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Abstract 

An intelligent transmitter reliability study has to deal with 
several issues: various interactions between both material 
elements and functions; behaviors of components as 
programmable units and software which are difficult to 
predict when faults or failures occur, as well as the 
consequences on functions processing. A “3-step model” is 
therefore proposed to include both functional and material 
aspects, using Goal Tree–Success Tree (GTST), and setting 
faults and failures as a third full part. Then, Master Logic 
Diagrams (MLD) aim to represent several types of 
relationships between faults or failures, material elements, 
and functions. Probabilities are used for MLD components to 
take the indeterminate relationships into account.  
Quantitative assessments are then performed, using an 
infrared gas transmitter as an example: total relationships 
between any fault or failure and any function, probabilities of 
malfunction and failure modes. Moreover, uncertainty 
analyses show that even if input relationship data are 
uncertain, precise results can be obtained. These properties 
make the proposed model especially suitable for evaluating 
the reliability of intelligent transmitters. Finally, some design 
issues are discussed, taking advantage of the proposed model. 

1. Introduction 

A transmitter can be described as “intelligent” according 
to advanced functionalities involved in the host system 
operation: 

- The ability to modify its internal behavior to optimize 
data collection and communicate them in response to a host 
system [1]. 

- The bidirectional communication for sending 
measurement and status information, and receiving and 
processing external commands [2]. 

Intelligent transmitters may take advantage of digital 
technologies to integrate specific functionalities [3]: error 
measurement correction [4], self-adjustment [5], self-
diagnose and validation [6], on-line reconfiguration [7], and 
digital bidirectional communication [8]. For example, 
industrialists can get more accurate measurements, cost 
reductions, and use facilities [9]-[10]. 

The use of intelligent transmitters for industrial risk 
prevention requires dependability evaluations, for example in 
accordance with the IEC 61508 functional safety standard 
[11]. Probabilities of failure on demand have therefore to be 
assessed in order to determine the system safety integrity 
level (SIL). However, dependability studies of intelligent 
transmitters are quite seldom in literature, and do not often 
take into account the “intelligent” features [3]. To this end, a 
kind of Goal Tree–Success Tree (GTST) technique, 
combined with Master Logic Diagrams (MLD), as proposed 
in [12], has been used in [13] to model intelligent 
transmitters. The main advantages are to represent quite 
intuitively both material and functional aspects, and various 
interactions. Such models have been introduced in [13] to 
support further reliability studies. 

In the present paper, a reliability study is proposed, using 
an extended GTST-MLD model which integrates faults and 
failures as a third full part, making a “3-Step model”. This 
approach is described in Section 2 for an infrared gas 
transmitter. Relationship analyses are performed in Section 3 
to evaluate the impact of any fault or failure on any material 
element or function. Probabilities of malfunction and failure 
modes (according to the main functions fulfillment) are 
assessed in Section 4. In Section 5, relationship uncertainty 
analyses tend to show the robustness of the proposed model 
faced with uncertainties in system behavior. Finally, some 
design issues are discussed in Section 6. 



2. “3-Step model” 

2.1. Infrared gas transmitter 

A transmitter for measuring gas concentration by infrared 
absorption is used as a case study. It is made up of two 
infrared units: the working unit sends a ray with a 
proportional wavelength to the gas concentration to be 
measured; and the reference unit sends a ray which does not 
respond to the gas. Using a wavelength ratio of the two 
receiving rays, the gas concentration quantity is obtained with 
corrections of the optics clogging up (mirror and plane), and 
power fluctuations of sending rays. When a clogging up 
threshold is reached, appropriate corrections are no longer 
allowed and diagnosis information is transmitted. Heating 
elements aim to prevent steam from building up on optics. 
Temperature is a major influence on gas concentration, 
temperature sensors are therefore used for digital 
compensation. When the temperature is out of an acceptable 
range, this correction is no longer suitable and diagnosis 
information is transmitted. A digital card carries out 
processing and calculations, and controls the other units. 
Finally, all the transmitter material elements share the same 
power supply, and a converter is required by infrared units. 

The following functions are investigated: measure i.e. 
assessing the gas concentration with appropriate digital 
corrections; diagnose i.e. checking the influencing quantities 
in acceptable ranges; self-adjustment of off-set and gain drift, 
used to regularly set digital parameters required by the two 
previous functions. Measure and diagnose functions first 
involve obtaining the appropriate data, then in processing 
them. Communication aspects with the host system are 
performed using an analogical card but are not included in the 
following analyses. 

2.2. Functions–material elements–faults and failures 

The model is based on Goal Tree–Success Tree (GTST), 
combined with Master Logic Diagrams (MLD), as proposed 
in [12]. GTST-MLD has been already used in [14] to identify 
complex system failures. In the present paper, faults and 
failures are introduced as a third full part, making a “3-step 
model”, as depicted in Figure 1. 

The functional tree (or goal tree i.e. GT) breaks the 
system goal (obtain valid measurement and diagnosis) up into 
global functions (measure, diagnose), and basic functions 
(obtain data, process data). The supporting functions (self-
adjustment) are given in parallel to the main functions 
(measure and diagnose) because of the impact on them. In the 
same way, the material tree (or success tree i.e. ST) breaks 
the system up into subsystems, units, and supporting 
materials. The third step contains a list of faults and failures 
for at least one of the material elements. This extension of the 
GTST model aims to include the dysfunctional aspects as a 
third full part. Some of these faults or failures may cause a 
unit failure only in some cases (e.g. the loss of optics heating 

may have no impact on system if, at this moment, 
environmental conditions are suitable); and may impact only 
one unit (e.g. optics clogging up) or several (e.g. common 
failure to infrared units). 

Direct relationships between faults or failures, material 
elements, and functions, are given in Master Logic Diagrams 
(MLD), (i.e. matrices DP, DM, PM, MS, MF, and SF), and 
represent aspects of system behavior. The dot color of MLD 
components depends on the degree of relationship between 
downstream and upstream elements. 

3. Relationship analysis 

3.1. How to model relationships? 

To model relationships which are represented by MLD 
components, several approaches can be proposed: 

- Qualitative relationships (e.g. very low, low, medium, 
and high), as given in Figure 1 with dot colors, can be used 
for prior analyses. Nevertheless, to allow quantitative results, 
these values have to be quantitatively translated. 

- Architectural relationships describe the deterministic 
requirements of material elements or functions in terms of 
other elements. For example, weighted component techniques 
assign a weight to each downstream element. The upstream 
element is then assumed to be able to operate if the sum of 
the weights of its operating downstream elements is equal to 
or greater than a threshold. These capacitated systems 
provide extensions of k-out-of-n architectures which operate 
if at least k among n of its elements operate. 

- Stochastic relationships aim at allocating to each 
downstream element the probability that its failure implies 
upstream element failure. Indeterminate consequences of 
faults or failures on the rest of the system are therefore taken 
into account in that way. An upstream element can reach a 
failed state due to any downstream element failures, 
according to given probabilities. 

One of the main dependability issues for intelligent 
transmitters is to deal with the complexity of some 
components as programmable units and software, because it 
is difficult to predict the consequences of faults or failures 
[13]. Moreover, these faults or failures may heterogeneously 
act on several material elements and functions. For this 
reason, a stochastic relationship approach is chosen in the 
present paper. By allocating probabilities between a 
downstream element and several upstream elements, it is 
possible to assess the probability that the downstream 
element failure implies a failure of any upstream element 
alone, or any combination of them. At the transmitter level, 
failure modes can then be defined according to the accuracy 
of transmitted data (e.g. measurement, diagnoses), used for 
host system decisions. For example, a software fault may 
imply a bad measurement but an appropriate diagnosis, or 
vice-versa. These properties can be directly deduced from the 
model, without defining all the component failure modes as 
required by binary tools or state transition approaches. 



 
Figure 1. “3-Step model” (functions–material elements–faults and failures) for an infrared gas transmitter

3.2. Stochastic relationships for “3-Step model” 

3.2.1. Notations and definitions 

Let the following events be: 
- Dd = {fault or failure d occurs} 
- Pp = {supporting material element p is in a failed state} 
- Mm = {main material element m is in a failed state} 
- Ss = {supporting function s is in a failed state} 
- Ff = {main function f is in a failed state} 

The direct relationship event between a downstream 
element a and an upstream element b is represented in matrix 
AB, row of index a and column of index b, and defined as 
follows: 

- ABa,b = {event Aa (i.e. failure of element a) directly 
implies (i.e. without request for any other event) event Bb (i.e. 
failure of element b)} 

All the direct relationship events are assumed to be 
independent and the stochastic relationship values are given 
by the probabilities P[ABa,b]. 



3.2.2. Example 

According to Figure 1, the failure of main material 
element data processing unit (event M5) directly implies the 
failure of supporting function self-adjustment (event S1) if 
event MS5,1 occurs, and the failure of main function process 
measuring data (event F2) if event MF5,2 occurs. That refers 
to “direct relationships”. 

In addition, the failure of self-adjustment (event S1) 
directly implies the failure of process measuring data (event 
F2) if event SF1,2 occurs. The failure of process measuring 
data due to the failure of data processing unit, through the 
failure of self-adjustment, refers to an “indirect relationship”. 
Notice that direct and indirect relationships are not 
incompatible. 

According to Figure 1, no other event directly implies the 
failure of main function process measuring data (event F2), 
(SFs,2 does not exist for s ≠ 1, and MFm,2 represent nil 
relationships for m ≠ 5). However, the failure of any other 
main material element (event Mm with m ≠ 5) also directly 
implies the failure of supporting function self-adjustment 
(event S1), if corresponding event MSm,1 occurs. The 
probability of failure of process measuring data (event F2), 
denoted P[F2], can therefore be expressed as follows: 
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The first part of (2) expresses the direct relationships 
between main materials m and main function 2; and the 
second part expresses the indirect relationships. 

By pivotal decomposition around MF5,2, then M5: 
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The same approach has to be taken for each probability of 
event Mm occurrence, denoted P[Mm]. For example, 
according to Figure 1, the probability of failure of data 
processing unit (event M5), denoted P[M5], is equal to: 
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3.2.3. General formulas 

The general formula for the probability of failure of any 
main function f is given by: 
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with MFtotm,f the total relationship event between main 
material element m and main function f, taking into account 
all supporting functions, and expressed as follows: 
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From (9), and with a similar approach for events Mm: 
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with DMtotd,m the total relationship event between fault or 
failure d and main material element m, taking into account all 
supporting material elements, and expressed as follows: 
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Finally: 
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with DFd,f the total relationship event between fault or 
failure d and main function f, taking into account all the direct 
and indirect relationships, and expressed as follows: 
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Notice that events given in matrices MFtot and DMtot are 
not independent. In fact, the same SFs,f events play a part in 
several rows of matrix MFtot, and the same MSm,s events in 
several columns (respectively for events PMp,m and DPd,p in 
matrix DMtot). Events given in matrix DF are therefore not 
independent and (13) has to be used with caution. For 
example, (3) has been obtained by pivotal decomposition. 

To make evaluations with classical reliability software 
tools, equivalent fault trees to the “3-Step model” is proposed 
in Figure 2, for any main function f. Figure 2.a corresponds to 
(7), and including Figure 2.c “transfer in” gate, the obtained 
fault tree corresponds to (8). Direct relationships between 
main material elements m and main function f correspond to 
the first part of (8) and to the “F-Direct” gate of Figure 2.a. 
Indirect relationships correspond to the second part of (8), 
and to the “F-Indirect” gate of Figure 2.a. The same approach 
is used for each failure of main material element m (events 
Mm), respectively with Figure 2.b, and Figure 2.d. 

Several interactions between material elements and 
functions, and the conditional nature of relationship events, 
make the fault trees difficult to directly perform and interpret. 
The “3-step model” therefore aims at overcoming these 
qualitative issues by providing a more intuitive and global 
view of system material, functional, and behavior aspects. 
The equivalent fault trees can however be used as practical 
tools for common quantitative analyses. 

3.3. Relationship analysis 

The relationship analysis consists in evaluating the impact 
of any fault or failure d on any main function f. These 
relationship events are given in matrix DF. Even if events are 
not independent, from (13) it is possible to understand each 
probability of relationship event individually, as follows: 
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That is, if the fault or failure d occurs (event Dd) and not 
any other, the failure of main function f occurs (event Ff) with 
a probability equal to P[DFd,f]. This value can also be 
interpreted as the individual impact measure of fault or 
failure d on main function f. Calculating P[DFd,f] is then 
quite simple by using (15) and fault trees given in Figure 2. 

P[DFd,f] are calculated according to input probabilities 
given in Table I (second column), and Figure 1. For example, 
SF1,2 represents a medium relationship event, thus P[SF1,2] = 
0.67. In the same way, P[MFm,2] = 0 for m = 1,…,4, and 
P[MF5,2] = 1 etc. These values are then used by (14), after 
compilation with (10) and (12). Finally, the obtained P[DFd,f] 
are graphically translated according to Table I (third column), 
and reported in Figure 1 (“relationship analysis results”). 

For example, P[DF8,2] = 0.67. According to Table I, 
DF8,2 therefore represents a medium relationship event and, 
according to Figure 1 caption, the corresponding event dot 
color is dark grey. An interpretation of this result is “if a 
failure of temperature sensors occurs, and no other fault or 
failure, process measuring data will malfunction with a 
probability equal to 0.67”. 

At the system level, it is more often relevant to study the 
impact of each fault or failure on global functions, instead of 
basic functions. Then, let the following event be: 

- Gg = {global function g is in a failed state} 

For the infrared gas transmitter case study, the global 
functions are: measure (g = 1), and diagnose (g = 2). 
Corresponding fault trees are given in Figure 3. From (13): 
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with {i,j} = {1,2} if g = 1 and {i,j} = {3,4} if g = 2. DGd,g 
is the total relationship event between fault or failure d and 
global function g, taking into account all the direct and 
indirect relationships, and expressed as follows: 

 jdidgd DFDFDG ,,,   (17) 

The individual impact measure of fault or failure d on 
global function g is therefore defined as follows, and obtained 
values are reported in Table II: 

  












d
dggd DDGPDGP


,  (18) 

 

 

Table II. Relationship analysis results 
Fault or 
failure d 

Impact on measure 
i.e. P[DGd,1] 

Impact on diagnose 
i.e. P[DGd,2] 

1 1.00 0.92 
2 1.00 1.00 
3 1.00 0.76 
4 0.76 0.71 
5 1.00 0.93 
6 0.42 0.15 
7 0.65 0.21 
8 0.90 0.77 
9 1.00 1.00 

 

Table I. Stochastic relationship values 

Relationship Input 
probability 

Result 
translation 

full / high 1.00 0.83 ≤ x ≤ 1.00 
medium 0.67 0.50 ≤ x < 0.83 

low 0.33 0.17 ≤ x < 0.50 
nil / very low 0.00 0.00 ≤ x < 0.17 
 



 
Figure 2. Equivalent fault trees for “3-Step model” 

 

 
Figure 3. Fault trees for global functions 

 

 
Figure 4. Fault trees for failure modes



4. Probabilities of malfunction and failure modes 

4.1. Hypotheses and input data 

To assess probabilities of functions being in a failed state 
(i.e. malfunctions), the following assumptions are made: 

- Direct relationship events (i.e. events given in matrices 
DP, DM, PM, MS, MF, and SF) are independent (see Section 
3.2.1), and corresponding probabilities are constant according 
to time. 

- Fault or failure occurrences (events Dd) are independent 
and function to time. 

- No maintenance action is performed during the study 
time. 

The probability of fault or failure d occurrence at time t 
can therefore be denoted P[Dd ≤ t]. Corresponding 
expressions are given in Table III and take into account the 
“inner architecture” of material elements (not depicted in 
Figure 1, according to the level of system break-up). 

4.2. Fault tree based approach 

Probabilities of malfunction can then be assessed by 
equivalent fault trees given in Figure 2 and Figure 3. Input 
probabilities from Table I (second column) are used for 
probabilities of occurrences of “basic relationship events”. 
Expressions from Table III are used for probabilities of 
occurrences of “basic failure events”. Probabilities of global 
function being in a failed state are reported in Figure 5. 

Failure modes can be defined according to combinations 
of global function states. These failure modes are described in 
Table IV and corresponding fault trees are given in Figure 4. 
For example, if the gas transmitter is able to transmit a good 
measurement but not a correct diagnosis, the corresponding 
failure mode is denoted FM1. The reverse failure mode of 
FM1 is denoted FM2. FM3 corresponds to the situation 
where neither measure nor diagnose are functioning, and 
FM0 when both are functioning. This last one is therefore not 
literally a “failure mode”. The probabilities of failure modes 
FM1, FM2, FM3 and not-FM0, denoted ^FM0, are reported 
in Figure 6. 

 

 
Figure 5. Probabilities of malfunction 

4.3. Min-max interval based on relationship analysis 

A min-max interval for probabilities of global function 
being in a failed state is given by (19). The upper bound is 
deduced from (16), and the lower bound from (18) by 
neglecting the occurrence of more than one fault or failure 
(events Dd). These results can be transposed to probabilities 
of main functions being in failed state (events Ff). 
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These bounds are reported in Figure 5. Notice that the 
lower the probabilities of fault or failure occurrence, (e.g. 
time t is low), the narrower the interval is. 

 

 

 
Figure 6. Probabilities of failure modes 

Table IV. Definition of failure modes 
Failure 
mode 

State of global 
function measure 

State of global 
function diagnose 

FM0 functioning 
(event ^G1) 

functioning 
(event ^G2) 

FM1 functioning 
(event ^G1) 

malfunctioning 
(event G2) 

FM2 malfunctioning 
(event G1) 

functioning 
(event ^G2) 

FM3 malfunctioning 
(event G1) 

malfunctioning 
(event G2) 

 

Table III. Probabilities of fault or failure at time t 
Fault or 
failure d 

Probability of fault or failure d at time t 
i.e. P[Dd ≤ t] 

1 1 - exp(-5∙10-8∙t) 
2 1 - exp(-5∙10-8∙t) 
3 1 - exp(-4∙10-7∙t) 
4 1 - exp(-4∙10-7∙t) 
5 1 - exp(-1∙10-7∙t) 
6 1 - 3∙exp(-6∙10-6∙t) + 2∙exp(-9∙10-6∙t) 
7 1 - exp(-3∙10-6∙t) 
8 1 - 2∙exp(-5∙10-7∙t) + exp(-1∙10-6∙t) 
9 1 - exp(-2∙10-7∙t) 

 



5. Relationship uncertainty analysis 

5.1. Uncertainty issues 

Input data uncertainty is a substantial issue for reliability 
evaluation and has been widely investigated in many 
references: using several data sources [15], propagation of 
error, Monte Carlo simulations, Bayesian methods [16], fuzzy 
set theory [17], and other approaches as evidence, possibility, 
and interval analyses [18]. These uncertainty analyses can be 
basically applied to input probabilities of fault or failure 
occurrences given in Table III, for example by using fault 
trees in Figure 2 (analyses are performed on “basic failure 
events”). The rest of the present paper will therefore not deal 
with this kind of uncertainty. 

However, stochastic relationships are likely to be one of 
the main concerns of the proposed model. In fact, it is 
probably quite difficult to assess the direct relationship value 
between two elements and, in many cases, expert judgments 
are required. In the present paper, uncertainty analysis will 
therefore focus on relationships, that is, the uncertainties of 
stochastic relationship values (i.e. probabilities P[DPd,p], 
P[DMd,m], P[PMp,m], P[MSm,s], P[MFm,f], and P[SFs,f]) on 
total relationship values between faults or failures and global 
functions (i.e. probabilities P[DGd,g]). For example, to deal 
with uncertainties in GTST-MLD models, fuzzy logic has 
been used in [15]. In the following, a probabilistic approach 
(i.e. using probability density functions) is chosen. The aim is 
to be able to assess variances of total relationship results, and 
to compare them with variances of input data. 

5.2. Probabilistic approach for relationship uncertainties 

Stochastic relationship values are now random variables, 
that is, probability values are described by probability 
distributions. Such “distributed probabilities” will be denoted 
in bold (i.e. P[ABa,b]) to distinguish them from “fixed 
probabilities” used in previous sections. 

According to the direct relationship events ABa,b given in 
matrices DP, DM, PM, MS, MF, and SF, four probability 
laws, denoted Λh, Λm, Λh, and Λn, are proposed by expert 
judgments to describe random variables P[ABa,b]: 

- if ABa,b represents a high relationship, 
then P[ABa,b] ~ Λh (e.g. P[MF5,2] ~ Λh) 
- if ABa,b represents a medium relationship, 
then P[ABa,b] ~ Λm (e.g. P[SF1,2] ~ Λm) 
- if ABa,b represents a low relationship, 
then P[ABa,b] ~ Λl (e.g. P[MS2,1] ~ Λl) 
- if ABa,b represents a very low relationship, 
then P[ABa,b] ~ Λn (e.g. P[MF1,2] ~ Λn) 

The corresponding probability density functions (pdf) are 
depicted in Figure 7. Expectancies and variances are reported 
in Table V. Random variable notations of Figure 7 are given 
in Table V (second column). Notice that the more the 
relationship is set as an extreme value (very low or high), the 
lower the uncertainty (i.e. variance) is assumed to be. 

Expectancies and variances of P[DGd,g] are obtained by 
Monte Carlo simulations, using (18) and 10,000 draws for 
each fault or failure d. Results are given in Table VI. 
Expectancies differ from Section 3.3 (see Table II), because 
expectancies of relationship values given in Table V are not 
equal to input probabilities given in Table I. 

 
Figure 7. Probability density functions of random variables 

H, M, L, and N given in Table V 

 

 

5.3. Discussion 

The variances obtained for total relationship results, 
which are reported in Table VI, are at least in the same order 
as variances of input data from Table V and, in many cases, 
orders of lower magnitude, especially for extreme values (i.e. 
close to 1). This property tends to show that the proposed 
model is robust. In fact, even if input data are quite uncertain, 
results can be obtained relatively precisely and, in some 
cases, even more precisely than inputs. 

Table VI. Relationship uncertainty analysis results 
Impact on measure 

i.e. P[DGd,1] 
Impact on diagnose 

i.e. P[DGd,2] 
Fault 

or 
failure 

d 
Expec-
tancy* 

Variance Expec-
tancy* 

Variance 

1 0.99 6.6∙10-5 0.93 5.7∙10-4 
2 1.00 4.4∙10-7 1.00 9.8∙10-6 
3 0.97 2.3∙10-4 0.83 2.1∙10-3 
4 0.85 2.1∙10-3 0.80 2.9∙10-3 
5 0.99 3.5∙10-5 0.94 4.8∙10-4 
6 0.74 5.0∙10-3 0.54 7.8∙10-3 
7 0.81 3.0∙10-3 0.58 6.7∙10-3 
8 0.92 8.6∙10-4 0.84 2.1∙10-3 
9 1.00 1.2∙10-6 1.00 1.1∙10-5 

*Notice that the expectancies are corrected to 2 decimal places. A 
relationship can therefore have a rounding off expectancy of 1.00, and 
even so a non-zero variance. 

Table V. Probability laws for distributed probabilities 
Relation-

ship 
Random 
variable 

Expec-
tancy Variance 

high H ~ Λh 0.94 1.5∙10-3 

medium M ~ Λm 0.67 5.8∙10-3 

low L ~ Λl 0.33 5.8∙10-3 
very low N ~ Λn 0.06 1.5∙10-3 
 



To demonstrate this property in a general way is quite 
difficult due to many dependencies between events which are 
used to calculate total relationship results. However, to give 
part of explanation, two basic operations on random 
variables, required by (18), can be analyzed. 

Let X and Y be two independent random variables which 
describe probability values (i.e. the sample space is [0, 1]), 
and with respective pdf fX(x) and fY(y), thus: 

1)(
1

0
 dxxf X  and 0)( xf X  for 10  x  (20) 

1)(
1

0
 dyyfY  and 0)( yfY  for 10  y  (21) 

It is therefore possible to define the pdf of resulting 
random variables of operations X∙Y and 1-(1-X)∙(1-Y):  
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In addition, the following properties can be established: 
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 Examples of such operations on random variables M, L, 
and N (see Figure 7 and Table V) are depicted in Figure 8. 
Expectancies and variances are given in Table VII. Finally, 
(28) can be deduced from (25), and (29) from (27): 
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Equations (28) and (29) show the necessary and sufficient 
conditions on two input distributed probabilities to the 
operation results to obtain lower variances than any of the 
inputs. In other words, the result is less uncertain than any of 
its input data. These conditions are, for example, fulfilled by 
the couple of random variables L and M, but only (28) is 
fulfilled by the couple of random variables N and M, as it is 
shown by Figure 8 and results reported in Table VII. 

 
Figure 8. Probability density functions of random variable 
operations 1-(1-L)∙(1-M), L∙M, 1-(1-N)∙(1-M), and N∙M 

 

6. Some design issues 

Importance criteria for material elements may be defined 
with a more global approach by using the model which is 
proposed in this paper. In fact, several functions are included 
in the analyses. It is then suitable to assess the component 
importance according to its impact on failure modes. For 
example, depending on the application, a bad measurement 
but a good diagnosis, or the opposite, are not equally critical, 
especially from a safety point of view. Moreover, these 
analyses can be performed by classic software tools, using 
equivalent fault trees. 

System monitoring should take into account the “fault or 
failure coverage” of each function. For example, the previous 
analyses have shown that the loss of diagnose alone is less 
likely than any of the other failure modes (see Figure 6). If a 
checking procedure is required in order to improve system 
monitoring, the measure should preferably be tested because 
if it is functioning, a wider part of potential faults and failures 
is not supposed to have occurred. 

The impact of “intelligent” functionalities on system 
reliability can be assessed. For the given example, the 
relevance of gas transmitter self-adjustment to reliability may 
be compared to other options, as for example: no self-
adjustment but higher probabilities of failures of infrared 
units (i.e. P[Dd ≤ t] for d = 1, 2, 3, see Table III). 

Several kinds of transmitted data (e.g. measurement, 
diagnoses) may be required by control system decision rules. 
Optimization of these rules could take into account the 
system failure mode probabilities e.g. a good measurement 
but a bad diagnosis is less likely than the opposite for the gas 
transmitter example. 

Table VII. Properties of random variable operations 
Random 
variable Expectancy Variance 

1-(1-L)∙(1-M) 0.78 3.3∙10-3 

L∙M 0.22 3.3∙10-3 

1-(1-N)∙(1-M) 0.69 5.4∙10-3 

N∙M 0.04 7.2∙10-4 

 



7. Conclusion 

This paper proposes a reliability analysis using a “3-Step 
model”, based on Goal Tree–Success Tree (GTST) 
techniques, combined with Master Logic Diagrams (MLD). 
This approach aims to take into account both material and 
functional aspects in the analyses, including various 
interactions. The third part of the model contains a list of 
faults and failures representing the dysfunctional aspects. 

Probabilities are chosen to model the relationships given 
in MLD. Quantitative analyses are then performed for an 
infrared gas transmitter example. First, relationship analyses 
aim to evaluate the impact of any fault or failure on any 
system function. These results and input probabilities for 
fault and failure occurrences then enable probabilities of 
malfunction and failure modes to be evaluated, according to 
time. Uncertainty analyses show the robustness of the model. 
Even faced with quite uncertain input data, results can be 
assessed with at least the same degrees of confidence, and, in 
some cases, even more precisely. Finally, some design 
aspects should take many advantages from this model. 

As a general rule, this approach should be suitable for any 
reliability evaluations of systems which present at least one 
of these complexities: at the system level if many interactions 
exist between components but also between functions; at the 
components level if some consequences of faults or failures 
are difficult to predict. In addition, several system output data 
can be taken into account according to function fulfillments. 
The proposed model is therefore especially appropriate for 
intelligent transmitter reliability analyses. Further work will 
focus on the reliability of control systems using various data 
from several transmitters to optimize their performances. 
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