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An intelligent transmitter reliability study has to deal with several issues: various interactions between both material elements and functions; behaviors of components as programmable units and software which are difficult to predict when faults or failures occur, as well as the consequences on functions processing. A "3-step model" is therefore proposed to include both functional and material aspects, using Goal Tree-Success Tree (GTST), and setting faults and failures as a third full part. Then, Master Logic Diagrams (MLD) aim to represent several types of relationships between faults or failures, material elements, and functions. Probabilities are used for MLD components to take the indeterminate relationships into account. Quantitative assessments are then performed, using an infrared gas transmitter as an example: total relationships between any fault or failure and any function, probabilities of malfunction and failure modes. Moreover, uncertainty analyses show that even if input relationship data are uncertain, precise results can be obtained. These properties make the proposed model especially suitable for evaluating the reliability of intelligent transmitters. Finally, some design issues are discussed, taking advantage of the proposed model.

Introduction

A transmitter can be described as "intelligent" according to advanced functionalities involved in the host system operation:

-The ability to modify its internal behavior to optimize data collection and communicate them in response to a host system [START_REF] Brignell | The future of intelligent sensors: A problem of technology or ethics?[END_REF].

-The bidirectional communication for sending measurement and status information, and receiving and processing external commands [START_REF]IEC 60770-3 Transmitters for use in industrial-process control systems, Part 3[END_REF].

Intelligent transmitters may take advantage of digital technologies to integrate specific functionalities [START_REF] Brissaud | Intelligent Sensors: New Technologies and New Dependability issues[END_REF]: error measurement correction [START_REF] Meijer | Concepts and focus point for intelligent sensor systems[END_REF], self-adjustment [START_REF] Taner | Aspects of intelligent sensor reconfiguration[END_REF], selfdiagnose and validation [START_REF] Staroswiecki | Intelligent sensors: A functional view[END_REF], on-line reconfiguration [START_REF] Guenab | Fault tolerant control system design: a reconfiguration strategy based on reliability analysis under dynamic behaviour constraints[END_REF], and digital bidirectional communication [START_REF] Bayart | Capteurs et actionneurs intelligents[END_REF]. For example, industrialists can get more accurate measurements, cost reductions, and use facilities [START_REF] Ciame | Les capteurs intelligents : Réflexion des utilisateurs[END_REF]- [START_REF] Smith | Considerations for the utilization of smart sensors[END_REF].

The use of intelligent transmitters for industrial risk prevention requires dependability evaluations, for example in accordance with the IEC 61508 functional safety standard [START_REF]IEC 61508 Functional safety of electrical / electronic / programmable electronic safety-related systems[END_REF]. Probabilities of failure on demand have therefore to be assessed in order to determine the system safety integrity level (SIL). However, dependability studies of intelligent transmitters are quite seldom in literature, and do not often take into account the "intelligent" features [START_REF] Brissaud | Intelligent Sensors: New Technologies and New Dependability issues[END_REF]. To this end, a kind of Goal Tree-Success Tree (GTST) technique, combined with Master Logic Diagrams (MLD), as proposed in [START_REF] Modarres | Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives[END_REF], has been used in [START_REF] Brissaud | Dependability Issues for Intelligent Transmitters and Reliability Pattern Proposal[END_REF] to model intelligent transmitters. The main advantages are to represent quite intuitively both material and functional aspects, and various interactions. Such models have been introduced in [START_REF] Brissaud | Dependability Issues for Intelligent Transmitters and Reliability Pattern Proposal[END_REF] to support further reliability studies.

In the present paper, a reliability study is proposed, using an extended GTST-MLD model which integrates faults and failures as a third full part, making a "3-Step model". This approach is described in Section 2 for an infrared gas transmitter. Relationship analyses are performed in Section 3 to evaluate the impact of any fault or failure on any material element or function. Probabilities of malfunction and failure modes (according to the main functions fulfillment) are assessed in Section 4. In Section 5, relationship uncertainty analyses tend to show the robustness of the proposed model faced with uncertainties in system behavior. Finally, some design issues are discussed in Section 6.

"3-Step model"

Infrared gas transmitter

A transmitter for measuring gas concentration by infrared absorption is used as a case study. It is made up of two infrared units: the working unit sends a ray with a proportional wavelength to the gas concentration to be measured; and the reference unit sends a ray which does not respond to the gas. Using a wavelength ratio of the two receiving rays, the gas concentration quantity is obtained with corrections of the optics clogging up (mirror and plane), and power fluctuations of sending rays. When a clogging up threshold is reached, appropriate corrections are no longer allowed and diagnosis information is transmitted. Heating elements aim to prevent steam from building up on optics. Temperature is a major influence on gas concentration, temperature sensors are therefore used for digital compensation. When the temperature is out of an acceptable range, this correction is no longer suitable and diagnosis information is transmitted. A digital card carries out processing and calculations, and controls the other units. Finally, all the transmitter material elements share the same power supply, and a converter is required by infrared units.

The following functions are investigated: measure i.e. assessing the gas concentration with appropriate digital corrections; diagnose i.e. checking the influencing quantities in acceptable ranges; self-adjustment of off-set and gain drift, used to regularly set digital parameters required by the two previous functions. Measure and diagnose functions first involve obtaining the appropriate data, then in processing them. Communication aspects with the host system are performed using an analogical card but are not included in the following analyses.

Functions-material elements-faults and failures

The model is based on Goal Tree-Success Tree (GTST), combined with Master Logic Diagrams (MLD), as proposed in [START_REF] Modarres | Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives[END_REF]. GTST-MLD has been already used in [START_REF] Jalashgar | Identification of hidden failures in process control systems based on the HMG method[END_REF] to identify complex system failures. In the present paper, faults and failures are introduced as a third full part, making a "3-step model", as depicted in Figure 1.

The functional tree (or goal tree i.e. GT) breaks the system goal (obtain valid measurement and diagnosis) up into global functions (measure, diagnose), and basic functions (obtain data, process data). The supporting functions (selfadjustment) are given in parallel to the main functions (measure and diagnose) because of the impact on them. In the same way, the material tree (or success tree i.e. ST) breaks the system up into subsystems, units, and supporting materials. The third step contains a list of faults and failures for at least one of the material elements. This extension of the GTST model aims to include the dysfunctional aspects as a third full part. Some of these faults or failures may cause a unit failure only in some cases (e.g. the loss of optics heating may have no impact on system if, at this moment, environmental conditions are suitable); and may impact only one unit (e.g. optics clogging up) or several (e.g. common failure to infrared units).

Direct relationships between faults or failures, material elements, and functions, are given in Master Logic Diagrams (MLD), (i.e. matrices DP, DM, PM, MS, MF, and SF), and represent aspects of system behavior. The dot color of MLD components depends on the degree of relationship between downstream and upstream elements.

Relationship analysis

How to model relationships?

To model relationships which are represented by MLD components, several approaches can be proposed:

-Qualitative relationships (e.g. very low, low, medium, and high), as given in Figure 1 with dot colors, can be used for prior analyses. Nevertheless, to allow quantitative results, these values have to be quantitatively translated.

-Architectural relationships describe the deterministic requirements of material elements or functions in terms of other elements. For example, weighted component techniques assign a weight to each downstream element. The upstream element is then assumed to be able to operate if the sum of the weights of its operating downstream elements is equal to or greater than a threshold. These capacitated systems provide extensions of k-out-of-n architectures which operate if at least k among n of its elements operate.

-Stochastic relationships aim at allocating to each downstream element the probability that its failure implies upstream element failure. Indeterminate consequences of faults or failures on the rest of the system are therefore taken into account in that way. An upstream element can reach a failed state due to any downstream element failures, according to given probabilities.

One of the main dependability issues for intelligent transmitters is to deal with the complexity of some components as programmable units and software, because it is difficult to predict the consequences of faults or failures [START_REF] Brissaud | Dependability Issues for Intelligent Transmitters and Reliability Pattern Proposal[END_REF]. Moreover, these faults or failures may heterogeneously act on several material elements and functions. For this reason, a stochastic relationship approach is chosen in the present paper. By allocating probabilities between a downstream element and several upstream elements, it is possible to assess the probability that the downstream element failure implies a failure of any upstream element alone, or any combination of them. At the transmitter level, failure modes can then be defined according to the accuracy of transmitted data (e.g. measurement, diagnoses), used for host system decisions. For example, a software fault may imply a bad measurement but an appropriate diagnosis, or vice-versa. These properties can be directly deduced from the model, without defining all the component failure modes as required by binary tools or state transition approaches. 

Example

According to Figure 1, the failure of main material element data processing unit (event M 5 ) directly implies the failure of supporting function self-adjustment (event S 1 ) if event MS 5,1 occurs, and the failure of main function process measuring data (event F 2 ) if event MF 5,2 occurs. That refers to "direct relationships".

In addition, the failure of self-adjustment (event S 1 ) directly implies the failure of process measuring data (event F 2 ) if event SF 1,2 occurs. The failure of process measuring data due to the failure of data processing unit, through the failure of self-adjustment, refers to an "indirect relationship". Notice that direct and indirect relationships are not incompatible.

According to Figure 1, no other event directly implies the failure of main function process measuring data (event F 2 ), (SF s,2 does not exist for s ≠ 1, and MF m,2 represent nil relationships for m ≠ 5). However, the failure of any other main material element (event M m with m ≠ 5) also directly implies the failure of supporting function self-adjustment (event S 1 ), if corresponding event MS m,1 occurs. The probability of failure of process measuring data (event F 2 ), denoted P[F 2 ], can therefore be expressed as follows:

        2 , 1 1 2 , 5 5 2 SF S MF M P F P     (1)                                      2 , 1 1 , 2 , 5 5 2 SF MS M MF M P F P m m m  (2)
The first part of (2) expresses the direct relationships between main materials m and main function 2; and the second part expresses the indirect relationships.

By pivotal decomposition around MF 5,2 , then M 5 : 

                                2 , 1 1 , 2 , 5 2 , 1 5 
                                   (3)
The same approach has to be taken for each probability of event M m occurrence, denoted P[M m ]. For example, according to Figure 1, the probability of failure of data processing unit (event M 5 ), denoted P[M 5 ], is equal to:

        5 , 2 2 5 , 9 9 5 PM P DM D P M P     (4)                    5 , 2 2 , 2 2 5 , 9 9 5 PM DP D DM D P M P (5)                 5 , 2 2 , 2 2 5 , 9 9 5 1 1 1 PM P DP P D P DM P D P M P         (6)

General formulas

The general formula for the probability of failure of any main function f is given by:

                 s f s s m f m m f SF S MF M P F P , , (7) 
                                         s f s m s m m m f m m f SF MS M MF M P F P , , , (8) 
             m f m m f MFtot M P F P , ( 9 
)
with MFtot m,f the total relationship event between main material element m and main function f, taking into account all supporting functions, and expressed as follows:

           s f s s m f m f m SF MS MF MFtot , , , , (10) 
From ( 9), and with a similar approach for events M m :

                                     m f m d m d d f MFtot DMtot D P F P , , (11) 
with DMtot d,m the total relationship event between fault or failure d and main material element m, taking into account all supporting material elements, and expressed as follows:

           p m p p d m d m d PM DP DM DMtot , , , , (12) 
Finally:

             d f d d f DF D P F P , ( 13 
)
with DF d,f the total relationship event between fault or failure d and main function f, taking into account all the direct and indirect relationships, and expressed as follows:

           m f m m d f d MFtot DMtot DF , , , (14) 
Notice that events given in matrices MFtot and DMtot are not independent. In fact, the same SF s,f events play a part in several rows of matrix MFtot, and the same MS m,s events in several columns (respectively for events PM p,m and DP d,p in matrix DMtot). Events given in matrix DF are therefore not independent and (13) has to be used with caution. For example, (3) has been obtained by pivotal decomposition.

To make evaluations with classical reliability software tools, equivalent fault trees to the "3-Step model" is proposed in Figure 2, for any main function f. Figure 2.a corresponds to [START_REF] Guenab | Fault tolerant control system design: a reconfiguration strategy based on reliability analysis under dynamic behaviour constraints[END_REF], and including Figure 2.c "transfer in" gate, the obtained fault tree corresponds to [START_REF] Bayart | Capteurs et actionneurs intelligents[END_REF]. Direct relationships between main material elements m and main function f correspond to the first part of ( 8) and to the "F-Direct" gate of Figure 2.a. Indirect relationships correspond to the second part of (8), and to the "F-Indirect" gate of Figure 2.a. The same approach is used for each failure of main material element m (events M m ), respectively with Figure 2.b, and Figure 2.d.

Several interactions between material elements and functions, and the conditional nature of relationship events, make the fault trees difficult to directly perform and interpret. The "3-step model" therefore aims at overcoming these qualitative issues by providing a more intuitive and global view of system material, functional, and behavior aspects. The equivalent fault trees can however be used as practical tools for common quantitative analyses.

Relationship analysis

The relationship analysis consists in evaluating the impact of any fault or failure d on any main function f. These relationship events are given in matrix DF. Even if events are not independent, from (13) it is possible to understand each probability of relationship event individually, as follows:

            d d f f d D D F P DF P   , (15) 
That is, if the fault or failure d occurs (event D d ) and not any other, the failure of main function f occurs (event F f ) with a probability equal to P [DF d,f ]. This value can also be interpreted as the individual impact measure of fault or failure d on main function f. Calculating P[DF d,f ] is then quite simple by using [START_REF] Hauptmanns | The impact of reliability data on probabilistic safety calculations[END_REF] and fault trees given in Figure 2. I (second column), and Figure 1. For example, SF 1,2 represents a medium relationship event, thus P[SF 1,2 ] = 0.67. In the same way, P[MF m,2 ] = 0 for m = 1,…,4, and P[MF 5,2 ] = 1 etc. These values are then used by [START_REF] Jalashgar | Identification of hidden failures in process control systems based on the HMG method[END_REF], after compilation with [START_REF] Smith | Considerations for the utilization of smart sensors[END_REF] and [START_REF] Modarres | Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives[END_REF]. Finally, the obtained P[DF d,f ] are graphically translated according to Table I (third column), and reported in Figure 1 ("relationship analysis results").

P[DF d,f ] are calculated according to input probabilities given in Table

For example, P[DF 8,2 ] = 0.67. According to Table I, DF 8,2 therefore represents a medium relationship event and, according to Figure 1 caption, the corresponding event dot color is dark grey. An interpretation of this result is "if a failure of temperature sensors occurs, and no other fault or failure, process measuring data will malfunction with a probability equal to 0.67".

At the system level, it is more often relevant to study the impact of each fault or failure on global functions, instead of basic functions. Then, let the following event be:

-G g = {global function g is in a failed state} For the infrared gas transmitter case study, the global functions are: measure (g = 1), and diagnose (g = 2). Corresponding fault trees are given in Figure 3. From (13):

                 d g d d j i g DG D P F F P G P , ( 16 
)
with {i,j} = {1,2} if g = 1 and {i,j} = {3,4} if g = 2. DG d,g is the total relationship event between fault or failure d and global function g, taking into account all the direct and indirect relationships, and expressed as follows:

  j d i d g d DF DF DG , , ,   (17) 
The individual impact measure of fault or failure d on global function g is therefore defined as follows, and obtained values are reported in Table II: 

            d d g g d D D G P DG P   , (18) 

Hypotheses and input data

To assess probabilities of functions being in a failed state (i.e. malfunctions), the following assumptions are made:

-Direct relationship events (i.e. events given in matrices DP, DM, PM, MS, MF, and SF) are independent (see Section 3.2.1), and corresponding probabilities are constant according to time.

-Fault or failure occurrences (events D d ) are independent and function to time.

-No maintenance action is performed during the study time.

The probability of fault or failure d occurrence at time t can therefore be denoted P[D d ≤ t]. Corresponding expressions are given in Table III and take into account the "inner architecture" of material elements (not depicted in Figure 1, according to the level of system break-up).

Fault tree based approach

Probabilities of malfunction can then be assessed by equivalent fault trees given in Figure 2 and Figure 3. Input probabilities from Table I (second column) are used for probabilities of occurrences of "basic relationship events". Expressions from Table III are used for probabilities of occurrences of "basic failure events". Probabilities of global function being in a failed state are reported in Figure 5. Failure modes can be defined according to combinations of global function states. These failure modes are described in Table IV and corresponding fault trees are given in Figure 4. For example, if the gas transmitter is able to transmit a good measurement but not a correct diagnosis, the corresponding failure mode is denoted FM1. The reverse failure mode of FM1 is denoted FM2. FM3 corresponds to the situation where neither measure nor diagnose are functioning, and FM0 when both are functioning. This last one is therefore not literally a "failure mode". The probabilities of failure modes FM1, FM2, FM3 and not-FM0, denoted ^FM0, are reported in Figure 6. 

Min-max interval based on relationship analysis

A min-max interval for probabilities of global function being in a failed state is given by [START_REF] Hu | Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling[END_REF]. The upper bound is deduced from [START_REF] Guérin | Reliability estimation by Bayesian method: definition of prior distribution using dependability study[END_REF], and the lower bound from ( 18) by neglecting the occurrence of more than one fault or failure (events D d ). These results can be transposed to probabilities of main functions being in failed state (events F f ). [START_REF] Hu | Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling[END_REF] These bounds are reported in Figure 5. Notice that the lower the probabilities of fault or failure occurrence, (e.g. time t is low), the narrower the interval is. 

                                      d g g d
≤ t] 1 1 -exp(-5•10 -8 •t) 2 1 -exp(-5•10 -8 •t) 3 1 -exp(-4•10 -7 •t) 4 1 -exp(-4•10 -7 •t) 5 1 -exp(-1•10 -7 •t) 6 1 -3•exp(-6•10 -6 •t) + 2•exp(-9•10 -6 •t) 7 1 -exp(-3•10 -6 •t) 8 1 -2•exp(-5•10 -7 •t) + exp(-1•10 -6 •t) 9 
1 -exp(-2•10 -7 •t)

Relationship uncertainty analysis

Uncertainty issues

Input data uncertainty is a substantial issue for reliability evaluation and has been widely investigated in many references: using several data sources [START_REF] Hauptmanns | The impact of reliability data on probabilistic safety calculations[END_REF], propagation of error, Monte Carlo simulations, Bayesian methods [START_REF] Guérin | Reliability estimation by Bayesian method: definition of prior distribution using dependability study[END_REF], fuzzy set theory [START_REF] Tanaka | Faulttree analysis by fuzzy probability[END_REF], and other approaches as evidence, possibility, and interval analyses [START_REF] Helton | An exploration of the alternative approaches to the representation of uncertainty in model predictions[END_REF]. These uncertainty analyses can be basically applied to input probabilities of fault or failure occurrences given in Table III, for example by using fault trees in Figure 2 (analyses are performed on "basic failure events"). The rest of the present paper will therefore not deal with this kind of uncertainty.

However, stochastic relationships are likely to be one of the main concerns of the proposed model. In fact, it is probably quite difficult to assess the direct relationship value between two elements and, in many cases, expert judgments are required. In the present paper, uncertainty analysis will therefore focus on relationships, that is, the uncertainties of stochastic relationship values (i.e.

probabilities P[DP d,p ], P[DM d,m ], P[PM p,m ], P[MS m,s ], P[MF m,f ], and P[SF s,f ]) on total relationship values between faults or failures and global functions (i.e. probabilities P[DG d,g ]).

For example, to deal with uncertainties in GTST-MLD models, fuzzy logic has been used in [START_REF] Hauptmanns | The impact of reliability data on probabilistic safety calculations[END_REF]. In the following, a probabilistic approach (i.e. using probability density functions) is chosen. The aim is to be able to assess variances of total relationship results, and to compare them with variances of input data.

Probabilistic approach for relationship uncertainties

Stochastic relationship values are now random variables, that is, probability values are described by probability distributions. Such "distributed probabilities" will be denoted in bold (i.e. P[AB a,b ]) to distinguish them from "fixed probabilities" used in previous sections. The corresponding probability density functions (pdf) are depicted in Figure 7. Expectancies and variances are reported in Table V. Random variable notations of Figure 7 are given in Table V (second column). Notice that the more the relationship is set as an extreme value (very low or high), the lower the uncertainty (i.e. variance) is assumed to be.

Expectancies and variances of P[DG d,g ] are obtained by

Monte Carlo simulations, using [START_REF] Helton | An exploration of the alternative approaches to the representation of uncertainty in model predictions[END_REF] 

Discussion

The variances obtained for total relationship results, which are reported in Table VI, are at least in the same order as variances of input data from Table V and, in many cases, orders of lower magnitude, especially for extreme values (i.e. close to 1). This property tends to show that the proposed model is robust. In fact, even if input data are quite uncertain, results can be obtained relatively precisely and, in some cases, even more precisely than inputs. *Notice that the expectancies are corrected to 2 decimal places. A relationship can therefore have a rounding off expectancy of 1.00, and even so a non-zero variance. To demonstrate this property in a general way is quite difficult due to many dependencies between events which are used to calculate total relationship results. However, to give part of explanation, two basic operations on random variables, required by [START_REF] Helton | An exploration of the alternative approaches to the representation of uncertainty in model predictions[END_REF], can be analyzed.

Let X and Y be two independent random variables which describe probability values (i.e. the sample space is [0, 1]), and with respective pdf f X (x) and f Y (y), thus: 

            1 0 1 ) ( ) ( du u u z f u f z f Y X Y X (22)                   1 0 ) 1 ( ) 1 ( 1 1 1 1 ) ( ) ( du u u z u f u f z f Y X Y X (23)
In addition, the following properties can be established:

] [ ] [ ] [ Y E X E Y X E    (24) ] [ ] [ ] [ ] [ ] [ ] [ ] [ 2 2 Y V X V X E Y V Y E X V Y X V        (25) ]) [ 1 ( ]) [ 1 ( 1 )] 1 ( ) 1 ( 1 [ Y E X E Y X E          (26)     ] [ ] [ ] [ 1 ] [ ] [ 1 ] [ )] 1 ( ) 1 ( 1 [ 2 2 Y V X V X E Y V Y E X V Y X V             (27) 
Examples of such operations on random variables M, L, and N (see Figure 7 and Table V) are depicted in Figure 8. Expectancies and variances are given in Table VII. Finally, (28) can be deduced from (25), and (29) from (27):

    1 ] [ , ] [ max 1 ] [ ] [ ] [ ] [ ] [ , ] [ min ] [ 2 2       Y V X V Y V Y E X V X E Y V X V Y X V (28)         ] [ , ] [ max 1 ] [ ] [ 1 ] [ ] [ 1 ] [ , ] [ min )] 1 ( ) 1 ( 1 [ 2 2 Y V X V Y V Y E X V X E Y V X V Y X V           (29) 
Equations ( 28) and (29) show the necessary and sufficient conditions on two input distributed probabilities to the operation results to obtain lower variances than any of the inputs. In other words, the result is less uncertain than any of its input data. These conditions are, for example, fulfilled by the couple of random variables L and M, but only (28) is fulfilled by the couple of random variables N and M, as it is shown by Figure 8 and results reported in Table VII. 

Some design issues

Importance criteria for material elements may be defined with a more global approach by using the model which is proposed in this paper. In fact, several functions are included in the analyses. It is then suitable to assess the component importance according to its impact on failure modes. For example, depending on the application, a bad measurement but a good diagnosis, or the opposite, are not equally critical, especially from a safety point of view. Moreover, these analyses can be performed by classic software tools, using equivalent fault trees.

System monitoring should take into account the "fault or failure coverage" of each function. For example, the previous analyses have shown that the loss of diagnose alone is less likely than any of the other failure modes (see Figure 6). If a checking procedure is required in order to improve system monitoring, the measure should preferably be tested because if it is functioning, a wider part of potential faults and failures is not supposed to have occurred.

The impact of "intelligent" functionalities on system reliability can be assessed. For the given example, the relevance of gas transmitter self-adjustment to reliability may be compared to other options, as for example: no selfadjustment but higher probabilities of failures of infrared units (i.e. P[D d ≤ t] for d = 1, 2, 3, see Table III).

Several kinds of transmitted data (e.g. measurement, diagnoses) may be required by control system decision rules. Optimization of these rules could take into account the system failure mode probabilities e.g. a good measurement but a bad diagnosis is less likely than the opposite for the gas transmitter example. 

Conclusion

This paper proposes a reliability analysis using a "3-Step model", based on Goal Tree-Success Tree (GTST) techniques, combined with Master Logic Diagrams (MLD). This approach aims to take into account both material and functional aspects in the analyses, including various interactions. The third part of the model contains a list of faults and failures representing the dysfunctional aspects.

Probabilities are chosen to model the relationships given in MLD. Quantitative analyses are then performed for an infrared gas transmitter example. First, relationship analyses aim to evaluate the impact of any fault or failure on any system function. These results and input probabilities for fault and failure occurrences then enable probabilities of malfunction and failure modes to be evaluated, according to time. Uncertainty analyses show the robustness of the model. Even faced with quite uncertain input data, results can be assessed with at least the same degrees of confidence, and, in some cases, even more precisely. Finally, some design aspects should take many advantages from this model. As a general rule, this approach should be suitable for any reliability evaluations of systems which present at least one of these complexities: at the system level if many interactions exist between components but also between functions; at the components level if some consequences of faults or failures are difficult to predict. In addition, several system output data can be taken into account according to function fulfillments. The proposed model is therefore especially appropriate for intelligent transmitter reliability analyses. Further work will focus on the reliability of control systems using various data from several transmitters to optimize their performances.
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 13321 Figure 1. "3-Step model" (functions-material elements-faults and failures) for an infrared gas transmitter3.2. Stochastic relationships for "3-Step model"3.2.1. Notations and definitionsLet the following events be: -D d = {fault or failure d occurs} -P p = {supporting material element p is in a failed state} -M m = {main material element m is in a failed state} -S s = {supporting function s is in a failed state} -F f = {main function f is in a failed state}
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 2344 Figure 2. Equivalent fault trees for "3-Step model"
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 5 Figure 5. Probabilities of malfunction
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 6 Figure 6. Probabilities of failure modes

  According to the direct relationship events AB a,b given in matrices DP, DM, PM, MS, MF, and SF, four probability laws, denoted Λ h , Λ m , Λ h , and Λ n , are proposed by expert judgments to describe random variables P[AB a,b ]: -if AB a,b represents a high relationship, then P[AB a,b ] ~ Λ h (e.g. P[MF 5,2 ] ~ Λ h ) -if AB a,b represents a medium relationship, then P[AB a,b ] ~ Λ m (e.g. P[SF 1,2 ] ~ Λ m ) -if AB a,b represents a low relationship, then P[AB a,b ] ~ Λ l (e.g. P[MS 2,1 ] ~ Λ l ) -if AB a,b represents a very low relationship, then P[AB a,b ] ~ Λ n (e.g. P[MF 1,2 ] ~ Λ n )
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 7 Figure 7. Probability density functions of random variables H, M, L, and N given in Table V

  possible to define the pdf of resulting random variables of operations X•Y and 1-(1-X)•(1-Y):

Figure 8 .

 8 Figure 8. Probability density functions of random variable operations 1-(1-L)•(1-M), L•M, 1-(1-N)•(1-M), and N•M
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	Table I. Stochastic relationship values
	Relationship	Input probability	Result translation
	full / high	1.00	0.83 ≤ x ≤ 1.00
	medium	0.67	0.50 ≤ x < 0.83
	low		0.33	0.17 ≤ x < 0.50
	nil / very low	0.00	0.00 ≤ x < 0.17
			. Relationship analysis results
	Fault or	Impact on measure	Impact on diagnose
	failure d		i.e. P[DG d,1 ]	i.e. P[DG d,2 ]
	1		1.00	0.92
	2		1.00	1.00
	3		1.00	0.76
	4		0.76	0.71
	5		1.00	0.93
	6		0.42	0.15
	7		0.65	0.21
	8		0.90	0.77
	9		1.00	1.00

Table IV .

 IV Definition of failure modes Failure mode

		State of global	State of global
		function measure	function diagnose
	FM0	functioning	functioning
		(event ^G1)	(event ^G2)
	FM1	functioning	malfunctioning
		(event ^G1)	(event G2)
	FM2	malfunctioning	functioning
		(event G1)	(event ^G2)
	FM3	malfunctioning	malfunctioning
		(event G1)	(event G2)

Table III .

 III Probabilities of fault or failure at time t

	Fault or	Probability of fault or failure d at time t
	failure d	i.e. P[D d

  and 10,000 draws for each fault or failure d. Results are given in Table VI. Expectancies differ from Section 3.3 (see Table II), because expectancies of relationship values given in Table V are not equal to input probabilities given in Table I.

Table VI

 VI 

		. Relationship uncertainty analysis results
	Fault	Impact on measure	Impact on diagnose
	or	i.e. P[DG d,1 ]	i.e. P[DG d,2 ]
	failure	Expec-	Variance	Expec-	Variance
	d	tancy*		tancy*	
	1	0.99	6.6•10 -5	0.93	5.7•10 -4
	2	1.00	4.4•10 -7	1.00	9.8•10 -6
	3	0.97	2.3•10 -4	0.83	2.1•10 -3
	4	0.85	2.1•10 -3	0.80	2.9•10 -3
	5	0.99	3.5•10 -5	0.94	4.8•10 -4
	6	0.74	5.0•10 -3	0.54	7.8•10 -3
	7	0.81	3.0•10 -3	0.58	6.7•10 -3
	8	0.92	8.6•10 -4	0.84	2.1•10 -3
	9	1.00	1.2•10 -6	1.00	1.1•10 -5

Table V .

 V Probability laws for distributed probabilities

	Relation-ship	Random variable	Expec-tancy	Variance