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Abstract

A full three dimensional study of a fatigue crack in cast iron is presented. This anal-

ysis involves combining various tools, namely, Synchrotron X-ray microtomography
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of an in situ experiment, image acquisition and treatment, 3D volume correlation

to measure 3D displacement fields, extraction of the crack geometry, extended dig-

ital image correlation to account for the crack displacement discontinuity, crack

modeling in an elastic material exploiting the actual crack geometry, and finally

estimation of stress intensity factors. All these different tasks are based on specific

multiscale approaches.
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1 Introduction

To analyze the long-term reliability of structures, there is a need for robust and

validated 3D crack propagation models and numerical procedures. This effort

involves a number of specific challenges on the numerical modeling side because

of the very demanding cost of three dimensional approaches. Validation itself

appears to be even more challenging as it requires a full three dimensional

comparison between models and experiments, and the latter requires three

dimensional investigation instruments. The present study illustrates one of

the routes that can be followed to achieve a direct link between experimental

and computational mechanics [1–5].

Fatigue cracks are three dimensional objects in essence, but the lack of 3D

data about crack propagation in optically opaque materials has made neces-

sary the development of simplified 2D fatigue models. However, even for one

of the simplest (and widely used) crack geometry like a through crack in a

plate specimen, 2D measurements via an optical microscope only give access

to the crack tip position on a free surface, i.e., schematically in plane stress

conditions while the crack propagates faster inside the specimen, i.e., closer

to plane strain conditions. The phenomenon of crack closure [6] can be used to

account for the differences between surface and bulk propagation. It is usually

assessed by considering surface observations, for instance by using displace-

ment fields [7, 8]. However, it was shown that this effect is mainly active in the

vicinity of free surfaces [9]. This last result was obtained by coupling X-ray mi-

crotomography with X-FEM simulations relying upon a visual determination

of the crack front.

In the present work, it is proposed to integrate even more the experimen-
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tal analysis and the numerical tools by combining the following procedures

(Figure 1):

• X-ray tomography to get 3D pictures of in situ tests in, say, a synchrotron

facility. By post-processing them, one may get, for instance, a first estimate

of the morphology of the cracked surface,

• volume correlation to measure displacement fields whose kinematic basis

is consistent with experiments on cracked samples and subsequent X-FEM

analyses,

• description of the crack shape by a level set modeling,

• multi-grid X-FEM simulation based on the actual crack shape determina-

tion,

• extraction procedures to identify stress intensity factors, either from the

correlation (i.e., measurement) procedure or from an elastic modeling.

X-Ray Computed MicroTomography (XCMT) is a very powerful way of imag-

ing material microstructures in a non destructive manner. By reconstruction

from 2D pictures (radiographs), it allows for a 3D visualization of various

phases of materials [10, 11]. One has also access, for instance, to microstruc-

tural changes during solidification of alloys [12], to microstructural details dur-

ing sintering of steel powders [13, 14], to damage mechanisms in the bulk of

particulate composites [15, 16] or to the structure of cellular materials (either

metallic or polymeric foams) and strains [17, 18]. These actual microstructures

may be further processed using finite element tools [19].

In the following, 3D Digital Image Correlation (3D-DIC) and tomographic

techniques are applied to measure displacement fields in nodular graphite cast

iron when cracked (Section 2). This step is achieved by resorting to correlation

techniques. DIC is a technique that consists in measuring displacement fields
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Fig. 1. Schematic view of the methods used in the present paper for determining

stress intensity factors along the front of a crack imaged by computed tomography.

based on image pairs of the same specimen at different stages of loading [20].

The displacement field is computed so that the image of the loaded sample

is matched to the reference image when voxel locations are corrected for by

the displacement field. The most commonly used correlation algorithms con-

sist in matching locally small zones of interest in a sequence of pictures to

determine local displacement components [21]. The same type of hypotheses

are made in three-dimensional algorithms [22–25]. This study reports on a

different algorithm, namely a Galerkin approach to DIC that has been shown

to be more performing in two dimensions when compared to traditional DIC

algorithms [26, 27]. It has been extended to three dimensions for continuous

displacements [28]. Strain localization could be analyzed in a solid foam. Sec-

tion 3 presents the application of this DIC algorithm to tomographic images.

The next step is to further extend the finite element shape function description
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of the kinematics to an enriched basis as used in X-FEM simulations [32] and

previously performed to analyze 2D cases [33, 34]. The enriched kinematics,

in the spirit of X-FEM, needs a precise description of the crack geometry.

Image analysis techniques (e.g., binarization, skeletonization, extraction of

connected component) have been successfully used for rather homogeneous

materials [9]. In the present case, the heterogeneous microstructure, which is

very helpful in terms of image correlation, becomes a strong obstacle to resort

to such tools on 3D images. However, exploiting image correlation residuals

offers a very valuable field from which the crack surface may be extracted. A

direct processing of this field, and a new automatic extraction algorithm are

presented in Section 4.

Section 5 is devoted to the presentation of the extended DIC analysis, as

previously performed to analyze 2D cases [33, 34] and here extended to the

three dimensional case. After introducing the theoretical framework, a priori

performances are studied both to choose the appropriate size of the elements

and to provide a comparison with non-extended DIC. Last, the displacement

field obtained from the above technique based on the actual crack surface

geometry is presented.

In a third step, the combination of XCMT and 3D digital image correlation is

completed with X-FEM simulations to improve the understanding of 3D crack

growth laws. This numerical model is the combination of an external finite

difference mesh (to describe the crack shape in the area of interest), an X-FEM

mesh (i.e., crack discontinuity and asymptotic behavior close to the crack

front), a local multi-grid strategy to capture the possible scale effects with a

high efficiency in terms of CPU time and numerical optimization (Section 6).

From the displacement field obtained by the previous analyses, it is possible
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to determine stress intensity factors. In 2D cases, the first route is a least

squares minimization between the measured displacement field and its analytic

asymptotic development around the crack tip [35]. The same type of fields

can be implemented in an integrated DIC (I-DIC) algorithm [8, 36]. A second

route, which is followed in the present study, consists in using an accurate

domain integral in order to compute stress intensity factors along the crack

front (both in the bulk or close to the free surfaces [37]). This is an extension

over previous works that applied interaction integrals for post-processing DIC

measurements [38, 39]. In parallel, the local multi-grid X-FEM modeling of

the real crack allows one to compute the displacement and stress fields in the

bulk. The very same domain integral tool is used to estimate stress intensity

factors along the front (Section 7).

2 System under study

2.1 Nodular graphite cast iron

The studied material is a widely used ferritic cast iron whose composition

is 3.65 wt% C, 3.2 wt% Si, 0.04 wt% Mg, < 0.1 wt% Mn, < 0.005 wt% S,

0.02 wt% P. After casting and subsequent heat treatment (ferritization at

880 ◦C followed by air cooling) the material microstructure consists of a fer-

ritic matrix (98 wt% ferrite and 2 wt% perlite) containing a homogeneous

distribution of nearly spherical graphite nodules (volume fraction: 13 %, aver-

age internodule distance: 50 µm, average nodule diameter: 50 µm). The large

change in atomic number between carbon (nodules) and iron (matrix) gives

a strong X-ray attenuation contrast on the radiographs recorded during to-
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mographic scans. The nodules are therefore easily imaged by tomography and

used as natural markers for image correlation in the 3D reconstructed images.

The nodule size is large enough to allow for a relatively low voxel size to be

used for tomography. This also enables one to observe millimetric samples,

the only limitation for the sample size being the overall attenuation of the

material that has to allow for, at least, a 10 % transmission of the incoming

X-ray beam. The fatigue crack interactions with the microstructure gives a

roughness of the crack path of the order of the grain / nodule size, which is

small enough to allow for a macroscopic modeling. The values of the material

Young’s modulus and yield stress are 175 GPa and 315 MPa, respectively.

Poisson’s ratio is equal to 0.3.

2.2 Sample preparation

Notched hourglass fatigue samples with a 6× 4 mm2 rectangular cross section

were spark cut from the as-cast material. After mechanical polishing of the

sample flat faces, crack initiation at the root of the notch (radius of curvature:

170 µm) is monitored in situ by optical microscopy during constant amplitude

cyclic loading (load ratio R = 0.2). Once a crack is initiated, a load shedding

procedure is applied to achieve crack growth with a constant plastic zone

size of the order of 200 µm. When the crack size is of the order of 1.5 mm,

the fatigue test is stopped. The cross section of the cracked fatigue sample is

too large to perform tomography, hence, two smaller dogbone samples with a

square area of 1.6 × 1.6 mm2 containing the fatigue crack tip are spark cut

within the 4 mm-thick fatigue sample as shown in Figure 2. One flat face of

the tomography sample therefore corresponds to one flat face of the initial

fatigue sample (which to a certain extent can be considered as in plane stress)

8



Fig. 2. Schematic view of the extraction of the specimen used for tomography from

the larger one used for fatigue pre-cracking.

while the other one corresponds to the interior of the initial sample (closer to

plane strain conditions) during cycling.

2.3 X-ray tomography

The experiment reported herein was performed at the European Synchrotron

Radiation Facility (ESRF) in Grenoble (France) on Beamline ID19. An almost

monochromatic X-ray beam (∆λ/λ ≈ 1%) having a photon energy of 60 keV

traverses the cast iron sample giving an incident-to-transmitted intensity ratio

of at least 10 %. The synchrotron beam is parallel so that the final voxel size

depends only on the optics used. To obtain a 3D image of the specimen in

the vicinity of the crack, six hundred radiographs (referred to as scan) were

recorded while the sample was rotating over 180◦ along a vertical axis. A

negligible amount of phase-contrast [40] was observed on the radiographs with
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the conditions of observation used (specimen / detector distance ∼ 70 mm).

A Fast Readout Low Noise (FReLoN) 14-bit CCD camera with a resolution

of 2048 × 2048 pixels was used [41]. The time required to acquire each image

was set to 3 s, resulting in a total scan time of about 42 minutes.

A specially designed in situ fatigue testing machine that allows for loading

and cycling (up to a frequency of 50 Hz) of the specimen during scans [42]

was used. At the beginning of the experiment, the specimen was loaded in four

steps (30 % increments) to a maximum load of about 190 N, corresponding

to a maximum stress intensity factor slightly less than the value used for pre-

cracking the specimen. Four tomographic scans were acquired during loading

and one scan during unloading. The specimen was then cycled at a load ratio

of 0.1 by keeping the same maximum load. Scans were recorded at maximum

load every 5,000 cycles. When significant crack advance was detected, the

loading-unloading sequences were repeated, i.e., at 45,000 and 49,000 cycles.

Reconstruction of the tomographic data was performed with a conventional

filtered back-projection algorithm [43]. It provides a 3D image with a 32-bit

dynamic range that is proportional to the local attenuation coefficient. Then,

the 32-bit image is re-encoded onto an 8-bit range to reduce data size and

computing time. The final region of interest is focused on the crack and it has

dimensions of 340 × 340 × 512 voxels, i.e., with a voxel size of 5.06 µm in

the reconstructed images, 1.72 × 1.72 × 2.59 mm3.

3 3D Digital Image Correlation

In this section, an eXtended 3D Digital Image Correlation (X3D-DIC) tech-

nique is presented. Although DIC is now a rather mature field commonly used
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in fluid mechanics where it is known under the acronym of PIV, for Particle

Image Velocimetry, and more and more popular in solid mechanics, full 3D

displacement field applications are still scarce. The limiting point is the ac-

quisition of three dimensional images of a specimen. This excludes many fluid

mechanics applications, and requires a dedicated sophisticated lab equipment

(such as an X-ray tomograph or Nuclear Magnetic Resonance Imaging (MRI)

devices) or the use of large scale equipment such as a synchrotron beamline

(as used in the present study). However, more and more applications appear,

and the complete three dimensional description of the kinematics will prompt

more of more frequent use of such approaches.

The reconstructed pictures themselves may be used to evaluate displacements.

A first technique consists in tracking markers (e.g., particles). Strain un-

certainties of the order of 10−2 were reported [44]. When image processing

techniques based upon correlation algorithms are used, strain uncertainties of

the order of 10−3 are achieved [22, 24]. A major field of application concerns

biomechanical studies [45, 46]. Other studies were devoted to micromechanical

analyses of strain fields in heterogeneous materials [13, 24] and strain local-

ization [47]. Cellular materials have also been studied [17, 18], and 2D [48] or

3D [28] strain measurements were performed.

A different approach to classical DIC was proposed recently that allows one to

decompose the displacement field onto an arbitrary kinematic basis, enabling

for a pixelwise consideration of the displacement field rather than a zonal av-

erage of the displacement field into its mean translational components [26].

This technique has been applied essentially to 2D problems, although stud-

ies have been published on 3D foam compression [28], and on stone wool

compression [49]. The former reference gives most details on the algorithm,
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and only a brief outlook is proposed in the following subsection. The second

subsection will detail eXtended DIC where, paralleling the eXtended Finite

Element Method (X-FEM), discontinuity enrichments are added to the chosen

functional basis to describe the presence of cracks more accurately.

3.1 3D Digital Image Correlation

A 3D XCMT image is represented as a scalar function of the spatial coor-

dinates, f(x, y, z) = f(x) whose value indicates the local gray level. Digital

image correlation is based on the comparison of image pairs, f(x) and g(x),

the first one being referred to as the “reference image,” whilst the second one is

the “deformed image.” A complete experiment requires a time series that may

contain from one to ten or more pairs. For small displacement amplitudes, DIC

analyses are usually carried out between the first and the nth image. However,

large displacements may require chaining successive analyses of consecutive

pairs (the nth image being considered as the reference, and compared to the

(n + 1)th image), in order to reconstruct the total displacement field [50]. In

the treated example, a direct analysis (i.e., with no updating of the reference

image) revealed to be sufficient.

The displacement field, u(x), is identified from the hypothesis that the texture

of one image is simply convected by the displacement field so that the so-called

brightness conservation reads

f(x + u(x)) = g(x) (1)

thereby relating the reference and deformed images. This hypothesis cannot

be fulfilled for each voxel, and hence a weaker form is preferred. Moreover, the

two images do not contain enough information to determine the displacement

12



field independently for each voxel (i.e., it is an ill-posed problem). Hence, a

regularization has to be proposed based on a restricted space of displacement

functions. A basis of this subspace is denoted by ϕn(x), so that the projection

of the actual displacement field is searched for in this space as

u(x) =
∑

anϕn(x) (2)

The weak brightness conservation is written as the minimization of the objec-

tive function R
R =

∫∫∫
r2(x) dx (3)

where

r(x) ≡ f(x +
∑

anϕn(x))− g(x) (4)

It is proposed to solve this minimization problem through linearizations of

r(x). This leads to the following system

MA = B (5)

where A is the column vector of unknowns Ai = ai,

Mij =
∫∫∫

(∇f(x).ϕi(x))(∇f(x).ϕj(x)) dx (6)

and

Bi =
∫∫∫

(g(x)− f(x))(∇f(x).ϕi(x)) dx (7)

As such this procedure unfortunately does not provide the actual displacement

because linearization is often illegitimate as compared to the amplitude of

the displacement. For arbitrary large displacement amplitudes, a crowding of

secondary local minima appears, and without a priori determination of the

displacement, chances are large to be trapped in such a secondary minimum.

To circumvent this difficulty, the following multiscale approach reveals ex-

tremely efficient. Both images are coarse-grained by summing up gray-levels
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of 2 × 2 × 2 groups of voxels, used as a definition of the “super-voxel” of the

coarse image. This coarsening is applied recursively three to five times. The

result is smaller images where the displacement amplitude becomes smaller as

well. Therefore, the linearization becomes justified and hence a proper conver-

gence to the actual displacement field is achieved. However, the accuracy of

the displacement is poor because small scale details of the image were erased

in the coarsening. Thus, it is proposed to first carry out the analysis at the

coarser level. Then, the determined displacement field is used to correct the

deformed image, and hence, the remaining displacement field to determine is

expected to be of much lower amplitude. The next order can thus be analyzed,

and displacements accounted for, recursively down to the original image.

It is important to note that the matrices M (one per coarsening level) remain

unchanged during the identification of the displacement. Only the deformed

image, and hence the second member B is updated at each step of the al-

gorithm. In three dimensions, the coarser images are smaller by a factor of

8 at each generation. Therefore the memory and time requirements are very

modest as compared to the final step. Let us also emphasize the fact that the

minimization procedure naturally provides a global evaluation of the quality

of the matching of both images, through the value ofR at the final stage of the

computation. More importantly, this quality factor is the spatial integral of a

residual density r. Therefore, a map of residual discrepancies is also obtained.

This map may reveal regions where the measured displacement is inaccurate

or unadapted. In the sequel, it will be shown that this information is very

useful, and may be utilized for the analysis of the crack geometry.

At this stage, the type of displacement basis functions to be used was not

discussed. In fact, very few constraints exist on this choice, and hence a specific
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set of functions can be tailored to the problem at hand. Without any a priori

information on the kinematics, a very common choice is to use finite-element

shape functions, so that an interface with a subsequent numerical approach

is performed by using the same discretization, i.e., without any information

loss. The most natural finite element type is the 8-node trilinear cube element

(C8), which is suited to the computed tomographic image format defined over

a Cartesian regular grid [28]. This description will be refined in the sequel.

3.2 DIC Results

As one applies the correlation algorithm to image pairs, one has to choose the

size of the elements, i.e. the number of voxels in the cubes that constitute the

C8 elements. This size selection is an important ingredient that will affect the

quality of the determination. The larger the element size, the more accurate the

measure of the displacements as many voxels will contribute. However, large

elements will not be able to capture strain inhomogeneities at a small scale.

Thus a compromise has to be found. To quantify this property, it is important

to proceed first with an a priori determination of errors and uncertainties.

The discussion of such performances is differed to Section 5.2, where this issue

will motivate the use of an extension of DIC to discontinuous enrichments.

In this first analysis, we chose a small element size of 16 × 16 × 16 voxels.

Figure 3 shows the three components of the displacement field as obtained at

the maximum load level. Note that the mean rigid body motion has first been

determined from the raw displacement field and subtracted off. A rather clear

discontinuity is visible on the U component, although by construction, the

displacement discontinuity is spread over one element at least. The amplitude
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of the discontinuity (at the edge where it is the larger) is less than 10 µm (less

than 2-voxel size). The other components do not reveal a clear discontinuity

although the location of the crack can also be guessed from those fields.

It is worth noting that these fields are noisy, as they show fluctuations at the

element scale that do not correspond to the actual displacement. This is due

to the choice of a small element size, so that the location of the discontinuity

could be more precisely pinpointed. One will see in the sequel that if the crack

discontinuity is described by a suitable enrichment, then larger elements can

be used, and a lower noise level will result. One will not make any further

use of these results, as an extension of DIC with an enriched description is

proposed in Section 5. However, in order to proceed, one needs an accurate

determination of the crack surface discontinuity. The following section shows

that the residual map of this first DIC analysis will reveal to be a very precious

tool for this purpose.

4 Crack geometry identification

For the mechanical analysis of a crack, and even for a proper description of the

displacement field, it is important to have access to a faithful description of

the crack surface geometry. This section presents two independent approaches

to meet this objective. The first one is based on 3D image analysis tools, which

have revealed very powerful to analyze cracks from tomographic images [9].

However, in the present case, it happens that the graphite nodules have a

gray level that is comparable with that of the crack itself. Hence a partition

between those two types of objects is quite hazardous. The result of this

analysis is however a conservative estimate of the crack geometry (plus some
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Fig. 3. The three components of the displacement field (in micrometers) for the

maximum load level after 45,000 cycles with a C8 approach. The rigid body motion

was removed from those fields. The volume shown in this figure is a cube whose

edge is 1.46-mm (or 288-voxel) long.
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attached nodules) from a single image, namely that with the largest load level.

The second approach is based on the residual field from the image correlation

analysis. A specific strategy has been conceived to extract the crack surface

from this map.

4.1 Image analysis

The easiest way for obtaining a 3D image of a fatigue crack in the studied

sample is by thresholding the 3D image gray levels. In cast iron however,

the X-ray attenuation coefficient of graphite nodules is close to that of the

air present in the crack so that a simple binarization based on a gray level

threshold will keep the nodules in the binary image as illustrated in Figure 4.

To circumvent this problem, the error map obtained from a DIC analysis was

thresholded to separate the error due to the discontinuity (i.e., the crack) from

that due to tomography artifacts or computation error. A multiscale C8-DIC

algorithm was used to compute the displacement fields and the corresponding

residual fields. The image acquired at minimum load (14N in this case) during

the first cycle was chosen as the reference of the computation. Elements of

size 16 × 16 × 16 voxels, i.e., about 81 × 81 × 81 µm3, resulted in a mean

error of 2 × 10−3 voxel and a standard uncertainty of 7 × 10−2 voxel (as

discussed below).

The error map is digitized on an 8-bit color map and thresholded using a region

growing algorithm implemented in the 3D image analysis software Amira [52];

the gray levels from 136 to 255 were ascribed to the crack. Figure 5 shows

the crack surface obtained by this method at the maximum load level, i.e.,
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Fig. 4. 3D rendering of the crack surface after 45 kcycles obtained by classical

thresholding of the tomographic image. Note that the nodules intersecting the crack

surface are also imaged (arrow).

186 N, after 45,000 cycles. The crack appears to be slightly dissymmetric. The

initial lengths on both sides of the specimen were measured with an optical

microscope before the tomography experiment. It was equal to 580 µm on the

left-hand side of the specimen represented in Figure 5, and 796 µm on the

right-hand side. Due to tunneling effects, the pre-cracked larger specimen had

a larger crack length in the center than at its edges. Thus, the smaller crack

length in the tomography specimen machined from the larger one corresponds

to the former free surface while the longer crack length corresponds to the

former center.

The 3D rendering of the crack surface obtained from the error map strongly de-
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Fig. 5. 3D rendering of the crack surface after 45,000 cycles obtained by thresholding

the correlation residual field.

pends on the threshold value used for the region growing algorithm. A thresh-

old value that is too small may result in noise embedded in the thresholded

crack while a value that is too large may underestimate the crack position, par-

ticularly close to the crack tip where the thickness of the 3D object to threshold

is the smallest. Consequently, the crack tip was also measured directly from

the tomographic image in gray levels corrected for the displacements measured

by DIC. The methodology uses ImageJ software [53]. At maximum load, the

crack is viewed edge on using a color lockup table with improved contrast

to ease crack tip detection. An ImageJ plugin allows for the retrieval of the

voxel coordinates that are manually selected at the crack tip. Thus, the crack

tip position is manually tracked in the thickness of the specimen and the re-
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sulting points compare well with the thresholded error map (Figure 6). The

initial crack lengths measured optically also corroborate the crack tip position

for the very first cycle as shown in Figure 6.

Fig. 6. Crack tip position: manual tracking (open symbols) compared with thresh-

olded residual error fields.

4.2 Multiscale crack detection algorithm

The above described digital image correlation technique applied to the un-

loaded and maximum load image pair produces a residual error field that has

high values concentrated on the crack surface, as shown in Figure 7. The lat-

ter shows a map of correlation residual in a through cut intersecting the crack

surface. Only one cut is shown to illustrate this feature, but all cuts show

similar characteristics.

Since the correlation residual is based on squared image differences after cor-
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Fig. 7. Cut through the 3D correlation residual field normal to the crack front after

45,000 cycles. The crack is clearly visible close to the edge where it is widely open.

The crack front is more difficult to appreciate accurately.

rection, both iron matrix and graphite nodules are essentially erased in the

residual map. However, the crack itself remains clearly visible. It is therefore a

strong motivation to further exploit this 3D field to adjust the local geometry

of the cracked surface. However, it is also noteworthy that high error values

remain in the field that may be due to imperfections in the 3D reconstruction,

image noise, or deviation from brightness conservation.

The problem is addressed under the following form. The crack surface is repre-

sented as a surface z(x, y) that contains no hole, nor overhangs. In this section

only, let x denote the (x, y) coordinates in a plane that is roughly parallel to

the crack surface. One selects z based on the maximization of

S = max
z(x)

∫∫
r2(x, z(x)) dx (8)

where r denotes the residual density (see Equation (4)). Here again the prob-

lem is ill-posed, and requires a regularization, namely, z is decomposed over a
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basis of (2D) finite element shape functions

z(x) =
∑

biψi(x) (9)

The problem shares a number of similarities with the identification (or mea-

surement) of the displacement field itself. Therefore, a similar strategy is fol-

lowed. For each nodal value xi, a “driving force” fi to minimize the above

energy is written as

fi =
∫∫ ∂r2

∂z
(x, z(x)) ψi(x) dx (10)

A relaxation algorithm based on the response to the above driving force is

written. The difficulty is that the level at which S saturates is unknown and

hence the previous algorithm cannot be followed down to this level. Instead,

a “viscosity” η is introduced so that

dbi

dt
= ηfi (11)

Again, the problem is unsafe because of the multiplicity of minima. Therefore

the residual image is progressively coarsened up to the stage where only a

single (but diffuse) crack remains. Then a finer image is used where the crack

surface is initially positioned at the best location of the coarser image. This

procedure is repeated down to the original residual field (without coarsening).

The size of the mesh supporting the ψn shape function is also a parameter

that may be adjusted at different coarsening levels.

4.3 Results

In the present case, the residual image is coarsened 5 times, i.e., the coarsest

voxel is 24 × 24 × 24 initial voxels. For the coarsest level, the size of the
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elements supporting the ψn shape functions is 27 × 27 × 27 voxels and

decreases down to 22 × 22 × 22 voxels for the finest level.

The “viscosity” η is adjusted in the following way. For the coarser scales, η

is evaluated so that the maximum increment of elevation at the first iteration

on the current level does not exceed 0.1 grain (a grain being an aggregate

of 2n × 2n × 2n voxels). For the finest level, where a grain is a voxel,

this maximum increment is set to 0.5 grain. Figure 8 shows the detected

crack surfaces after convergence was reached at each scale. One observes the

progressive resolution of local variation of the crack surface. From the coarsest

to the finest scales, high frequencies are progressively introduced and resolved

by the multi-grid discretization of the elevation and the coarsening of the

residual map.

Figure 9 illustrates the convergence of the detection algorithm. A criterion is

formulated in terms of an increment between two successive iterations of the

norm of the elevation increment normalized by the norm of the elevation at

the first iteration of the current scale. One observes a very fast convergence for

the coarser scales. For the finer scales, the convergence rate decreases because

a constant viscosity was adopted. Had the latter been adapted for each scale,

a constant convergence rate could have been obtained.

Although the maximum of the objective function cannot be determined with-

out knowing the conformation of the crack surface, one can easily derive an

upper bound. Let us define R+ as the integral over the region of interest of

the maximum value of the residual over each line normal to the crack surface.

This value can be compared to the sum of the residuals over the detected crack

at the current iteration, and thus an indirect indication of the convergence is

obtained. Figure 10 shows such a distance from the current objective function
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Fig. 8. Detected crack surfaces after convergence at each scale. Note that the rough-

ness is enhanced in these graphs because of the z scale which is dilated as compared

to the in-plane axes. Axes are labeled in micrometers.

to this upper bound as a function of the iteration number. For the first iter-

ations of each scale, a fast decrease of the normalized gap between R+ and

the actual residual sum is obtained. It is also observed that each scale brings

an improvement and a final value of 7.75 % is obtained (to be compared with

the initial 9 % obtained when a straight plane is considered).
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Fig. 9. Convergence of the crack detection algorithm.
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Fig. 10. Normalized gap between the sum of the residual on the detected crack and

the upper bound to the objective function.
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4.4 Comparison between different approaches

Both crack detection methods based on the correlation residual map obtained

from C8-DIC give a good estimate of the cracked surface visible in the tomo-

graphic image (Figure 11). However, a difficulty lies in positioning the crack

tip. This information may be retrieved directly from tomographic image anal-

ysis via manual tracking of the crack tip through the specimen thickness; the

good correlation that was obtained between the thresholded DIC residuals and

the crack tip position (Figure 6) confirms the validity of the crack detection

procedure based on the residual map. However, the crack surface identified

via DIC residuals has a rather irregular surface and it contains holes where

the nodules are embedded in the crack. The multi-scale crack detection al-

gorithm of sub-Section 4.2 gives a smoother crack surface with the required

topology. The crack surface so-obtained coincides with the one obtained by

thresholding the DIC residuals except for high frequency “roughness” (with a

period less than the smallest grid step of the detection algorithm). Note that

the multi-scale crack detection algorithm provides a virtual crack surface over

the non-cracked part of the specimen. The front line from the thresholded DIC

residuals is then placed on this surface.

5 3D eXtended Digital Image Correlation

5.1 Enrichment strategy

If a discontinuity in the displacement is sought, the displacement interpolation

is enriched exploiting Partition of Unity properties [51] of finite element shape
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Fig. 11. Comparison after 45,000 cycles of a section through the tomographic im-

age, the thresholded residual and the crack obtained with the multi-scale detection

algorithm.

functions Nn

∑

n∈N
Nn(x) = 1 (12)

The enriched approximation of the displacement field, following a strategy

initially proposed by Moës et al. [29], reads

u(x) =
∑

j=1,3

∑

n∈N
anjNn(x)Xj +

∑

j=1,3

∑

n∈Ncut

dnjNn(x)Hn(x)Xj (13)

where (anj)n∈N are degrees of freedom associated with standard (i.e., continu-

ous) shape functions in each direction X1, X2 and X3 of the image co-ordinate

system, Ncut the set of nodes that hold additional degrees of freedom dnj as-

sociated with the enrichment function Hn(x) defined as [30]

Hn(x) = H(x)−H(xn) (14)

whereH is the Heaviside step function whose value is 0 below the crack surface

and 1 above (Figure 12), and xn gives the position of node n.

For three-dimensional problems, the pioneering work of Sukumar et al. [31]

first used XFEM approaches to 3D cracks, and Moës et al. [32] promoted the
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Fig. 12. Enrichment strategies for extended digital image correlation (top) and ex-

tended finite element method (bottom). Circles denote nodes with a discontinuous

enrichment and squares those with asymptotic enrichment functions [32]. Filled

elements define the support of the enrichments.

29



use of the description the crack surface using two level set fields. These level

sets are the signed distance to the crack surface and the signed distance to

the crack front under orthogonality constraints. The identification of the crack

geometry was described in the previous section. In the present case, the level

set fields are discretized on a finite difference grid independent of the finite

element mesh used for the displacement estimation. For the DIC technique, the

finite difference grid is the 3D voxel grid of the reference image. It allows for a

better computational efficiency when using propagation, re-orthogonalization

or re-initialization algorithms to describe crack propagation. In the following,

the enrichment procedure is applied to a C8 approach (C8-DIC). It is therefore

referred to as X-C8.

5.2 A priori performance

An important feature is the choice of the element size. To decide for this char-

acteristic, a methodology has been set in place, namely, a uniform translation

is artificially prescribed on the reference image to compute a fictitious “de-

formed” image. To reveal the most severe effects of sub-voxel interpolation,

a series of constant sub-voxel displacement in each direction x, y and z is

prescribed. A blind analysis of the displacement is then run, and the resulting

displacement field is compared to the prescribed value. The mean (over all

those displacements) of the mean difference ηu (i.e., systematic error) and the

corresponding standard deviation σu (i.e., displacement uncertainty) of the

nodal displacements

ηu = 〈u− up〉 , σu = 〈‖u− up‖2〉1/2 (15)
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give a good a priori evaluation of the maximum performance of the analysis,

where up is the prescribed displacement, and 〈...〉 denotes the average value

over the nodes of the entire region of interest. The mean (systematic) error ηu

and standard uncertainty σu are evaluated for different element sizes varying

from 8 to 64 voxels.

When a rigid body translation is prescribed, the X-C8 discretization gives

the same results as a C8 scheme (Figure 13). It is generally observed that

both quantities, ηu and σu decrease as a power-law of the element size. Such

a behavior is observed for the uncertainty, but the systematic error seems to

reach a minimum and increase again for larger element sizes. This effect may

be due to the small number of elements needed to pave the region of interest,

and where boundary elements may bias the overall behavior in a significant

fashion. Larger elements mean less degrees of freedom for the same amount

of data available (region of interest) and thus a better conditioning of the

problem and a more robust estimation of the displacement field are achieved.

A mean systematic error as low as 10−3 voxel associated with a mean standard

deviation of about 10−2 voxel are obtained. It is thus concluded that the

enrichment does not affect the determination of regular degrees of freedom.

Second, a discontinuous translation is prescribed along a discontinuity plane

that separates the region of interest into two domains of equal size. Focus-

ing on the regular degrees of freedom only (Figure 14), similar trends as in

the previous case are obtained for an X-C8 approach, whereas a C8 measure-

ment shows a “non-converging” behavior. The prescribed displacement, which

is discontinuous, cannot be approximated exactly by a C8 discretization, an

interpolation error is obtained and thus decreases the quality of the displace-

ment estimate. When X-C8 is used, the same type of results are shown for the
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Fig. 13. Mean systematic error and standard deviation for a prescribed uniform

displacement ranging between 0 and 1 voxel obtained for C8 and X-C8 approaches.

enhanced discontinuous degrees of freedom in Figure 15. Globally, a signifi-

cant decrease in systematic error and uncertainty is observed when using the

enriched description. This leads to the choice of elements of size 32 voxels for

which 10−3-voxel mean systematic error, and 2 × 10−2-voxel mean standard
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Fig. 14. Mean systematic error and standard deviation for a prescribed discontinuous

displacement ranging between 0 and 1 voxel obtained for C8 and X-C8 approaches.

deviation are estimated.

It is concluded that the enrichment of the interpolation basis not only allows

for an estimation of a displacement discontinuity but also improves the de-
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Fig. 15. Mean systematic error and standard deviation for the displacement jump

when a discontinuous displacement ranging between 0 and 1 voxel is prescribed

obtained and an X-C8 approach is used.

termination of degrees of freedom associated with the regular basis when a

discontinuous displacement is searched for. Note that in the latter analysis,

the support of the discontinuity that cuts the elements at the middle of their
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edges is an idealized case.

5.3 Results

Having validated the X-C8 procedure, it is now used to analyze the experiment

described in Section 2. The displacement field obtained with 32-voxel elements

with discontinuous enrichment is shown in Figure 16 for the maximum load

level after 45,000 cycles. The region of interest is 288 × 288 × 288 voxels

centered in the reference image. The component U of the displacement field

is along the loading axis (orthogonal to the crack surface). A discontinuity

is captured for this component but also for V corresponding to an out-plane

sliding of the crack face. The third component W has no enriched degrees

of freedom activated (up to the measurement uncertainty). In the standard

C8-DIC, small elements (16 voxels) are needed to obtain a satisfactory de-

scription of the displacement field near the crack surface (see Figure 3). As

the enrichment of the X-C8 method enables one to capture the discontinu-

ity of the displacement field, larger elements are used (32 voxels). Thus, it

leads both to lower noise levels of the displacement field in the bulk and to an

appropriate description of the displacement field around the crack.

Figure 17 describes the change of the mode I crack opening displacement

(i.e., jump of the U component) on the crack surface for different load levels.

One observes that the crack progressively opens with a predominant opening

around the edge along which it is longer. The maximum opening is about

1.25 voxel (or 6.3 µm).
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Fig. 16. The three components of the displacement field (in micrometers) for the

maximum load level after 45,000 cycles with an X-C8 approach. The mean rigid

body motion was extracted from those fields. The volume shown in this figure is a

cube whose edge is 1.46-mm (or 288-voxel) long.
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Fig. 17. Change of the mode I crack opening displacement on the crack surface for

different loads after 45,000 cycles with an X-C8 approach.

6 Elastic computation on the same geometry and boundary con-

ditions

The previous sections have detailed the X-DIC strategy, and the operational

way of defining the crack surface. With those elements at hand, it is natu-

ral to perform an elastic computation based on exactly the same geometry.

This will allow for a detailed comparison between the measured and com-

puted displacement fields. Let us however stress an important point, namely,

the digital image correlation data are corrupted by measurement uncertain-

ties, yet on average they represent the actual material with its full complexity

(microstructure, confined plasticity, rough crack surface). Conversely, the com-

puted displacement field is almost deprived of any noise, but, for instance, it

ignores the effect of crack tip plasticity. Because of confinement, this may not

be essential. However, the actual geometry of the crack front and the “equiv-
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alent” one that will produce, in the far field, the same elastic solution may

not coincide. This effect is ignored and the coincidence of the two fronts is

assumed.

6.1 Computation hypotheses

In this respect, a robust interfacing tool is developed to introduce the “real”

crack shape in the numerical model. For that purpose, a finite difference based

level set description is obtained from 3D pictures, or digital volume correla-

tion [9, 37, 54–56]. The advantages of a level set modeling on an external finite

difference mesh is summarized as follows. The finite difference mesh is adapted

to the area of interest, and the mesh size adapted to the experimental crack

shape [9, 37]. Furthermore, level sets are very efficient to model non-planar

surfaces even if they evolve with time [54–56], or exhibit variable topological

properties. Last, it was shown that level sets are well suited to X-FEM in

order to introduce automatically specific enrichments according to the crack

and the front during the possible propagation of the crack, and to improve

the accuracy of Stress Intensity Factor (SIF) calculations with adapted virtual

crack extension fields [55].

From this initialization step, it is then possible to couple the “real” crack level

set model with the eXtended Finite Element Method. Specific discontinuous

and asymptotic enrichments are automatically introduced in the finite element

mesh to capture the “mechanical” discontinuity and the asymptotic behavior

close to the crack front [55]. These enrichments avoid the mesh dependence

of the initial crack shape and its possible propagation, with a sufficient accu-

racy [37]. However, the finite element size is an important parameter in the
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area of interest (close to the crack front). Some previous studies have shown

that a local multi-grid strategy may be used to capture the possible scale ef-

fects close to the crack front in a very efficient way. In this respect, a local

fine grid is used in a narrow band close to the “real” crack, and a coarse grid

is used to mesh the structure and the boundary effects.

6.2 Local multi-grid X-FEM strategy

As explained in the previous section, the level set can be automatically initial-

ized according to experimental data. However, the different scales involved in

fracture mechanics problems may differ by several orders of magnitude and an

arbitrary finite element mesh of a given structure is usually not designed to ac-

count for a crack [57]. Even with X-FEM, enrichments are useless if the crack

size is smaller than 3-4 times the element size of the given initial mesh. To

overcome this drawback, a local multi-grid eXtended Finite Element Method

is proposed to adapt the mesh in the area of interest and the possible crack

propagation.

One defines a local “fine” grid in a narrow band close to the crack, a “coarse”

grid linked to the global structure, and possible intermediate grids between

the locally fine and the globally coarse ones. The efficiency of multi-grid algo-

rithms lies in the fact that only a small amount of work is required to solve

the expensive fine problem [58, 59]. The major part of work is dedicated to

solving the coarse problem, which is much less expensive. Using a sequence of

grids increases the multi-grid efficiency. Furthermore, a ratio of 2 between two

successive hierarchical grids seems to be optimal [37]. Instead of being exactly

solved, the coarse problem is approximated by performing recursive calls to
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the multi-grid procedure, using a still coarser discretization. In Table 1, one

summarizes the multi-grid algorithm that consists in iterations between the

coarse (AB) and fine (B) grids, where A concerns the non-overlapping region,

and B the overlapping part between the coarse and fine meshes.

Table 1

The two level multi-grid algorithm.

(1) initialization

k = 0
UB0 = 0
UB0 = 0

(2) compute the solution of the coarse problem

KABUk+1 = F−
[
PtKBUBk

]
+

[
KBUBk

]

(3) correction

∆UBk+1
= UBk+1 −UBk

UBk+1/2
= UBk

+ P∆UBk+1

(4) relaxation step (fine problem): small number of PCG iterations (ν < 5) on

KBUBk+1
= FB

ext with UBk+1|Γ = PUBk+1|Γ

(5) convergence test




if ||U
Bk+1−UBk+1/2||
||UBk+1|| < ε : stop

else : k ← k + 1 and go back to 2

40



The notation
[
XB

]
means that a vector related to the overlapping coarse mesh

MB
is extended to the whole coarse meshM by adding 0 values corresponding

to nodes belonging to MA
only.

This algorithm exploits the property of iterative solvers such as precondi-

tioned conjugate gradients (PCG) to capture efficiently the high frequency

components of the solution (according to the discretization size) during the

smoothing or relaxation step on the fine grid, and the ability of the coarse

grid to capture the low frequency components of the solution [60]. However, it

also needs one to define prolongation P and restriction R operators between

the different grids. In a previous paper [37], it was shown that the following

property can be preserved even with enrichments

R = Pt (16)

where the superscript t denotes matrix transposition. Furthermore, the pos-

sible high frequency errors introduced locally (i.e., close to the crack front)

are immediately captured by the relaxation steps. Another technical aspect

about the local multi-grid X-FEM algorithm concerns the introduction of en-

richments at each level of the grid. It was also shown [37] that an optimal

rate of convergence is achieved when the characteristic element size of the

starting enrichment level is of the order of magnitude of the crack size. This

property will automatically be used from now on. The last point to be ad-

dressed is the definition of the level sets in a separate finite difference mesh.

Usually, the crack surface and the front level sets are defined on the mesh of

the structure. In the case of a local multi-grid approach, this would imply one

to define independently the level sets on the different grids and to update all

these different scalar fields with their own discretizations. The use of a single

structured independent mesh only devoted to the representation of the crack
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morphology avoids such a drawback (Figure 18).

Last, the following enrichments are introduced according to the level sets [32]

in the local basis along the crack front (Figure 12)

u(x) =
∑

j=1,3

∑

n∈N
anjNn(x)Xj +

∑

j=1,3

∑

n∈Npcut

dnjNn(x)Hn(x)Xj

+
∑

j=1,3

∑

n∈Ntip

∑

e=1,4

sejNn(x)Fe(x)Xj

(17)

with

F1(r, θ) =
√

r cos
θ

2
F3(r, θ) =

√
r cos

θ

2
sin θ

F2(r, θ) =
√

r sin
θ

2
F4(r, θ) =

√
r sin

θ

2
sin θ

(18)

and Npcut the set of nodes that hold discontinuous enrichments and Ntip those

that hold singular enrichments. It is worth noting that the grids are enriched

only if the size of the elements is of the order of the crack length in order to

optimize the convergence rate of the multi-grid algorithm [37].

6.3 Results

In this paragraph, one considers the 3D geometry of the specimen analyzed

with digital image correlation (Section 4). In this first approach, one defines

a 3D beam with a length equal to 7.0 mm (cross section 1.6 × 1.6 mm2).

This allows one to avoid the boundary effects due to the prescribed loads.

One assumes the material to be homogeneous, isotropic, with the properties

given in Section 2. One also considers a prescribed load equal to 186 N (a

corresponding uniform pressure is defined at the ends of the beam). The crack

shape modeling consists in defining an external structured mesh in the area

of interest. From digital image correlation, one obtains the crack shape, and

the corresponding level sets for the crack surface and front on the structured
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Fig. 18. Multi-grid mesh (3 levels) and external level set grid.

mesh. Furthermore, the finite element mesh of the beam is defined according

to the area of interest containing the crack. If needed, different levels of grids

are considered from a global (coarse) mesh of structure (400-µm elements) to

a local (refined) mesh close to the crack (100-µm elements). The external level

set mesh size is equal to 100 µm, having here the same refinement as the local

finest X-FEM grid.

In Figure 19, the crack surface and front level sets are shown according to the

analysis of Section 4. The crack surface is obtained through the multi-scale

crack detection algorithm (Figure 8) and the front is located on the surface

by manual tracking (Figure 6).
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Fig. 19. Crack surface and front level sets obtained in Section 4

In the proposed eXtended Finite Element method, enrichments are introduced

in the finite element mesh according to the previous level sets. This allows one

to capture the discontinuity and the asymptotic behavior close to the crack

front even with a rather coarse mesh. In Figure 20, the three dimensional dis-

placement field obtained with 8-voxel elements is plotted and can be compared

to the corresponding one obtained by X3D-DIC (Figure 16).

The main interest of this approach lies in the robustness of the method and

its ability to easily take into account a given crack geometry with no modifica-

tion of the mesh. In this simulation, a linear elastic behavior was considered.

Furthermore, an estimate of the 3D plastic zone is obtained from the com-

puted von Mises stress field (Figure 21). However, some remarks can be made,

namely, the good agreement observed between the displacement field from lin-

ear elastic simulations (Figure 20) and experiments (Figures 3 and 16) together

with the small size of the plastic zone allow one to assume confined plasticity,

as a good approximation. Hence, a linear mechanical model is considered for

the numerical study [61].

The confined plasticity domain is an approximation compared to an elasto-

plastic calculation. However, the linear model gives a good estimation of the

boundary effects close to the crack front and its interaction with the free
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Fig. 20. The three components of X-FEM displacement field (in micrometers) for

the maximum load level (186 N) using the crack geometry detected at 45,000 cycles.

The volume shown in this figure is a cube whose edge is 1.46 mm (or 288 voxel)

long.
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Fig. 21. Deformed configuration and thresholded von Mises stress field around the

crack tip for the maximum load level.

surfaces. Furthermore, in a next paragraph, the corresponding stress intensity

factors obtained by a domain (and path-independent) integral from the X-

FEM computations will be compared with experimental values. From a general

point of view, one proposes an automatic strategy that allows one to compare

displacement fields and stress intensity factors obtained from 3D digital image

correlation and 3D simulations with a similar crack geometry.
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7 SIF estimation from X-DIC and X-FEM

The following paragraphs concern the computation of stress intensity factors.

The proposed approach is general and can be applied to both experimental

or numerical displacement fields. In this respect, an extension of a previous

study [38] to the three-dimensional case is proposed. A domain integral is used

to evaluate the different stress intensity factors from three-dimensional digital

image correlation or from elastic X-FEM simulations performed on the same

geometry.

7.1 Methodology

It is assumed that a set of nodes has been defined (along the experimental

or numerical crack front) with their own local basis. A domain integral is

considered to compute the energy release rate at any point along the front, and

a so-called interaction integral is used to separately compute the three stress

intensity factors [62]. For each point along the crack front parameterized by

its curvilinear abscissa, s, a domain S(s) is defined in the plane P (s) normal

to the crack front and extruded along the crack front in a 3D integration

domain Ω. Figure 22(a) shows such 3D domain whose sections are here chosen

as circular disks. For any chosen fracture mode, the displacement and stress

fields obtained from Westergaard’s solution [63] are denoted respectively uaux

and σaux. A virtual crack extension field q that vanishes on the boundary

of the integration domain is considered [32]. In addition, this virtual crack

extension field is parallel to the crack face, and is a unit vector aligned with

the crack direction at the crack tip (q(s) = ln(s)x1(s)). For each domain Ω
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Fig. 22. 3D integration domain and virtual crack extension field along the crack

front for the computation of the interaction integral

along the crack front the following interaction integral is computed

I int = −
∫

Ω(s)

[
σaux

ml um,lδkj − (σaux
ij ui,k + σiju

aux
i,k )

]
qk,j dΩ (19)

and provides local SIFs using Irwin’s relationship

I int(s)∫
C δln(s) ds

=
2(1− ν2)

E
(KIK

aux
I + KIIK

aux
II ) +

2(1 + ν)

E
KIIIK

aux
III (20)

where Kaux
i are auxiliary stress intensity factors chosen to extract successively

the actual mode I, II and III stress intensity factors. The specific interaction

integral used herein was introduced in Ref. [64] for planar cracks with curved

fronts and in Ref. [65] for non-planar cracks.

The intersection between the crack front and the free surface introduces some

difficulties. It is proposed to circumvent them as illustrated in Figure 23 by

multiplying the product of the virtual crack extension field and the test func-

tion δl(s) with a ramp function that vanishes on the free surface. Hence stress

intensity factors are not estimated on the surface, although they can be extrap-

olated from their values in the bulk. For all inner nodes along the crack front,

the (discretized) stress intensity factors are obtained with this procedure.
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Fig. 23. Specific virtual crack extension field close to a free surface

It should be underlined that the use of such formalism is secure for numerical

simulations in elasticity. However, for measured displacement fields (e.g., by

DIC), the fact that the equilibrium conditions are not strictly satisfied intro-

duces much more uncertainty. Thus in this context, the SIF determination

from the above formalism is to be considered as one among other possibili-

ties. However, the fact that this determination defines an “extractor” field,

i.e., a vector field whose scalar product with the displacement field provides

the stress intensity factor is a strong property that ensures an unbiased es-

timate in the presence of measurement uncertainties. Further extensions of

this formalism that optimize the noise robustness were designed and tested in

two dimensions [39]. However, the transposition to three dimensions is not yet

available.

7.2 Results

From the experimental displacement fields presented in Section 5, stress in-

tensity factors are computed directly. An integration domain of 5 × 5 × 5

elements of the displacement mesh is used for this computation. As the dis-
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placement is obtained on a finite element mesh with an X-FEM discretization,

a numerical simulation is also performed with the experimental mesh, the ex-

perimental crack geometry and experimental loadings. Note that the mesh

covers the region of interest that has a volume of 288 × 288 × 288 voxels

(or 1.46 × 1.46 × 1.46 µm3) centered in the tomographic image frame. Stress

intensity factors are thus estimated at the nodes inside the Y range from

130 µm to 1590 µm (in the image coordinates system). Despite some oscilla-

tions due to the noisy nature of the displacement field along the crack front

(Figure 24) experimental and numerical results are in reasonable agreement.

Both numerically and experimentally based stress intensity factors in mode I,

KI, are proportional to the applied load. For the maximum load level a mean

value of 14 MPa
√

m is obtained. It was already reported that the crack front

is oblique with respect to the specimen geometry. The two crack lengths mea-

sured on the two opposite free edges differ by about 220 µm, but no significant

effect is observed as KI is nearly independent of the crack length variation.

The rather large element size of 32 voxels used in the present case to improve

the robustness of the X3D-DIC algorithm does not allow for a fine spatial

resolution of the change of the stress intensity factors along the crack front.

Figure 25 shows mode I, II and III stress intensity factors along the crack front.

It is observed that mode I is predominant but mode III also develops locally,

oscillating from about 8 MPa
√

m to -5 MPa
√

m within the region limited by

Y = 200 µm and Y = 800 µm. Mode III corresponds to a discontinuity of V

as observed in Figure 16.

For comparison purposes, stress intensity factors are also estimated from the

elastic analysis carried out in sub-Section 6.3. Figure 26 shows that the tor-

tuosity of the crack front influences the change of the stress intensity factors
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Fig. 24. X-FEM and X-DIC mode I stress intensity factor along the crack front

after 45,000 cycles. Experimental results are compared with numerical simulations

(X-FEM) on the same mesh, same crack geometry under experimental boundary

conditions.

but the average values are consistent.

8 Discussion

3D characterizations of cracks in optically opaque materials using synchrotron

X-ray microtomography is a recent research area triggered, in the late nineties,

by the availability of third generation synchrotrons [66]. Since then, a growing

number of papers has been published on that topic (see for example Ref. [42]

for a list of studies on metals). In all these works, the characterization of the

crack shape was performed by direct analysis (i.e., visual inspection and / or

thresholding) of the reconstructed 3D images. However, even at the best reso-

lution available (of the order of 1 µm), crack tip displacements are unlikely to
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Fig. 25. X-DIC stress intensity factors along the crack front for the maximum load

level after 45,000 cycles.
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Fig. 26. X-FEM stress intensity factors along the crack front for the maximum load

level after 45,000 cycles obtained from the numerical simulation of Section 6.3
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be fully detected by direct inspection of the images. The use of phase contrast

available on modern synchrotron sources was shown to increase crack detec-

tion to some extent [15, 40] but even in that case only a conservative image

of the crack can probably be imaged by tomography. DIC has already been

used, in a few studies, on tomographic images [24, 28, 67] but not with the

explicit purpose of detecting cracks.

The results presented herein show that DIC is a very efficient way of analyzing

3D images of cracked specimens. The 3D shape of the crack surface obtained

by using the correlation residuals is in very good agreement with that obtained

with direct (i.e., more classical) observations of the images (Figure 6). For the

reasons given before, one would have expected the crack detected by DIC to be

longer that the one observed directly on the reconstructed images. However,

this does not seem to be the case, probably because of the relatively coarse

voxel size used (∼ 5 µm) that sets a limit to the accuracy with which the

residuals are obtained and subsequently thresholded.

Experiments with a smaller voxel size can be considered in the future but

the high energy of the incoming X-ray beam required by the large X-ray

attenuation of the ferrous matrix sets a limit to the resolution / efficiency of

the detector used. A voxel size of ∼ 3 µm is currently available on beamline

ID19. However, the size of and the distance between the “markers” used herein

(i.e., the graphite nodules) leads to yet another limit in terms of discretization.

It is believed that the resolution chosen is close to an optimal value in terms

of nodule content per finite element. A finer microstructure would be needed

if the resolution were finer. The type of studied material is also important

when DIC techniques are to be used. The cast iron used herein represents

an almost ideal case of a microstructure with many randomly spaced small

53



natural markers that are not found, for instance in Al-based alloys.

Besides being an effective way of imaging cracks, DIC also brings in a consid-

erable wealth of information (compared with “simple” 3D crack images) via

the determination of the displacement field around the crack upon loading the

sample. It was shown that this displacement field can be used efficiently to

compute local values of stress intensity factors along the crack front. Those

values were also obtained directly from X-FEM / level set calculations (Fig-

ure 1) based on a realistic 3D crack (as in Ref. [9]). The fact that both methods

yield the same order of magnitude for SIFs (Figure 24) is a promising result.

Local discrepancies observed in Figure 24 between X-DIC and X-FEM values

are probably again the results of the voxel size used, which decreases the signal

to noise ratio in the measured displacement.

Experimentally determined values of SIF along a crack front had been obtained

in the past from the analysis of high resolution (voxel size of 0.7 µm) 3D

tomographic images [68, 69]. In that case, small porosities close to the tip of a

crack were used as markers for “manual” tracking of the displacement field at

the crack tip. Compared to this earlier work, the approach presented herein

has the advantage of being fully automatic and much less local. Moreover,

the DIC analysis provides sub-voxel displacement values in the micrometer

range close to those measured by Toda et al. [68]. It is worth noting that the

sample studied herein has a larger cross section (i.e., 3 times larger) than

the one used by Toda et al. [68], which paves the way for performing crack

closure measurements with an increased confidence. Interestingly, the same

authors measured a significant contribution of mode III for the opening of

their crack macroscopically loaded in mode I. In the present case it was shown

in Figure 16 that the studied crack, in spite of being also loaded in mode I,
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exhibited significant values of KIII . This may be due to the loading device used

and / or the local geometry of the crack surface. Further analyses are required

to clarify this point. Another approach that may be fruitful for future work

is to couple elastic computations and X3D-DIC analyses, in order to seek for

the displacement field already in the space of elastic solutions. Such integrated

approaches have been followed successfully in the past in two dimensions [8,

36, 70].

9 Summary

This paper was dedicated to the use of a fully combined experimental / nu-

merical procedure to deal, in an integrated way, with a cracked sample. The

following tools were utilized:

• X-Ray microtomography to visualize various states of a fatigue crack within

a volume made of cast iron,

• eXtended 3D Digital Image Correlation (X3D-DIC) to measure in situ dis-

placement fields in the bulk in the presence of a crack, and identify stress

intensity factors along the crack front.

• eXtended 3D Finite Element Method to analyze stress intensity factors by

considering the experimentally determined crack geometry.

The main experimental challenge is the detection of the crack geometry within

the body. The enriched basis used herein proves to be the key concept to allow

for the detection of crack surfaces and front positions. This approach has led

to the concept of X3D-DIC, which is based on a global approach to volume

correlation. The detection is based upon the minimization of the quadratic

error between two considered scans by using the sought displacement field
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and its representation on the chosen basis (i.e., continuous and enriched shape

functions). Hence the optimal solution of the problem requires a combination

of finite element analyses and image processing techniques, which ignore the

mechanical content of the information. This approach could also be validated

by using a pure image processing technique.

The finite element tools are also used directly to post-process the measured

displacement field (including the singular components) to extract stress in-

tensity factors along the crack front. The latters are reasonably close to those

determined directly from the analysis of the measured displacements.

This type of study opens the way for estimating 3D crack growth experi-

mentally by using a series of analyses as the one presented herein. This may

then allow for an identification and even a validation of 3D crack propagation

models.
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nelle de champs cinématiques par imagerie volumique pour l’analyse des

matériaux et des structures, Inst. Mes. Métrol. 4 (2004) 43-88.

59



[25] E. Verhulp, B. van Rietbergen and R. Huiskes, A three-dimensional digital

image correlation technique for strain measurements in microstructures,

J. Biomech. 37 [9] (2004) 1313-1320.

[26] G. Besnard, F. Hild and S. Roux, “Finite-element” displacement fields

analysis from digital images: Application to Portevin-Le Châtelier bands,

Exp. Mech. 46 (2006) 789-803.

[27] F. Hild and S. Roux, Digital image correlation: from measurement to

identification of elastic properties - A review, Strain 42 (2006) 69-80.

[28] S. Roux, F. Hild, P. Viot and D. Bernard, Three dimensional image cor-

relation from X-Ray computed tomography of solid foam, Comp. Part A

39 [8] (2008) 1253-1265.
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[33] J. Réthoré, F. Hild and S. Roux, Shear-band capturing using a multiscale

extended digital image correlation technique, Comp. Meth. Appl. Mech.

Eng. 196 [49-52] (2007) 5016-5030.
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