

Reliability Study of an Intelligent Transmitter

<u>F. Brissaud</u>, A. Barros, C. Bérenguer, D. Charpentier French National Institute for Industrial Environment and Risk & University of Technology of Troyes

15th ISSAT Int. Conf. on Reliability and Quality in Design August 6-8, 2009, San Francisco, USA

Overview

I. Introduction

- what is an intelligent transmitter?
- reliability issues for intelligent transmitters

II. "3-Step model"

- basic reliability modeling for intelligent transmitters
- case study on infrared gas transmitter

III. Reliability analysis

- relationship analysis between faults or failures and functions
- probabilities of malfunction and failure modes
- uncertainty analysis

IV. Design issues & Conclusion

I. Introduction

An intelligent transmitter

- incorporates signal conditioning and processing functions
- is able to modify its internal behavior
- sends measurement and status information
- Functionalities enabled by digital technology
 - error measurement correction
 - self-adjustment
 - self-diagnose and validation
 - online reconfiguration
 - digital and bidirectional communication

I. Introduction

- Reliability issues for intelligent transmitters
 - system complexity i.e. numerous interactions between both material elements and functions
 - → "3-Step model": functions–material elements–failures
 - system behavior under faulty conditions which is difficult to determine (e.g. due to programmable units and software)
 - \rightarrow relationship analysis between failures and functions
 - several transmitted data may be wrong (e.g. measurement, status information), and dependently of each other
 - \rightarrow probabilities of malfunction and failure modes
 - few available reliability feedback due to quite new technologies
 → uncertainty analysis

II. "3-Step model"

- Reliability modeling for intelligent transmitters
 - Goal Tree-Success Tree (GTST) for both functional analysis and system breaking up
 - Master Logic Diagram (MLD) for inter and intra relationships between elements
 - Iist of Faults and Failures for reliability purpose
- Notes
 - GTST–MLD has been developed by M. Modarres *et al.*, 1999
 - used by A. Jalashgar, 1998 to identify complex system failures
 - Y. Hu et al., 1999 has proposed system behavior evaluations
 - hereby, faults and failures are drawn up as a third full part for reliability analyses

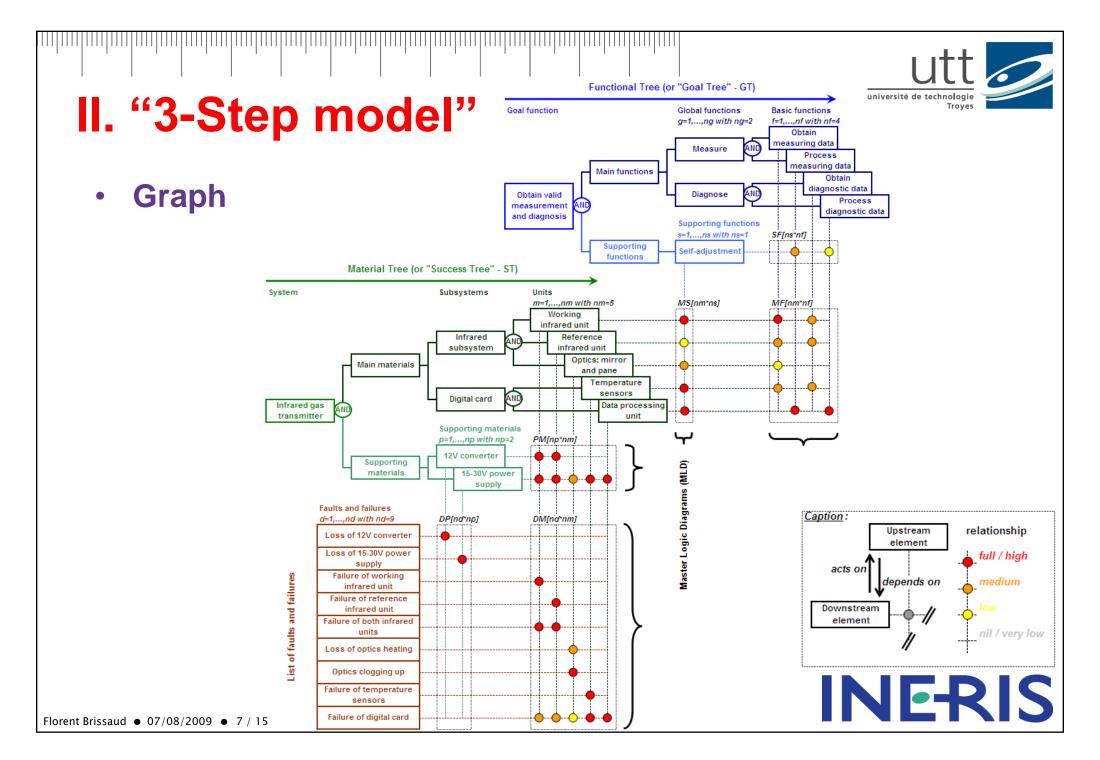
II. "3-Step model"

INE-RIS

Case study on infrared gas transmitter

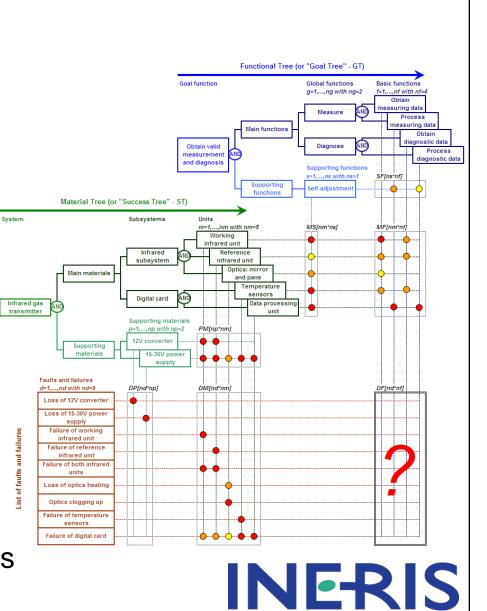
- to measure gas concentration by infrared absorption
- the use of a working and a reference infrared units allows corrections of the optics clogging up and power fluctuations
- heating elements aim to prevent steam from building up on optics

Window


Signals

- temperature sensors are used for digital compensation
- self-adjustments of the off-set and gain drift are performed
- diagnosis functions check the quantities in acceptable ranges

Power supply


Florent Brissaud • 07/08/2009 • 6 / 15

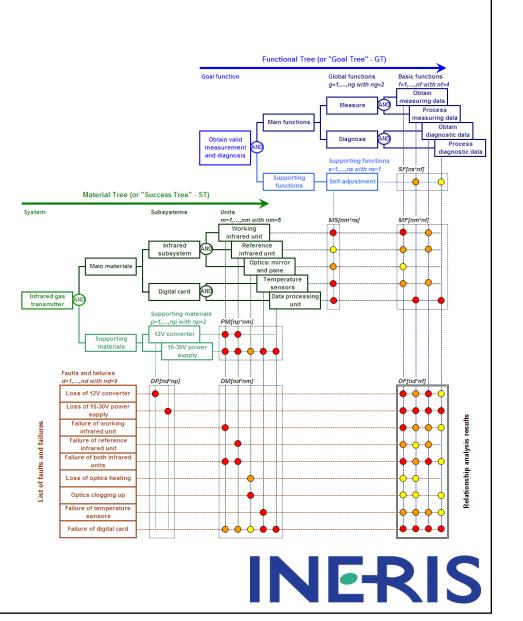
- Relationship analysis
 - what is the probability that a downstream element failure implies the failure of any upstream element?
 - input MLD components give <u>direct</u> stochastic relationships

full / high	1.00
medium	0.67
low	0.33
nil / very low	0.00

 this problem can be translated into classical models to be solved by Boolean reliability tools

université de technolog

Trove

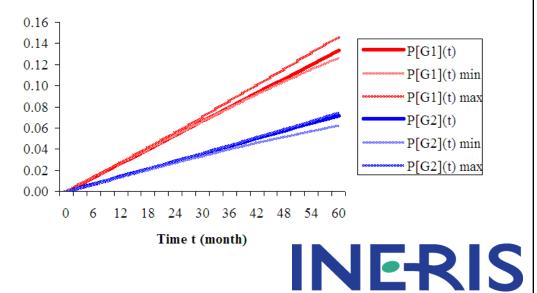

- Relationship analysis
 - translation of results

full / high	0.83 to 1.00
medium	0.50 to 0.83
low	0.17 to 0.50
nil / very low	0.00 to 0.17

 MLD component between fault or failure *d* and function *f*

 $P[DF_{d,f}] = probability that the failure of function f occurs, given fault or failure d has occurred and not any other$

 the same approach is applied to main / global functions g


université de technolog

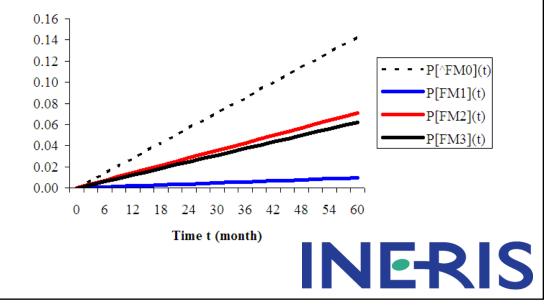
Troyes

Probabilities of malfunction

- inputs: $P[D_d](t) = probability of fault or failure d at time t$
- results: P[G_g](t) = probability of failure of main function g at time t with g = 1 for measure and g = 2 for diagnose
- these probabilities can be obtained by classical reliability tools
- a simple interval: $\sum_{d} \left(P \left[P G_{d,g} \right] \cdot P \left[P \right]_{g} \left[G \right]_{\delta \neq d} \left(-P \left[P \right]_{\delta} \right] \leq P \left[F_{g} \left[G \right]_{\delta \neq d} \left(P \left[P \right]_{\delta \neq d} \right] \right] \leq P \left[F_{g} \left[G \right]_{\delta \neq d} \left(P \left[P \right]_{\delta \neq d} \right] \right]$

Fault or	Probability of fault or failure d at time t
failure d	i.e. $P[D_d](t)$
1	$1 - \exp(-5 \cdot 10^{-8} \cdot t)$
2	$1 - \exp(-5 \cdot 10^{-8} \cdot t)$
3	$1 - \exp(-4 \cdot 10^{-7} \cdot t)$
4	$1 - \exp(-4 \cdot 10^{-7} \cdot t)$
5	$1 - \exp(-1.10^{-7} \cdot t)$
6	$1 - 3 \exp(-6 \cdot 10^{-6} \cdot t) + 2 \exp(-9 \cdot 10^{-6} \cdot t)$
7	$1 - \exp(-3 \cdot 10^{-6} \cdot t)$
8	$1 - 2 \exp(-5 \cdot 10^{-7} \cdot t) + \exp(-1 \cdot 10^{-8} \cdot t)$
9	$1 - \exp(-2 \cdot 10^{-7} \cdot t)$

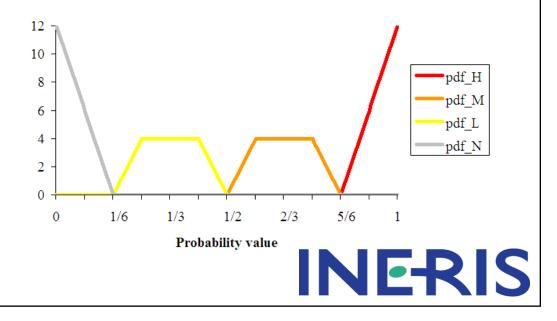
université de technolo


Trove

Probabilities of failure modes

- failure modes are defined according to main function fulfillments
- these failure modes form a set partition
- results: P[FMx](t) = probability of failure mode x at time t
- these probabilities can be obtained by classical reliability tools

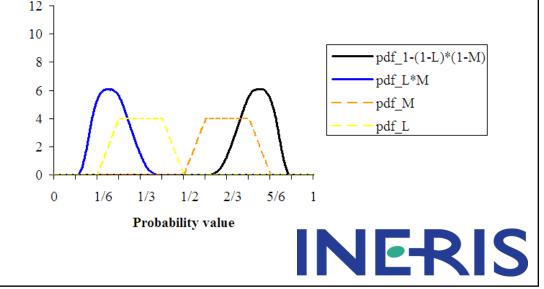
Failure	State of global	State of global
mode	function measure	function diagnose
FM0	functioning	functioning
	(event ^G1)	(event $^{O}G2$)
FM1	functioning	malfunctioning
	(event ^G1)	(event G2)
FM2	malfunctioning	functioning
	(event G1)	(event $^{O}G2$)
FM3	malfunctioning	malfunctioning
	(event G1)	(event G2)



Uncertainty analysis

- it is often quite difficult to assess the direct relationships between elements i.e. input probabilities given by MLD components
- do the input relationships question the results?
- the values of relationships are now assumed random variables i.e. probability values are described by probability distributions

Relation- ship	Random variable	Expec- tancy	Variance
high	Н	0.94	1.5.10-3
medium	\mathbf{M}	0.67	5.8·10 ⁻³
low	L	0.33	5.8·10 ⁻³
very low	Ν	0.06	1.5.10-3



Uncertainty analysis

- uncertainty analysis is performed on relationship analysis results between fault or failure *d* and main function *g* i.e. *P[DG_{d,a}]*
- 10,000 draws of Monte Carlo simulations have been used
- variances of results are orders of magnitude lower than input

 \rightarrow by combining input probabilities, variances can be reduced

Fault	Impact on <i>measure</i>		Impact on diagnose	
or	i.e. P	$[DG_{d,1}]$	i.e. P[DG _{d,2}]	
failure	Expec-	Variance	Expec-	Variance
d	tancy		tancy	
1	0.99	6.6·10 ⁻⁵	0.93	5.7.10-4
2	1.00	4.4·10 ⁻⁷	1.00	9.8·10 ⁻⁶
3	0.97	$2.3 \cdot 10^{-4}$	0.83	$2.1 \cdot 10^{-3}$
4	0.85	$2.1 \cdot 10^{-3}$	0.80	$2.9 \cdot 10^{-3}$
5	0.99	3.5.10-5	0.94	4.8.10-4
6	0.74	5.0·10 ⁻³	0.54	7.8·10 ⁻³
7	0.81	3.0.10-3	0.58	6.7·10 ⁻³
8	0.92	8.6.10-4	0.84	$2.1 \cdot 10^{-3}$
9	1.00	1.2.10-6	1.00	1.1.10-5

université de technologie Troyes

IV. Design issues & Conclusion

Design issues

- to analyze "intelligent" functionalities on transmitter reliability
- to define importance criteria for material elements which take the impacts on critical functions into account
- to define a "failure coverage" depending on function fulfillments
- to optimize the control system decision rules by taking the failure mode probabilities into account
- The proposed model for reliability study
 - deals with interactions between material elements and functions
 - deals with undetermined system behavior under faulty conditions
 - deals with input uncertainties
 - \rightarrow appropriate for intelligent transmitter reliability analyses

Thanks for your attention

Questions & Comments are Welcome

florent.brissaud@ineris.fr

15th ISSAT Int. Conf. on Reliability and Quality in Design August 6-8, 2009, San Francisco, USA

