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Abstract. This paper presents a closed edge detection method based
on a level lines selection approach. The proposed method is based on
an unsupervised probabilistic scheme using an a contrario method. A
level line is considered meaningful if its contrast and length is unlikely
to be due to chance. Besides being unsupervised, this method exploits a
tree structure. The first step of the proposed approach is to reduce the
meaningful level lines set using this hierarchical structure. Compared
with a previous method using the same principle, our method achieve
a 67% reduction rate of irrelevant levels lines. The second step of the
proposed approach illustrates the high flexibility of using closed edge
boundaries such as levels lines. Using a rather simple curvature analysis,
the proposed method detects anatomical structures boundaries from CT
scan images.

1 Introduction

Edge detection challenges the vision community since its beginnings. Many solu-
tions have been proposed. So called classic methods are based on gradient detec-
tion by filters [1], masks, Laplacian zero-crossing [2, 3] and adaptive masks [4].
Analytic approaches follows, among them are Canny [5] and Deriche [6] de-
tectors. Unfortunately, they require fine and supervised parameters tuning and
are also sensitive to image noise. They also consider edges as a local concept
which is opposed to Gestalt laws [7]. One of the biggest drawback of these
methods is their open edge processing. This require a difficult and hazardous
edge closing step [8–10]. Besides these methods, Kass et al. [11, 12] introduced
the active contour model or snake. These semi-automatic methods use a de-
formable model which minimizes an internal deformation energy subject to ex-
ternal forces derived from images. Closely, level sets approaches allows topology
flexibility [13,14]. Here, so-called level sets are defined as the zeros levels of sur-
faces in a three dimensions space. The active contour model is also close to the
geodesic model [15]. These three kind of deformable methods also require many
parameters to be tuned, and are strongly dependent on the initialization.

Mathematic morphology proposed to use another kind of image level sets to
extract object contours. These level sets are different from the ones previously
defined but unfortunately hold the same name. Given an image u, a level set
at the value λ is χλ(u) = {x ∈ R2, u(x) ≥ λ}. One important property of this
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representation is that no information is lost, since we can reconstruct an image
from the whole family of its level sets [16]. It thus provides a complete represen-
tation of images. It is also worth noting how large shapes are already present
with as few as 5 or 6 coarsely quantized levels. Levels sets boundaries are called
level lines, and the whole family of the level lines of an image is called the to-
pographic map [17]. This representation enjoys several important advantages.
It is contrast invariant. Levels lines are closed curves (except the ones meeting
the image borders). It is a hierarchical representation. An important property
is that object contours locally coincide with level lines [16]. Unfortunately, the
topographic map contains also the texture details and noise effects. Therefore
Desolneux et al. presented a level lines selection method [18], which has been
compared with active contour model [19]. Desolneux et al. do not claim to pro-
pose a ready to use optimal edge detector. Instead they consider their method
only provide a set of feasible, i.e. acceptable edges.

Indeed the resulting set of boundaries is not optimal. As we shall see it con-
tains too much irrelevant boundaries to be used directly as an object boundaries
detector. Two contributions are proposed in this paper. The first one uses the
hierarchical representation of the boundaries set to reduce the number of irrele-
vant boundaries and aims all kind of images. The second one is designed for CT
scan images which handle some characteristics that require special methods as it
often occurs in medical image analysis [20]. Indeed in the context of deformable
organ modeling from volumetric data such as CT scan images, in order to simu-
late treatment, it is useful to detect only the boundaries of the main anatomical
structures such as fat, muscles and bones. Therefore, the objective of the sec-
ond contribution is to detect only relevant boundaries that satisfy some specific
criteria defined with respect to some descriptors of the targeted structures. Fur-
thermore the second contribution allows to eliminate some specific noise in CT
scan images.

The plan of the paper is as follows. We shall give more details on Desolneux
et al. probabilistic scheme at the section 2.1 followed by our contributions pre-
sented at the section 2.2 and 2.3. It consists on a recursive course of the level
lines tree structure on homogeneous subtrees, using of a topological criterion
between included shapes, and a curvature analysis. These contributions reduce
and optimize the final boundaries set. We present one medical application of this
method using CT scan images at the section 3.

2 Proposed method

Desolneux et al. recently introduced a parameter-free method to detect feasible
edges in a digital image without any a priori information [18], only using a
basic perceptual principle called Helmholtz principle. It affirms that an observed
geometric structure is perceptually meaningful if its number of occurrences is
very small in a random situation. This principle has been successfully applied
to numerous vision problems such as alignments detection [21], vanishing point
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detection [22], histogram modes analysis [23], shape indexation [24], and spatial-
color image retrieval [25].

2.1 Probabilistic scheme

The proposed method is based on the probabilistic scheme used in [18, 19]. A
geometric event is said to be ε−meaningful if this event occurs less than ε times in
a random situation. This is an application of the general principle of a contrario

methods: we do perceive events that are unlikely in a white noise situation. Here,
the geometric event is the presence of long enough and contrasted enough level
line. Let u be a gray level image. We search the level lines of u along which
contrast assumes unexpectedly high values. These values are compared to the
distribution of contrast following the law of the random variable X :

∀µ > 0, P (X > µ) =
#{x, |∇u| > µ}

#{x, |∇u| > 0}
(1)

We denote by H(µ) this empirical probability, and let nu be the number
of level lines of u. According to Desolneux et al. definition, a level line C is
ε−meaningful if

NFA(C) = nuH(min
x∈C

|∇u(x)|)l/2 < ε (2)

where l is the length of C. This number is called number of false alarms
(NFA). It measures the meaningfulness of an event, and it depends only on the
length of C and its minimal contrast. Low NFAs indicate perceptually meaningful
contrasted boundaries. This event definition is discussed in [19]. It is worth
noting that this selection method only depends on one parameter: ε. Practically,
this parameter is very robust. Desolneux et al. show that it is logarithmically
dependent and thus varies very slowly. Therefore it is always fixed to ε = 1
whatever the image and source are. Hence the method is said to be parameter-
less. At this point, the method selection can be summarized as keeping all the
level lines that have a NFA inferior to ε = 1.

The hierarchical structure of the level lines representation is preserved beyond
this step. Two meaningful level lines are either disjoint or linked by inclusion.
The meaningful level lines set is represented by a tree structure where each
node contain one level line. A level line is closed or open (if it crosses the image
border). Depending on the gradient sign along the level line, it also said to be
positive or negative. An example of a synthetic image and its resulting level lines
tree structure is presented on figure 1. A positive level line is represented by a
white node. Inclusion is bottom-up. A child level line is included in its parent.

The ε−meaningful level lines set is much smaller than the whole topographic
map, but still contain a lot of redundant lines. Digital sampled images present
thick edges where many parallel level lines take place. Therefore Desolneux et
al. define maximal ε−meaningful level lines. A maximal monotone section of a
level line tree is a branch of the tree where any node has only one son, the gray
level is monotone in this part (nodes are either positive or negative), and is not
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Fig. 1. A synthetic image (left) and its resulting level lines tree (right). Black nodes
(resp. white) represent negative line (resp. positive). The doted line represents an open
line, crossing the image border

strictly contained in another monotone section. Then a meaningful level line is
maximal if it has a minimal NFA in a maximal monotone section. This selection
method is presented on figure 2. The branch maximality principle of Desolneux
et al. still miss some redundant lines due to its restricted application to maximal
monotone section. Two examples of CT Scans image segmentations with this
method are showed on figure 3.

2.2 Recursive maximality principle on monotone subtrees

We propose to change the maximality principle by first using a topological crite-
rion. We observed that redundant level lines are close to one parent line or one
child line. With sampled lines, this closeness is represented by the fact that no
local point of child line Cc is very far from a parent line Cp. The asymmetrical
Hausdorff distance dH represents well this kind of proximity:

dH(Cc, Cp) = max
Pe∈Cc

( min
Pp∈Cp

d(Pc, Pp)) (3)

where d(Pe, Pp) is the euclidean distance between two points. The distance
dH is used in our maximality principle.

We also improve the maximality principle by applying it to maximal mono-
tone subtrees. We observed that missed redundant lines are often placed on
different tree levels of a same monotone subtree. This happens when at least two
close objects are included in a same level line. An example of this situation is
shown on figure 4a). Redundancies is also due to texture effects, when at least
two small contrasted level lines break the branch into at least two branches. An
example of this effect is visible on figure 4b).

Therefore we propose a recursive course applied on monotone maximal sub-
trees and not only single-parent monotone branch. For every maximal monotone
subtree S of the level lines meaningful tree, we recursively search the line Cm hav-
ing the minimal NFA among the subtree. Then, we look upward and downward
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Fig. 2. Branch maximality principle of Desolneux et al [18]. Maximal monotone sec-
tion of a level line tree is a branch where any node has only one son, the gray level
is monotone in this part (nodes are either positive or negative), and is not strictly
contained in another monotone section. A meaningful level line is maximal if it has a
minimal NFA in a maximal monotone section.

Fig. 3. Two examples using Desolneux et al. branch maximality principle. Left, one
thorax MRI. Right, a CT Scan image of the trunk.
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a) b)

c) d)

Fig. 4. Oversegmented CT scan image of the trunk and MRI image of the thorax. Up,
two examples segmented with Desolneux et al. maximality principle. Bottom, the same
examples segmented with our maximality principle.

in the subtree to check if no close line has been selected previously. Closeness is
here defined by a threshold on dH . If so, the line is selected and removed from
the subtree. If one close line is find upward or downward, all the lines on the tree
path linking these two lines are removed from the subtree. We then recursively
look forward the next minimal NFA in the subtree. The algorithm stops explor-
ing the subtree when it is empty. On figure 1, this algorithm is clarified. The
distance threshold h is linked to edge thickness on image. It can be empirically
fixed for every image source. Typical values are h < 5 pixels.

Up to now, the algorithm is very general and can be applied to detect all
meaningful objects contours in an image. An important advantage of this method
is that it manipulates closed and sampled contours - the level lines. Hence can
we easily improve the detection of specific objects or features by adding criteria
on curvature, length, contrast sign, etc.

2.3 Curvature analysis on segmented CT scan images

CT scan images have a specific important noise. It is visible on Figure 5. This
noise is called quantum mottle and is due to the fact that an X-ray beam is an
uneven source of X-rays photons [26]. This uneven source has an effect on the
film image via the fluorescent screen. The quantum mottle noise is scattered and
missed by the detector. Bodies texture also sometimes leads the proposed method
in selecting many boundaries which are not relevant regarding our application.
Many denoising solutions have been proposed in the literature e.g. using wavelets
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Algorithm 1 Maximal subtree filtering

Require: Meaningful level lines tree
Ensure: Filtered level lines tree

Main function:
h← fixed threshold
for all monotone subtree S do

filter(S)
end for

Function filter(S):

while S 6= ∅ do

Cm ← minimal NFA node of S

if an upward or downward already selected node Cud is closer to Cm than h then

remove all nodes between Cud and Cm

remove Cm

else

Cm is kept for output, and removed from S for the rest of the algorithm
end if

filter(Sm) with Sm: subtree beginning with Cm root
end while

[27], adaptive scale space [28], Wiener filtering [29] or air gap placement on the
imaging plate [30].

Fig. 5. Quantum mottle noise effect. The X-ray source is uneven and so is the visible
image reflected on the fluorescent screen and film during CT scanning.

This geometric noise occurs at a specific granularity scale (related the X-ray
beam). This explains why proposed solutions in the literature uses wavelets. We
propose to use our level lines set. To eliminate noisy boundaries, we propose
a method relying on a two curvature thresholds. Curvature is easily calculated
along the selected boundaries: ci = (θ (Pi−1, Pi) − θ (Pi, Pi+1)) / (Pi−1Pi − PiPi+1)
on every point Pi. Curvature is seen as the discrete differential of tangent angle
divided by the sampling rate which is fixed and constant for all images and all
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boundaries. For every boundary B we measure the standard deviation σB on its
whole length, and also the standard deviation σL

B
on the partial length L where

the standard deviation is maximized. Typically we take L = 10% of the image
diagonal. Our goal here is to detect the boundaries which have at least L part
that have a noisy geometrical structure hence high standard deviations.

We manually analyzed relevant boundaries of 5 CT scans to fix these thresh-
olds. The relevant and non relevant boundaries from this set composed of 896
boundaries are shown on Figure 6. Besides a few outlayers, the thresholds σL <
0.45 and σ < 0.35 achieve best results (see Section 3). The diagonal alignment
on this figure is due to boundaries whose length is smaller than L.
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Fig. 6. Partial curvature standard deviation σ
L graph of relevant and irrelevant bound-

aries according to the standard deviation σ. Circle are irrelevant boundaries, and stars
are relevant boundaries.

3 Results

Experiments have been done on a set of 20 CT scan images from the Human
Visible Project [31]. In the following experiments we always used h = 5. This
value is linked to edge thickness on image and can be empirically fixed for every
image source.

Comparison results with Canny-Deriche open edge detector [6] and the closed-
edge selection method using the maximal monotone selection principle from
Desolneux et al. [18] are shown on Figure 7 from first row to fourth row. The
Canny-Deriche detector produces many open edges or misses some contours. An
edge closing step remains hazardous in this situation. The average size reduction
rate from the boundaries set obtained with the branch maximality principle and
the set obtained with the recursive subtrees maximality principle is 67%. This
set reduction is not visually obvious because most of the boundaries which have
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been eliminated are multiple very close (inside the h=5 pixels distance thresh-
old) boundaries. On all our experiments this reduction of the set size is lossless,
meaning absolutely no relevant boundaries are lost.

With the curvature thresholds the reduction raises to 93%. It is visible on
the second row of Figure 8 that this 24% improvement focuses on noisy and
texture boundaries. Resulting boundaries meet the objective of the second con-
tribution, that is only detect the main anatomical structures boundaries. Thanks
to the flexibility of the closed edge representation, these results are achieved with
a quite simple curvature analysis. Future work will include more sophisticated
pattern recognition criteria with respect to some descriptors characterizing the
targeted structures. Further work is undertaken to demonstrate the clinical rel-
evance of the proposed method by validating the detected boundaries by an
expert on actual data of patients.

4 Conclusion

In this paper we propose an automatic unsupervised edge detector inspired from
the Desolneux et al. level lines selection approach. We propose a new maximality
principle and apply it to maximal monotone subtrees. During our experiments,
it performed a detected boundaries set reduction of 67%. We also illustrate
the high flexibility of this kind of approach addressing an important CT scans
image segmentation problem, by using simple and intuitive criteria on level lines
such as a two thresholds curvature analysis. In the situation of our application
this improvement raised the size reduction of the set to 93%. Our goal is to
show the interest of this approach to medical imaging. It is very robust to noise
effect, contrast invariant [17], parameter-less (besides the topological criterion),
very flexible and ready-to-use as a pattern recognition preprocessing. It provides
closed contours easy to handle for various medical applications, and it doesn’t
require any shape initialization like active contour model.
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