upon a dynamic fragmentation analysis, an anisotropic damage model is in-

troduced. The latter uses characteristic parameters that depend on material properties

(i.e., distributions of surface and bulk initiation sites in glass [5]) and loading con-

ditions. 3D-FE simulations are performed and analyzed with respect to experimental

observations. Within a finite element modeling framework, a procedure is proposed to

describe on the same footing micro-cracks (responsible for local damage) and mesocrack

propagation. The mesh size that allows for this distinction has to be made transparent

to this multiscale description. We will use the term “meso-damage” to refer to this

modeling. These developments are implemented in an explicit finite element code to

model edge-on-impacts. The transition between multiple fragmentation close to the im-

pact zone and single fragmentation far from impact is studied with the meso-damage

version of the model.

2 Experimental results

Bullets are fired by a gun and impact a glass target of surface area 100 × 100 mm2

and of thicknesses varying between 8 and 15 mm. The projectile speed is measured by

two optical cells one meter apart. An “open” configuration is used enabling for in-situ

observations by utilizing a high-speed camera (Ultranac FS 501, time of exposure: 1 µs).
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When the bullet reaches the second cell, flashlights are triggered. The bullet impact on

the target triggers the camera to take pictures. According to the European standard

EN1063 [24], one of the threats for armors is a “soft” bullet (e.g., .44 magnum) further

referred to as “BR4,” traveling at a (moderate) speed of 430 m/s. BR4 bullets have a

soft core made of lead and a brass envelope (Figure 1).

Typical results obtained by using the high-speed camera are shown in Figure 1.

When the bullet impacts the glass sample and induces cracking a few microseconds

thereafter, dark zones appear on the pictures. They correspond to damaged zones

where glass is no longer transparent (caused by the light scattering by crack surfaces).

One observes the damage zone propagating in the sample and the crack front is faith-

fully identified by this type of inspection and consequently propagation velocities are

determined with a good accuracy. After impact, fragments of the impacted sample are

scattered and the BR4 core (made of lead) is fully sublimated.

A “sarcophagus” configuration that maintains fragments together on a glass target

of size 100×100×10 mm3 is also used (Figure 2). After impact, a hyper-fluid (EPOFIX)

resin infiltrates (in vacuum for 12 h) the cracks and maintains the fragments together

to observe the impacted sample. The projectile does not penetrate the target. There

are different zones that characterize the interaction between the projectile and the

target. A first zone in the vicinity of the impact is totally comminuted. A second area

displays a high density of radial and hoop cracks. A third zone appears in which only

few long cracks propagate. These zones correspond to different cracking features in

brittle materials:
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– multiple fragmentation in the first zone with mainly closed cracks (glass is totally

comminuted; the size of thinner fragments is estimated to be a few micrometers),

this fragmentation is caused by high shear stresses just under the contact zone;

– multiple fragmentation under mode I loading in the second zone, due to high tensile

stresses induced by the radial motion of the initial compressive wave;

– single fragmentation in the third zone (consisting mainly of radial macrocracks).

3 Fragmentation analysis

When a bullet impacts a glass target, a compressive stress wave propagates ahead

of the impacted area, with the speed of longitudinal acoustic waves [25]. The radial

motion also induces tensile stresses that nucleate microcracks. It is assumed that the

population of initiation sites leading to damage and failure in glass is identical when

the material is subjected to quasi-static and dynamic loading conditions.

3.1 Poisson point process

The material is assumed to contain initiation points with random critical stresses σcr.

For each applied stress level σ, points whose critical stress is less than σ are potential

initiation sites. Their density is denoted by λin (or equivalently, the statistical dis-

tribution of initiation sites follows a Poisson point process of intensity λin [26–29]).

Consequently, the probability of finding δ points within a uniformly loaded domain Ω

of (surface or volume) measure Z reads

P (δ, Ω) =
(Λin)δ

δ!
exp (−Λin) (1)

so that Λin corresponds to the average number of points within Ω. By definition, Λin

is related to the density λin by Λin = λinZ for a uniformly loaded domain. The larger
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the applied stress σ, the greater the number of points for which σcr < σ. One possible

choice to account for this trend is given by a power law function of the applied stress σ

λin(σ) = λ0

(
〈σ〉
σ0

)m

(2)

where m and σm
0 /λ0 will be interpreted as the Weibull parameters when single frag-

mentation occurs, and 〈•〉 denotes the Macauley brackets indicating that initiation is

governed by tensile stresses.

3.2 Single fragmentation

In a 3D setting, the previous analysis holds for a stress σ corresponding to maximum

principal stress σ1. Under quasi-static loading condition, a weakest link hypothesis

usually holds [30]. Therefore, the failure probability PF is the probability of finding at

least one initiation site within Ω when σ1 ≡ σF > 0

PF = P (δ ≥ 1, Ω) = 1− P (δ = 0, Ω) = 1− exp

[
−λ0Z

(
σF

σ0

)m]
(3)

when a uniform stress is applied. If the stress field is heterogeneous, Λin is related to

λin by

Λin(σF ) =

∫
Ω

λin[σ1(x)]dx (4)

and the failure probability is written as

PF = 1− exp

[
−λ0Zeff

(
σF

σ0

)m]
(5)

where σF denotes the failure stress

σF = max
Ω

σ1(x) (6)

and Zeff the effective volume or surface [31]

Zeff =

∫
Ω

[
〈σ1(x)〉

σF

]m

dx (7)
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associated with the maximum principal stress σ1 when positive. The mean failure stress

σF is then expressed as

σF = σ0 (λ0Zeff)−
1
m Γ

(
1 +

1

m

)
(8)

and describes the fact that the larger the volume (or surface), the smaller the mean

failure stress. Γ (a) denotes the (Euler) Gamma function

Γ (a) =

∫ +∞

0
ta−1 exp(−t)dt (9)

The microstructure model accounts for random distributions of initiation sites. The

Poisson-Weibull model enables one to relate the Weibull parameters to microstruc-

tural properties describing the population of initiation sites. The latter is the key for

understanding probabilistic features related to the fragmentation of brittle materials.

In this first case, the initiation conditions are the only ones that control the failure

properties. The Weibull parameters used for glass are either surface [32] or bulk [33]

parameters. Both will be considered in the sequel.

3.3 Multiple fragmentation

Under dynamic loading conditions, a propagating crack may shield other initiation

sites because of the dynamic growth of a domain of measure Zo where stresses are

relaxed. The cracking pattern then results from a competition between obscuration

(or shielding) phenomena and the loading rate (Figure 3) initiating new cracks. The

density of initiation sites λin is divided into two parts, namely, λb the crack density,

and λo the density of obscured sites. The obscuration probability, which will be used

to relate these three densities, is expressed as an extension of the classical Weibull
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law [34]

Po = 1− exp
[
−Ẑoλin(σ)

]
with Ẑoλin(σ) ≡

∫ T

0
Zo(T − t)

dλin

dt
dt = Zo ? λ̇in (10)

where Ẑo is the measure of the mean obscuration zone, ? the convolution product, ˙

corresponds to the first order time derivative, and Zo the size of the obscuration zone.

The latter is dependent on the crack propagation velocity kC0, a shape factor S and

the space dimension n

Zo(t) = S(kC0t)nH(t) (11)

where H is the Heaviside step function. If the loading rate is small enough, Ẑo becomes

equal to the entire representative volume or surface, and yields the Weibull failure

probability (5). For example, when n = 3, the growth law of the obscuration probability

is derived from Equation (10)

− d3

dt3
ln(1− Po) =

...
Zo ? λin = 6S(kC0)

3λin (12)

Let us assume that the microscopic stress rate σ̇ is constant. By noting that, in

pure tension, the mesoscopic stress Σ is related to the microscopic (or effective) stress

σ by σ = Σ/(1−D) [35], the ultimate tensile strength (dΣ/dσ = 0), denoted by Σmax,

is then expressed as

Σmax

σc
=

[
1

e

Γ (m + n)

n!Γ (m + 1)

] 1
m+n

(13)

where σc is the characteristic stress associated with dynamic fragmentation

σc =

[
σm
0 σ̇n

λ0S (kC)n

] 1
m+n

(14)

The normalized ultimate strength only depends upon the Weibull modulus m, and

the space dimension n. The ultimate strength itself is then proportional to σ̇n/(m+n).

This result is in agreement with experimental data of oil shale [36], microconcrete [37],

ceramics and glass [38].
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It is worth noting that in the present case, not only are the Weibull parameters

needed, but also a crack propagation velocity, in addition to the considered stress rate.

The multiple fragmentation regime is the result of a competition between new initia-

tions and crack propagations, both of them described by the obscuration probability.

3.4 Transition

Equations (8) and (13) define two different regimes. The first one is obtained when a

weakest link hypothesis is made. It corresponds to single fragmentation. The second one

assumes multiple fragmentation. The transition between “quasi-static” and “dynamic”

strength is estimated by the intersection between the weakest link and the multiple

fragmentation solutions (Figure 4)

σF = Σmax(σ̇). (15)

A threshold stress rate σ̇sm allows for the description of the transition between single

and multiple fragmentation regimes

σ̇


< σ̇sm single fragmentation

≥ σ̇sm multiple fragmentation

(16)

with

σ̇sm = σ0kC0(λ0S)
1
n (Zeffλ0)

m+n
mn

[
e Γ (m + 1)n!

Γ (m + n)
Γm+n

(
m + 1

m

)] 1
n

(17)

This transition does not only depend on material parameters, but also involves the mea-

sure Zeff of the considered examination domain Ωe. The response of a large structure

is “dynamic” for low stress rates even if the material follows a weakest link hypothesis

for the same loading applied on a smaller domain.
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These two regimes are depicted in Figure 4 when the surface is endowed with

Weibull parameters ms = 7, σ0s = 100 MPa, 1/λ0s = 100 cm2 [32], whereas the bulk

is characterized by mv = 30, σ0v = 3 GPa, 1/λ0v = 10−6 mm3 [33]. For low strain

rates, damage and fracture are dominated by surface initiations (i.e., the ultimate

strength corresponding to surface initiations is less than that for initiations in the

bulk). Conversely, for very high strain rates (i.e., greater than 109 s−1), initiations

in the bulk may dominate the fragmentation regime. This result is consistent with

experimental observations of glass samples [39,5].

The framework proposed herein is thus valid for describing in a unified way both

fragmentation regimes. One of its advantages then lies in the fact that quasi-static ex-

periments may be used to determine the material (Weibull) parameters. Once they are

known, they can be used in a situation in which single fragmentation no longer occurs

(e.g., dynamic fragmentation), provided the crack propagation velocity is known.

4 Microcracking analysis

The previous fragmentation results are now incorporated in an anisotropic damage

model [29]. The level of stress and stress rate determine the type of fragmentation,

namely single or multiple fragmentation. A so-called multi-scale model [22] is used

to determine the transition between single and multiple fragmentation regimes. This

fragmentation model accounts for quasi-static and dynamic loading conditions in each

examination volume or surface. The formulation chosen here would strictly require

that the principal stress directions remain fixed. In practice it is believed that this

requirement is not much limiting.
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4.1 Anisotropic damage model

Up to now, only the maximum principal stress direction was considered. In the follow-

ing, anisotropy has to be implemented to account for the directionality of cracking as

observed experimentally. By averaging over an examination domain, the mesoscopic

principal stress Σi (i = 1, n) is equal to σi(1 − Di), where σi is the local (i.e., mi-

croscopic and unobscured) principal stress. The damage variable Di is equal to Po

associated with a given direction of the eigen stress i (this definition follows the usual

assumption of Di = 0 for an undamaged domain and Di = 1 for a fully damaged,

or obscured, domain [40]), and the growth law of each damage variable Di for bulk

initiations is derived from Equation (12)

d2

dt2

(
1

1−Di

dDi

dt

)
= 6S(kC0)

3λ̂in(σi) (18)

when σi > 0 and dσi/dt > 0, and with the modified density associated with the Weibull

model expressed as [22]

VFEλ̂in(σi) =


0 if σi < σF

max
[
VFEλ0v

(
σi
σ0v

)mv

, 1
]
otherwise

(19)

where VFE is the volume of the considered finite element (i.e., coincident with the

examination domain Ωe of the fragmentation analysis of Section 3.3). The value σF

is a stress obtained by random selection of a real number R lying between 0 and 1,

and inverting PF (σF ) = R when Veff ≡ VFE [see Equation (5)]. For surface initiations,

only two “in-plane” damage parameters are needed (i.e., one principal stress is always

equal to 0) and their growth law read

d

dt

(
1

1−Di

dDi

dt

)
= 2S(kC0)

2λ̂in(σi) (20)
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when σi > 0 and dσi/dt > 0, and

SFEλ̂in(σi) =


0 if σi < σF

max
[
SFEλ0s

(
σi
σ0s

)ms

, 1
]
otherwise

(21)

where SFE is the external surface of the considered finite element. Equations (19) and

(21) express the average number of initiation sites within a volume or on the surface

that is equal to 0, 1 or greater than 1. The integration of Equations (18) and (20)

usually assumes zero initial conditions.

The compliance tensor S is written in the principal frame as [22]

S =
1

E



1
1−D1

−ν −ν 0 0 0

−ν 1
1−D2

−ν 0 0 0

−ν −ν 1
1−D3

0 0 0

0 0 0 1+ν
(1−D2)α(1−D3)α 0 0

0 0 0 0 1+ν
(1−D3)α(1−D1)α 0

0 0 0 0 0 1+ν
(1−D1)α(1−D2)α



(22)

where α = Sta/Sno ≈ 1/2, with Sta and Sno are shape factors that describe the obscu-

ration zone of tangential and normal stresses, E Young’s modulus of the undamaged

material and ν the corresponding Poisson’s ratio.

4.2 Simulation of EOI experiments

The edge-on-impact experiment is now simulated by using an explicit finite element

code. Materials of the bullets are assumed to behave elasto-plastically. Glass is assumed

to be elasto-plastic (E = 70 GPa, ν = 0.22) with a Hugoniot elastic limit (HEL) eval-

uated at 6 GPa. Fragmentation will be described by the previous damage model. The
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FE mesh accounts for surface properties (when needed) endowed with Weibull param-

eters ms = 7, σ0s = 100 MPa, 1/λ0s = 100 cm2, whereas the bulk is characterized by

mv = 30, σ0v = 3 GPa, 1/λ0v = 10−6 mm3.

Damage is mainly nucleated on external surfaces of the samples since the maxi-

mum strain rates are significantly less than the value 109 s−1, which corresponds to

the transition from multiple fragmentation induced by surface and bulk initiations

(Figure 4). Figure 5 shows that multiple fragmentation appears in the first half of the

target and along the side. This 3D computation is expected to describe accurately the

initial stage of bullet impact. It does not account for the propagation of long cracks

but only for crack initiation as illustrated in Figure 5. This limitation will be overcome

by the introduction of the following “meso-damage” approach where crack extension

will be allowed to extend beyond single finite elements.

5 A “meso-damage” approach

The present section aims at extending the previous damage model to account for the

propagation of long cracks.

5.1 Extension of the damage model

New damage parameters ∆i are introduced in order to describe cracks that are longer

than the elements so that the mesoscopic principal stress Σi is now equal to σi(1 −

Di)(1 − ∆i). Fracture propagation is described by the obscuration zone that grows

at a constant speed kC0 = 1500 m/s [5] from element to element. Again, the damage

variables ∆i are equal to the ratio between the obscuration volume and the total volume

in one element (Figure 6) associated with the three cracking directions. The growth of
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∆i is obtained by direct derivation of S(kC0t)3/VFE (when n = 3)

d2

dt2

(
d∆i

dt

)
= 6S(kC0)

3λ̃in(σi) (23)

where λ̃in is equal to 1/VFE, which means that a single mesocrack propagates in the

considered element. One may note that this growth law is identical to that used in

the case of multiple fragmentation (18) except for the factor 1/(1−Di) that accounts

for overlappings of obscuration zones. All elements where ∆i 6= 0 are listed and they

numerically correspond to a crack whose length is that of all elements traversed by the

latter. In practice, the local damage variables start to grow, i.e., Di > 0 (Figure 6a).

When Di reaches a critical value Dc corresponding to coalescence in the considered

element, ∆i starts to grow towards the neighboring element (Figure 6b). The size of

the crack is followed by computing the size of the obscuration zone. Two cases may

occur:

– the stress intensity factor is high enough to let it propagate (i.e., σi(1−Di)
√

a >

Kc, where Kc denotes the toughness of the material) and the element begins to

crack and the kinetics of ∆i is given by Equation (23);

– the stresses are not high enough; no propagation occurs in the neighborhood of the

initially damaged element. For the sake of simplicity, the propagation and arrest

conditions are associated with the same value of Kc.

This process is repeated as the stress wave invades the material. The macrocrack prop-

agation may therefore be the result of a series of “microscopic” coalescences when

the damage variables Di are high enough (Di > Dc). These multiple events induce

a velocity of the crack front that can be greater than kC0 and a multiple fragmenta-

tion regime is observed. Conversely, the propagation conditions may be satisfied (i.e.,
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σi(1−Di)
√

a > Kc) even though the local values of Di are small. A single fragmenta-

tion regime is then observed.

5.2 Effect of element size

An in-house FE code is used to simulate the propagation of a cylindrical divergent

wave [21]. Two element sizes are used when a cavity in a slab is subjected to a pressure

step of −6 GPa (Figure 7). The space-time diagram of the damage variable ∆1 is

shown when using the meso-damage model. The white zone corresponds to values of

∆1 greater than Dc = 0.85. Two different mesh densities are used and the space-

time diagrams are virtually identical. Except for the scatter induced by the multi-scale

damage model, the results are quasi mesh-independent. The damage variable grows up

to a given point where it stops when the propagation condition is no longer satisfied.

5.3 Divergent cylindrical wave

The previous 3D simulations (Section 4.2) help us in determining a contact force be-

tween the .44 Magnum bullet and the surface of the target (Figure 8). During the first

microseconds after impact, the initial shock wave propagates followed by the collapse

of the projectile so that the contact force increases. For the sake of simplicity, the

propagation of a cylindrical divergent wave is assumed.

Figure 9 shows the results obtained by using the damage variable ∆1. In the first

part of the interaction, the stress level induced by the compressive wave are high

enough to initiate several cracks in each finite element and the damage front velocity is

related to the speed at which the induced tensile (hoop) stress develops. The zigzagged

profile corresponds to multiple initiations and propagations. The apparent propagation
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velocity of the damage front is greater than kC0 since this phenomenon is dominated

by initiation events. Later, as observed (Figure 1), long cracks begin to propagate at

a constant speed kC0 = 1500 m/s with no further initiation. In that regime, it is

described by propagation conditions. This transition could not have been assessed by

using a microscopic damage model alone. Last, the dashed line in Figure 9 shows the

result for the experimental location of the crack front evaluated from Figure 1. The

two regimes are found and the transition is well captured.

5.4 Edge-on impact

Figure 10 compares the simulations of the edge-on-impact test obtained with the micro-

and mesoscopic versions of the damage model. Multiple fragmentation in the first half

of the target and along the side is followed by single fragmentation as already shown

in Figure 9. This 3D computation describes more accurately the initial stage of bullet

impact and the propagation of long cracks (Figure 1) than with the local damage

model.

The last zone to be better accounted for is that close to the impact point in which

damage develops under highly confined conditions. This damage regime is only indi-

rectly included in the elastoplastic description associated with the chosen HEL value,

and is therefore not depicted in Figure 10 since only mode I cracks are explicitly de-

scribed in the present model. However, it was shown that as a first approximation this

type model is able to account for confined damage in rocks [41].
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6 Conclusion

Edge-on-impact tests have been performed on sodalime silicate glass by using a soft

bullet. These experiments allow for a visualization of the crack pattern by using a high-

speed camera or a sarcophagus configuration. Fragmentation of impacted sodalime

silicate glass is mainly caused by the growth of cracks nucleated on the surface of glass.

Far from the impact surface, propagation of long cracks is always observed.

Numerically, the zone of multiple fragmentation is reproduced with the help of

an anisotropic damage model based on a probabilistic analysis of multiple crack ac-

tivations. Since the population of initiation sites is the key parameter that governs

the cracking pattern, Weibull parameters representative of the surface and the bulk

properties have been used. However, this model is not sufficient to account for the

propagation of long cracks. An extension was therefore proposed.

As the propagation of long cracks is a non-local phenomenon for classical FE sim-

ulations, the zone obscured by one macrocrack is used to follow its propagation. This

is achieved through a “meso-damage” model coupled with the previous one. 3D simu-

lations prove that the different zones observed in edge-on-impact tests where mode I

cracks initiate and propagate are reproduced by the present approach. A local approach

would only give the initiation sites, and would not be able to capture the mesocrack

formation. The different regimes of damage front velocities observed experimentally

are then well captured in the simulations with the “meso-damage” model.

Even though the model proposed herein was used to simulate the dynamic fragmen-

tation of glass, its domain of application may not be restricted to glass. The microscopic

damage model was successfully used to analyze the fragmentation of SiC ceramics [29,

22,38,42], high performance concrete [43], and limestones [41]. In the two last cases,
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there were situations for which the crack length was greater than the element size,

thereby calling for the same type of extensions as those proposed herein.
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Fig. 1 Sequence of pictures of the impact of a BR4 bullet (velocity = 430 m/s) on a 100 ×

100×8 mm3 glass target. The dark areas correspond to damaged zones. The dashed line shows

the main crack used in Figure 9 for comparison between predicted and experimental results.
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Fig. 2 Cracking pattern of impacted glass (44 Magnum bullet, V = 330 m/s) obtained with a

sarcophagus configuration. Near the impact zone, the material is fully comminuted. Far from

impact, long cracks are observed.
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Fig. 3 Examination domains in tension. The dots depict points that are potential initiation

sites. Left) The tensile stress rate is low; one single crack has initiated, leading to the entire

obscuration of the element. Right) The tensile stress rate is high; there is a competition between

the stress increase and the obscuration of the element. Several cracks are initiated.
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Fig. 4 Average ultimate tensile strength vs. strain rate for a 10 mm3 element made of sodalime

silicate glass (the surface is endowed with Weibull parameters ms = 7, σ0s = 100 MPa,

Seff = 100 cm2 [32], whereas the bulk is characterized by mv = 30, σ0v = 3 GPa, Veff =

10−6 mm3 [33]).
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Fig. 5 FE simulations of one quarter of an EOI configuration. The damage variable D1

associated with the first (maximum) principal stress shows the location of crack initiations.
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Fig. 6 Schematic view of a propagation of a long crack via the meso-damage model. The first

step (left) corresponds to distributed damage modeled by damage variables Di. The second

step (right) corresponds to coalescence in one element described by meso-damage variables ∆i.
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Fig. 7 Comparison of the space-time diagrams of the damage variable ∆1 for two different

meshes: 4 elements per mm (a) and 16 elements per mm (b). The white zone corresponds to

∆1 greater than 0.85.
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Fig. 8 Contact force vs. time for an impact of a BR4 bullet on a sodalime silicate target

determined by a 3D FE simulation.
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Fig. 9 Space-time diagram of the damage variable ∆1 obtained with the meso-damage model.

The white zone corresponds to ∆1 greater than 0.85. It is compared with an experimental crack

front velocity evaluated from Figure 1 (dotted line).
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Fig. 10 FE simulations of one quarter of an EOI configuration. Top: the damage variable

∆1 associated with the first (maximum) principal stress shows the location of cracks. Bottom:

the damage variable D1 associated with the first principal stress shows the location of crack

initiations.


