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Introduction

One of the main problems in the modular representation theory of Hecke algebras of finite Weyl groups is to find "good" parametrizations of the set of simple modules. There is a natural way to solve that problem by studying the associated decomposition matrices. In fact, in characteristic zero, using these matrices, it is possible to prove the existence of certain indexing sets called "basic sets" which are in natural bijection with the set of simple modules for the Hecke algebra. Once we have the existence of these sets, it is another problem to have an explicit characterization of them. This has been achieved in type A n-1 by Dipper and James [START_REF] Dipper | Representations of Hecke algebras of general linear groups[END_REF], in type B n combining works by M. Chlouveraki, M.Geck, and the author [START_REF] Chlouveraki | Schur elements and basic sets for cyclotomic Hecke algebras[END_REF], [START_REF] Geck | Canonical basic sets in type Bn[END_REF], in type D n by M. Geck [START_REF] Geck | On the representation theory of Iwahori-Hecke algebras of extended finite Weyl groups[END_REF] and the author [START_REF] Jacon | Sur les représentations modulaires des algèbres de Hecke de type Dn[END_REF] and for the exceptional types by Geck, Müller and Lux, [START_REF] Geck | The decomposition numbers of the Hecke algebra of type E 6[END_REF], [START_REF] Geck | The decomposition numbers of the Hecke algebra of type F 4[END_REF], [START_REF] Müller | Zerlegungszahlen für generische Iwahori-Hecke Algebren von exzeptionellem Typ[END_REF], [START_REF] Müller | Decomposition numbers for generic Iwahori-Hecke algebras of non-cristallographic type[END_REF]. Importantly, these results remain valid in positive characteristic under the assumptions of certain Lusztig conjectures. We refer to [START_REF] Geck | Modular representations of Hecke algebras[END_REF] for a survey of these results.

In the case of type B n , the theory of basic sets provides several natural ways to label the same set of simple modules. In this paper, we are mainly interested on the connections between these various basic sets. First, we show the existence of analogues of basic sets for other types of representation introduced by Lusztig: the constructible representations (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]). In fact, given the matrix of the constructible characters for a choice of parameters (this includes the case where these parameters are negative), we show the existence of two different associated basic sets. As a consequence, we obtain two natural ways to parametrize the constructible characters, extending the work of Lusztig [START_REF] Lusztig | A class of irreducible representations of a Weyl group[END_REF], [START_REF] Lusztig | Characters of reductive groups over a finite field[END_REF], [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]. In addition, we describe the bijection between these two basic sets. All these results use as a crucial tool the works of Lusztig, Leclerc and Miyachi [START_REF] Leclerc | Constructible characters and canonical bases[END_REF] and the combinatorics developed therein.

The last part of the paper is devoted to the study of the various bijections between the basic sets in type B n . It turns out that the bipartitions labelling these sets are difficult to describe in general (we only have in principle a recursive description of them). Then, in the same spirit as in [START_REF] Jacon | Crystal isomorphisms for irreducible Uv( b sle)-modules of higher level[END_REF], we show the existence of an action of the affine extended symmetric group S 2 on these basic sets. We observe the two following remarkable facts:

• there is an easy description of the basic sets lying in a fundamental domain associated with the above action, • the action of S 2 on the set of basic sets can be explicitly described combining our previous results with results obtained in [START_REF] Jacon | Crystal isomorphisms for irreducible Uv( b sle)-modules of higher level[END_REF]. It is then possible to describe the basic sets as orbits of the elements of the fundamental domain under this action. Finally, we remark that this action is in some sense controlled by the matrices of constructible representations. In particular the bijections between the various basic sets can be essentially read through these matrices.

We end the paper with an explanation of this phenomenon.

Decomposition matrices for Hecke algebras

Let (W, S) be a finite Weyl group. We assume that we have a decomposition S = S + ⊔S -where no elements of S + is conjugate to an element of S -. Let φ : S → Z be such that

φ(s) = φ(s ′ ) if (s, s ′ ) ∈ S 2 + and φ(s) = φ(s ′ ) if (s, s ′ ) ∈ S 2 -(⋆)
Let q be an indeterminate and choose q 1/2 a root of q. We then have an associated Iwahori-Hecke algebra H(W, S, φ) over A = Z[q 1/2 , q -1/2 ]. The basis is given by {T w } w∈W and the multiplication is determined by the following rules:

T w T w ′ = T ww ′ if l(ww ′ ) = l(w) + l(w ′ ) (T s -q φ(s) )(T s + 1) = 0
In this section, we study the representation theory of these algebras in both the semisimple and the modular case and give extensions of some definitions and properties which were previously only known when φ(S) ⊂ N 2.1. Decomposition matrices. Let K be the field of fractions of A. Then by [21, §9.3.5], the algebra H K (W, S, φ) := K ⊗ A H(W, S, φ) is split semisimple and by Tits' deformation theorem, we have a canonical bijection between Irr(H K (W, S, φ)) and Irr(W ). Let Λ is an indexing set for Irr(W ):

Irr(W ) = E λ | λ ∈ Λ .
We then have:

Irr(H K (W, S, φ)) = V λ φ | λ ∈ Λ Let k
be a field and ξ ∈ k × be an element which has a square root in k × . Then there is a ring homomorphism θ : A → k such that θ(q) = ξ. Considering k as an A-module via θ, we set H k (W, S, φ) := k ⊗ A H A (W, S, φ). As noted above, we have a canonical way to parametrize the simple modules for H K (W, S, φ). It is also desirable to obtain a "good" parametrization of the simple H k (W, S, φ)-modules. As H k (W, S, φ) is not semisimple in general, Tits' deformation theorem cannot be applied. However, following [15, §4.10], one can use the associated decomposition matrix to solve that problem. Let λ ∈ Λ and let

ρ λ : H K (W, S, φ) → M d (K) T w → (a ij (T w )) 1≤i,j≤d
be a matrix representation affording the module V λ φ ∈ Irr(H K (W, S, φ)) of dimension d. The ideal p = ker(θ) is a prime ideal in A and the localization A p is a regular local ring of Krull dimension ≤ 2. Hence, by Du-Parshall-Scott [9, §1.1.1], we can assume that ρ λ satisfies the condition

ρ λ (T w ) ∈ M d (A p )
for all w ∈ W . Now, θ extends to a ring homomorphism θ p : A p → k. Applying θ p , we obtain a representation

ρ λ k,ξ : H k (W, S, φ) → M d (k), T w → (θ p (a ij (T w ))) 1≤i,j≤d .
This representation may no longer be irreducible. For any M ∈ Irr(H k (W, S, φ)), let [V λ φ : M ] be the multiplicity of M as a composition factor of the H k (W, S, φ)-module affording ρ λ k,ξ . This is well defined by [9, §1.1.2]. Thus, we obtain a well-defined matrix

D φ θ = [V λ φ : M ] λ∈Λ,M∈Irr(H k (W,S,φ))
which is called the decomposition matrix associated with θ. Let R(H K (W, S, φ)) (resp. R(H k (W, S, φ))) be the Grothendieck group of finitely generated H K (W, S, φ)modules (resp. H k (W, S, φ)-modules). It is generated by the classes [U ] of the simple H K (W, S, φ)-modules (resp. H k (W, S, φ)-modules) U . Then we obtained a well defined decomposition map:

d φ θ : R(H K (W, S, φ)) → R(H k (W, S, φ)
) such that for all λ ∈ Λ we have:

d φ θ ([V λ φ ]) = M∈Irr(H k (W,S,φ)) [V λ φ : M ][M ]
The notion of basic sets of simple modules for Hecke algebras has first been considered by Geck in [START_REF] Geck | Kazhdan-Lusztig cells and decomposition numbers[END_REF]. The definition depends on the decomposition matrix and has been originally given in the case where φ is constant and positive and then in the case where φ is positive in [START_REF] Geck | Modular representations of Hecke algebras[END_REF]. Using the above discussion, we will be able to generalize these notions to all possible φ. 2.2. Basic sets. In this section, we adopt the following notations. Let φ : S → Z be a map satisfying

φ(s) = φ(s ′ ) if (s, s ′ ) ∈ S 2 + and φ(s) = φ(s ′ ) if (s, s ′ ) ∈ S 2 - (⋆).
We denote by |φ| : S → Z the map such that |φ|(s) = |φ(s)| for all s ∈ S. Note that this map satisfy (⋆). Set:

S -:= {s ∈ S | φ(s) < 0} . Let ε : W → Q × be the one dimensional representation of W such that ε(s) = 1 if s ∈ S + and ε(s) = -1 if s ∈ S -. For λ ∈ Λ, the module (E λ ) ε remains simple and we define λ ε ∈ Λ such that E λ ε ≃ (E λ ) ε .
We turn to the definition of basic sets associated with a specialization of the Hecke algebra.

Definition 2.1. We say that H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to θ : A → k and to a map α φ : Λ → Q if and only if:

(1) For all M ∈ Irr(H k (W, S, φ)) there exists λ M ∈ B(φ) such that

[V λM φ , M ] = 1 and α φ (µ) > α φ (λ M ) if [V µ φ , M ] = 0 (2) The map Irr(H k (W, S, φ)) → B(φ) M → λ M is a bijection
Assume that H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to θ and to a map α φ : Λ → Q. This implies that the associated decomposition matrix has a lower triangular shape with one along the diagonal for a "good" order on Λ induced by the map α φ . Hence, it gives a way to label Irr(H k (W, S, φ)).

It is now natural to ask if these basic sets always exist. The question has been considered in [START_REF] Geck | Filtrations on projective modules for Iwahori-Hecke algebras[END_REF], [START_REF] Geck | Kazhdan-Lusztig cells and decomposition numbers[END_REF], [START_REF] Geck | Modular representations of Hecke algebras[END_REF] (see [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] for a complete survey on this theory) and in [START_REF] Chlouveraki | Schur elements and basic sets for cyclotomic Hecke algebras[END_REF] (where the question of existence of basic sets in characteristic 0 and for any weight function is complete),

The first step is to define the canonical map a φ : Λ → N which will play the role of α φ . This can be done using the symmetric algebra structure of H(W, S, φ) We define a linear map τ : H(W, S, φ) → A by τ (T 1 ) = 1 and τ (T w ) = 0 for w = 1.

Then one can show that τ is a trace function and we have

τ (T w T w ′ ) = π(w) if w ′ = w -1 , 0 otherwise.
This implies that H(W, S, φ) is a symmetric algebra (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Ch. 7] for a study of the representation theory of this type of algebras). The above trace form extends to a trace form τ K :

H K (W, S, φ) → K. Now since H K (W, S, φ) is split semisimple, we have τ K (T w ) = λ∈Λ 1 c λ trace(T w , V λ φ ), for all w ∈ W,
where c λ ∈ A is called the Schur element associated to λ ∈ Λ. For all λ ∈ Λ, we now have c λ = f λ q -a φ λ + combination of higher powers of q, where f λ and a φ λ are both integers such that f λ > 0 and a φ λ ≥ 0 (see [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Ch. 20] for details.) The map

a φ : Λ → N λ → a φ λ is called the Lusztig a-function.
In the next theorem, we need the following definition: we say that k is good with respect to H(W, S, φ) if f λ 1 k = 0 for all λ ∈ Λ. The proof of the existence of basic set for Hecke algebras (in characretistic 0) with respect to the a-function has been given Geck and Geck-Rouquier (see [START_REF] Geck | Modular representations of Hecke algebras[END_REF]) whenΦ is positive. The following proposition obtained in [6, Prop 2.5] allows the extension of the result for arbitrary Φ. This result will also be crucial in the rest of the paper. Proposition 2.2. For all λ ∈ Λ, we have:

a φ (V λ φ ) = a |φ| (V λ ε |φ| )
The theorem of existence becomes then the following: Theorem 2.3. We keep the above notations. Assume in addition that Lusztig's conjectures P1-P15 in [33, §14.2] hold and that k is good with respect to H(W, S, φ). Then H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to any specialization and to the map a φ , the Lusztig a-function. This basic set is called the canonical basic set and it only depends on e and φ.

Remark 2.4. Lusztig's conjectures are known to hold in the following cases:

(1) For all finite Weyl group, in the so called "equal parameter case", that is when there exists a ∈ N such that φ(s) = a for all s ∈ S by Lusztig (see [START_REF] Lusztig | Hecke algebras with unequal parameters[END_REF]Ch. 15].) (2) In type B n , in the so called "asymptotic case" by the works of Bonnafé-Iancu [START_REF] Bonnafé | Left cells in type Bn with unequal parameters[END_REF], Bonnafé [START_REF] Bonnafé | Two-sided cells in type B (asymptotic case)[END_REF], Geck [START_REF] Geck | Relative Kazhdan-Lusztig cells[END_REF] and Geck-Iancu [START_REF] Geck | Lusztig's a-function in type Bn in the asymptotic case[END_REF].

In fact, the results in [START_REF] Chlouveraki | Schur elements and basic sets for cyclotomic Hecke algebras[END_REF] show that the canonical basic set B(φ) ⊂ Λ can be deduced from B(|φ|). We illustrate this fact in type B n which is our main centre of interest in this paper. Hence, let W be a Weyl group of type B n .

B n i i i • • • i t s 1 s 2 s n-1
In this case, Λ can be defined to be the set Π 2 n of bipartitions of rank n. In the following, it will be useful to introduce a "more generic" Hecke algebra than the one defined in the introduction of this section.

Let V and v be indeterminates and consider the generic Hecke algebra H({V, v}) of type B n over Z[V ±1/2 , v ±1/2 ] with presentation as follows:

(T 0 -V )(T 0 + 1) = 0 (T i -v)(T i + 1) = 0 if i = 1, ..., n -1
Let K be the field of fractions of A. We set

Irr(H K ({V, v})) = {V λ | λ ∈ Π 2 n }. and Λ = Π 2
n . We assume that we have a specialization θ : Z[V ±1/2 , v ±1/2 ] → k where k is a field. By results of Dipper and James [START_REF] Dipper | Representations of Hecke algebras of type Bn[END_REF]Th. 4.17], one can restrict ourselves to the following case. We assume that θ(V ) = -q da and θ(v) = q a for (a, b) ∈ N 2 and for q ∈ k × . The resulting algebra H k ({q a , -q ad }) has a presentation as follows:

(T 0 + q da )(T 0 + 1) = 0 (T i -q a )(T i + 1) = 0 if i = 1, ..., n -1.
It is in general a non semisimple algebra and as in §2.1, we have an associated decomposition matrix.

D = ([V λ : M ]) λ∈Π 2 n ,M∈Irr(H k ({q a ,-q ad }))
By a deep theorem of Ariki [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF]Thm 14.49], this matrix is nothing but the (evaluation at v = 1 of the) matrix of the canonical basis for the irreducible highest weight U v ( sl e )module with weight Λ d + Λ 0 (where the Λ i with i ∈ Z/eZ denote the fundamental weights).

Applying [START_REF] Chlouveraki | Schur elements and basic sets for cyclotomic Hecke algebras[END_REF] to type B n leads the following proposition.

Proposition 2.5. Let (W, S) be the Weyl group of type B n . We assume that we have a map φ : S = {t, s 1 , ..., s n } → Z satisfying (⋆). We set |φ| :

S = {t, s 1 , ..., s n } → Z such that |φ|(s) = |φ(s)| for all s ∈ S.
Then, for all specialization θ, we have

B(φ) = (λ 0 , λ 1 ) ε | (λ 0 , λ 1 ) ∈ B(|φ|)
where

(1) (λ 0 , λ 1 ) ε = (λ 1 , λ 0 ) if S + = {s 1 , ..., s n-1 } and S -= {t}, ( 2 
) (λ 0 , λ 1 ) ε = (λ 1 ′ , λ 0 ′ ) if S + = ∅ and S -= {s 1 , ..., s n-1 , t}, (3) 
(λ 0 , λ 1 ) ε = (λ 0 ′ , λ 1 ′ ) if S + = {t} and S -= {s 1 , ..., s n-1 },
From now, we will denote κ(λ 0 , λ 1 ) := (λ 1 , λ 0 ). 

U (i) = V [Ind S I (U ) : V ]V (sum over all V ∈ Irr(C[W ]) such that a φ (V ) = i).
Then the J-induction of a simple C[W I ]-module U is

J S I (U ) = U (a φ I (U))
Using this "truncated" induction, the constructible representations with respect to φ are defined inductively in the following way:

(1) If W = {1}, only the trivial module is constructible.

(

) If W = {1}, the set of constructible C[W ]-modules consists of the C[W ]- modules of the form J S I (V ) or sgn ⊗ J S I (V ) 2 
, where sgn is the sign representation of W , and I some proper subset of S. One can define an analogue of the decomposition matrix for this type of representations: the constructible matrix D φ cons which is defined as follows. Remark 2.7. If φ is positive, the blocks of the matrix D φ cons are known as the families of characters. This notion plays an important role in the theory of reductive group. In fact, it is possible to generalize the definition of families of characters to any map φ (ie. not necessary positive) and to a wider class of algebras : the cyclotomic Hecke algebras, using the notion of Rouquier blocks. The associated families have been studied by Chlouveraki [START_REF] Chlouveraki | Blocks and families for cyclotomic Hecke algebras[END_REF]. When W is a Weyl group, one can easily see that for any map φ, the blocks of the matrix D φ cons corresponds to the families of characters as given in [START_REF] Chlouveraki | Blocks and families for cyclotomic Hecke algebras[END_REF].

Bijections of basic sets

We now focus on the case of the Hecke algebras of type B n . Before the study of the representation theory, we first give the formula for the Lusztig a-function in the case where φ(t) = b ≥ 0 and φ(s i ) = a ≥ 0 for i = 1, ..., n -1.

3.1. a-function in type B n . We first introduce a combinatorial object which will be useful in the following: the shifted symbol of a bipartition. Let β = (β 1 , ..., β k ) be a sequence of strictly increasing integers and let s be a rational nonnegative number. We denote by [s] the integer part of s. We set

β(s) := (s -[s], s -[s] + 1, ..., s -1, β 1 + s, ..., β k + s).
Let r ∈ Q and let λ = (λ 0 , λ 1 ) be a bipartition of rank n. Let h 0 and h 1 be the heights of the partitions λ 0 and λ 1 and let h be a positive integer such that h ≥ max(h 0 , h 1 ) + 1. We say that h is an admissible size for λ. We define two sequences of strictly decreasing integers

β 0 = (λ 0 h -h + h, ..., λ 0 j -j + h, ..., λ 0 1 -1 + h) and β 1 = (λ 1 h -h + h, ..., λ 1 j -j + h, ..., λ 1 1 -1 + h) The shifted r-symbol of λ of size h is then the family of sequence B r (λ) := (B 0 , B 1 ) such that B 0 = β 0 (r) if r ≥ 0 β 1 (-r) otherwise.
and

B 1 = β 0 if r ≤ 0 β 1 otherwise.
The shifted symbol of size h is usually written as a two row tableaux as follows: Assume now that φ(t) = b ≥ 0 and φ(s i ) = a > 0 for i = 1, ..., n -1. Let λ ∈ Λ and let B b/a (λ) be the shifted b/a symbol of λ of size h. Let

B r (λ) := B 0 B 1 Note that B r (λ) = B -r (κ(λ)).
γ 1 ≥ γ 2 ≥ .... ≥ γ t ,
be the elements of this symbol written in decreasing order (with repetition). Then write

a φ,h 1 (λ) = t i=1 (i -1)γ i .
Then by Lusztig [33, §22.14], we have:

a φ (λ) = a φ,h 1 (λ) -a φ,h 1 (∅).
Regarding the above definition and the connection between Lusztig a-function when b < 0 and b > 0 given by Prop. 2.2, we deduce:

Proposition 3.2. Assume that φ(t) = b and φ(s i ) = a ≥ 0 for i = 1, ..., n -1. Let λ ∈ Λ and let B b/a (λ) = (B 0 , B 1 ) be the shifted b/a-symbol of λ. Let γ 1 ≥ γ 2 ≥ .... ≥ γ t
be the elements of this symbol written in decreasing order (with repetition). We denote γ h b/a (λ) = (γ 1 , ..., γ t ) the associated partition. We then write

a φ 1 (λ) = t i=1 (i -1)γ i
Then we have: 

a b/a (λ) := a φ (λ) = a φ,h 1 (λ) -a φ,h 1 (∅) It does not

3.2.

Constructible representations in type B n . Let V and v be indeterminates and consider the Hecke algebra H({V, v}) of type B n over Z[V ±1/2 , v ±1/2 ] as in §2.2.

We have

Irr(H K ({V, v})) = {V λ | λ ∈ Π 2 n }. We assume that we have a specialization θ :

Z[V ±1/2 , v ±1/2 ] → Q(q 1 
2 ) where q is an indeterminate such that θ(V ) = -q da and θ(v) = q a for (a, b) ∈ N 2 . For d ∈ Z. Then we have an associated decomposition matrix.

D θ = ([V λ : M ]) λ∈Π 2 n ,M∈Irr(H Q(q 1/2 ) (q a ,-q da ))
By Ariki's theorem, this decomposition matrix is the matrix of the canonical basis of the irreducible highest weight U v (sl ∞ )-module with weight Λ d + Λ 0 . Assume that d ≥ 0 then by [START_REF] Leclerc | Constructible characters and canonical bases[END_REF] it has another interpretation in terms of Kazhdan-Lusztig theory: this is the matrix D φ cons of the constructible representations for the algebra H(W, S, φ) where φ(t) = d and φ(s i ) = 1 for all i = 1, ..., n -1. Thus, we have D φ cons = D θ . In other words, the columns of this decomposition matrix give the expansion of the constructible representations associated to the map φ in terms of the simple H(W, S, φ)-modules V µ φ . It is natural to ask if a basic set as defined in Def. 2.1 can be found in this situation that is if one can order the rows and columns of the constructible matrix such that it has a unitriangular shape. The explicit determination of the matrix D θ has been given by Lusztig and by Leclerc-Miyachi using different technics when d ≥ 0. We here follows the latter exposition [START_REF] Leclerc | Constructible characters and canonical bases[END_REF] and extend it to the case d ∈ Z.

Hence we assume from now that φ is such that φ(t) = d ∈ Z and φ(s i ) = 1 for all i = 1, ..., n -1. First, we need some additional combinatorial definition. Let λ be a bipartition and consider its d-symbol B d (λ) = (B 0 , B 1 ). We say that λ is standard, or equivalently that B d (λ) is standard if

B 1
i ≥ B 0 i for all i ≥ 1. The set of standard bipartitions is denoted by Std(d).

Let B d (λ) be a standard symbol. We define an injection Ψ : B 1 → B 0 such that Ψ(j) ≤ j for all j ∈ B 1 . It is obtained by describing the subsets

B 1 l := {j ∈ B 1 | Ψ(j) = j -l}. We set B 1 0 = B 1 ∩ B 0
and for l ≥ 1, we put:

B 1 l = {j ∈ B 1 \ {B 1 0 , ..., B 1 l-1 } | j -l ∈ B 0 \ Ψ(B 1 0 ∪ ... ∪ B 1 l-1
)} the pairs (j, Ψ(j)) with Ψ(j) = j are called the pairs of the symbols B d (λ). Let C(λ) be the set of all bipartitions µ such that the symbol of µ is obtained from B d (λ) by permuting some pairs in B d (λ) and reordering the rows. We also define Inv d (λ) to be the bipartition in C(λ) whose symbols is obtained from the symbol of λ after all possible permutations of the pairs.

The following is a result by Lusztig and Leclerc-Miyachi when d ≥ 0 which is easily extend in the case where d ∈ Z by Prop. 2.6 and by the definition of symbols. Proposition 3.4. Assume that φ is such that φ(t) = d ∈ Z and φ(s i ) = 1 for all i = 1, ..., n -1. The constructible representations with respect to φ are labelled by the standard bipartitions. Moreover, if λ is a standard bipartition, the associated constructible representation with respect to φ is

µ∈C(λ) V µ φ .
Example 3.5. We consider the Weyl group of type B 3 . Let φ be such that φ(t) = 2 ∈ Z and φ(s i ) = 1 for all i = 1, 2. From above, one can check that the only non trivial constructible representations are:

V (∅,3) φ ⊕ V (1,2) φ , V (1,2) φ ⊕ V (1.1,1) φ , V (1.1,1) φ ⊕ V (1.1.1,∅) φ
In other words, we have:

D φ cons =                
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

                (∅, 3) (∅, 2.1) (∅, 1.1.1) (1, 2) (1, 1.1) (2, 1) (1.1, 1) (3, ∅) (2.1, ∅) (1.1.1, ∅)
Note that the constructible representations are labelled by the set of standard bipartitions which is in this case Π 2 3 \ {(1.1.1, ∅)}. Note also that the unique non trivial block of the above matrix is given by the following set of bipartitions {(∅, 3), (1, 2), (1.1, 2), (1.1.1, ∅)} which corresponds to the unique non trivial family of characters. Now, if we set φ ′ be such that φ ′ (t) = -2 ∈ Z and φ ′ (s i ) = 1 for all i = 1, 2. From above, one can check that the only non trivial constructible representations are:

V (3,∅) φ ′ ⊕ V (2,1) φ ′ , V (2,1) φ ′ ⊕ V (1,1.1) φ ′ , V (1,1.1) φ ′ ⊕ V (∅,1.1.1) φ ′
The unique non trivial block of the above matrix is given by the following set of bipartitions {(3, ∅), (2, 1), (1, 1.1), (∅, 1.1.1)} which corresponds to the unique non trivial family of characters.

3.3. Basic sets of constructible representations. The aim of this section is to show the existence of basic sets for the matrix affording the constructible representations. To do this, we have to study the matrix D φ cons of the constructible representations for the algebra H(W, S, φ) where φ(t) = d ∈ Z and φ(s i ) = 1 for all i = 1, ..., n -1. We denote by Cons(d) the set of constructible H(W, S, φ)-modules. The main result of this section is the following one. Theorem 3.6. We keep the above notations and we put r ∈ Q such that r = d.

(1) For all U ∈ Cons(d) there exists λ U ∈ Λ such that

[V λU , U ] = 1 and a r (µ) > a r (λ U ) if [V µ , U ] = 0 (2) Let B r ∞ := {λ U | U ∈ Cons(d)} Then the map Cons(d) → B r ∞ U → λ U is a bijection (3) We have B r ∞ = Std(d) if r < d Inv d (Std(d)) if r > d
Proof. Let us first assume that d ≥ 0. Let λ be a standard bipartition then by Prop 3.4, we have an associated constructible representation labelled by this bipartition. Assume that V µ φ appears as an irreducible constituent in the expansion of this constructible representation. Then µ can be constructed from λ by permuting some pairs in the shifted d-symbol of λ. Let h be an admissible size for λ. By construction, it implies that this size is admissible for µ. Let B d (µ) = (B 0 , B 1 ) be the shifted d-symbol of µ of size h. By §3.1, we have B 0 = β 0 (d) and a = β 1 .

• If r > d the shifted r-symbol of µ is B r (µ) = (B 0 (rd), B 1 ). By the definition of C(λ), It is easy to see that

γ h r (Inv d (λ)) γ h r (µ) 
, for all µ ∈ C(λ). Hence by Cor 3.3, we obtain:

a r (Inv d (λ)) ≤ a r (µ) • if r < d, the shifted r-symbol of µ of size h is B r (µ) = (B 0 (d -r), B 1 ) if r is positive.
In this case, by the definition of C(λ) It is easy to see that

γ h r (λ) γ h r (µ) 
, for all µ ∈ C(λ) such that µ = λ . Hence we obtain:

a r (λ) ≤ a r (µ). If r is negative, the shifted r-symbol of µ of size h + d is B r (µ) = (B 1 (d - r), B 0
). In this case, by the definition of C(λ) It is easy to see that

γ h+d r (λ) ⊲ γ h+d r (µ),
and we can conclude as above. To summarize, We know that an arbitrary column of the constructible matrix D θ is naturally labelled by a standard bipartition λ U with U ∈ Cons(d). The above discussion shows that the minimal bipartition λ with respect to a r such that [

V λ : M ] = 0 is λ = λ U if r < d, λ = Inv d (λ U ) otherwise. In addition by Prop 3.4, if [V λ : U ] = 0 then [V λ : U ] = 1. This proves the Theorem if d > 0.
The case d < 0 is deduced from the above one using Prop. 2.2 and the facts that

κ(Std(d)) = Std(-d), κ(Inv d (Std(d))) = Inv -d (Std(-d))
In the expansion of a constructible character, all the simple modules have the same value with respect a d . This follows from the definition of constructible representations and can also be easily seen in the formula above. Theorem 3.6 shows that modifying the a-function by adding an integer s to d leads to a natural way to order the rows and columns of the constructible matrix so that it is unitriangular. This induces the existence of a canonical basic set which only depends on the sign of s.

Let us now describe the consequences on the parametrisations of the simple modules for Hecke algebras of type B n in the modular case.

Basic sets in type

B n 4.1. Explicit determination in a special case. Recall that A := Z[q 1/2 , q -1/2 ]. Let φ such that φ(t) = b ≥ 0 and φ(s i ) = a > 0 for i = 1, ..., n -1, Let θ : A → Q(q 1/2 0 )
be a specialization such that θ(q) = q 0 ∈ C * . Let e ≥ 2 be the multiplicative order of η e := q a 0 . Assume that q b 0 = -q ad 0 for some d ∈ Z. We have an associated decomposition matrix D θ and a canonical basic set B(φ) which will, from now, be rather denoted by B b/a e . Consider now φ 1 such that φ 1 (t) = b + ae and φ 1 (s i ) = a for i = 1, ..., n -1. Applying the specialization θ, we obtain again the algebra H k (q a 0 , -q da 0 ). Hence we have another basic set denoted by B These basic sets have been computed in [START_REF] Geck | Canonical basic sets in type Bn[END_REF] without the assumptions of P1-P15 in characteristic 0. It has been shown that the bipartitions labelling these sets are given by the so called Uglov bipartitions. These bipartitions appear as natural labelling of the Kashiwara's crystal basis for irreducible highest weight-modules of level two. As several combinatorial definitions are necessary to introduce them, we have chosen to omit the definition of these bipartitions here. We refer to [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] or [START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF] for details on them.

Theorem 4.1 (Geck-Jacon). We keep the above notations. Let e ≥ 2 be the multiplicative order of q a and let p 0 ∈ Z be such that is defined in [START_REF] Geck | Canonical basic sets in type Bn[END_REF]Def. 4.4].

Without loss of generality, one can (and do) assume that p 0 = 0. By the results in the second section, the datum of φ ′ such that φ ′ (t) = ε 1 b and φ ′ (s i ) = ε 2 a (for i = 1, ..., n -1) with (ε 1 , ε 2 ) ∈ {±1} 2 also yields the existence of a basic set B(φ ′ ). By Prop. 2.5, they can be easily computed using the above theorem. In particular, the case ε 2 = 1 and ε 1 = -1 implies the existence of a basic set B -b/a . In fact, considering all the basic sets we have already obtained: 

Now recall the specialization

θ : A → Q(q 1/2 0 )
such that θ(q) = q 0 . Looking at the Hecke algebra H({q -b , q a }) and applying the specisalization θ, we obtain a decomposition matrix which can be identify with D θ by [6, §3.1] . Keeping the above notations, we have: q -b+ae 0 = -q -ad 0 . Note that -b + ae and a are both positives. We then obtain a basic set B -b/a+e . Actually, using the same arguments as above, one obtain several basic sets: Following [START_REF] Jacon | Crystal isomorphisms for irreducible Uv( b sle)-modules of higher level[END_REF], we set

F = {±b/a + te | t ∈ Z}
Let S 2 be the extended affine symmetric group with generators σ and y 0 , y 1 and relations y 0 y 1 = y 1 y 0 , σ 2 = 1, y 0 = σy 1 σ.

One can define an action of S 2 on F determined by the following identities. For all t ∈ Z, we set: 

σ.B γ e = κ(B γ e ) = (λ 0 , λ 1 ) | (λ 1 , λ 0 ) ∈ B γ e
Hence, to describe the action of S 2 on F , it suffices to understand the action of y 0 on an arbitrary basic set. By the results in [START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF] (see also the generalizations in [START_REF] Jacon | Crystal isomorphisms for irreducible Uv( b sle)-modules of higher level[END_REF]) together with Thm 4.1, the action of y 0 corresponds to a crystal isomorphism. Using the combinatorial study of this isomorphism in this paper, It can be expressed using the map Inv D defined in the previous section. This is given by the following theorem which uses the combinatorics developed in [START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF]. • if q b 0 = 1 then q ad 0 = -1 implies that e is even and d = e/2 which is impossible because then q b 0 = q ae/2 0 = -q ae/2 0 . • if q b 0 = -1 then q ad 0 = 1 implies d = e and d = 0. In this case, note that Φ Let H(W, S, {Q, q a }) be the generic Hecke algebra with parameters Q and q a (where Q and q are indeterminates). We consider a first specialization: T R(H Q(q 1/2 0 ) (W, S, {-q Da 0 , q a 0 })) R(H Q(q 1/2 ) (W, S, {-q Da , q a }))
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In other words, we have:

D θ1 = D θq D θ
The following gives a first consequence of this result which can be also easily checked using the results of the previous sections and the properties of Uglov biartitions. Corollary 4.6. We have:

B γ e ⊂ B γ ∞ . Proof. This follows directly from the above theorem. which is naturally defined using D θq . Consider a constructible character and the expansion of it in the standard basis. This is given by a column of D θq . Let λ be the element appearing in this column with non zero coefficient and with minimal value with respect to a γ . Then λ ∈ B γ ∞ . Let µ be the element appearing in this column with non zero coefficient and with minimal value with respect to a γ+e . Then µ ∈ B γ+e ∞ . We then set Ψ(λ) = µ. Combining this with the above result we get Ψ(B γ e ) = B γ+e e .

2. 3 .

 3 Constructible representations. From the above definitions and the results in[START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF], it will be easy to extend known results of constructible representations as defined by Lusztig [33, §22.1]. Let (W, S) be a Weyl group and let φ be a map φ : S → Z satisfying (⋆). Let I ⊂ S and let (W I , I) be the corresponding parabolic subgroup. Let φ I be the restriction of φ to I. Each simple C[W ]-module E λ can be seen as a specialization of a simple H(W, S, φ)-module V λ φ . By §2.2, each simple C[W ]-module U comes equipped with an associated invariant a φ (U ) depending on the choice of φ. Let U be a simple C[W I ]-module. Then we can uniquely write: Ind S I (U ) = U (0) ⊕ U (1) ⊕ .... where for any integer i

Example 3 . 1 .

 31 Let r = 1/2 and λ = (2.1, 3.3.2). We have h 0 = 2 and h 1 = 3. Then the associated shifted r-symbol of size 4 Let r = -5/2 and λ = (2.1, 3.3.2). We have h 0 = 2 and h 1 = 3 then the associated shifted r-symbol of size 4 is 1/2 3/2 1/2 7/2 11/2 13/

Corollary 3 . 3 .

 33 depend on the size of the symbol. Proof. When b ≥ 0, this is a result of Lusztig. Assume that b < 0, then we have by Prop. 2.2, a b/a (λ) := a -b/a (κ(λ)) and B b/a (λ) = B -b/a (κ(λ)) so the result followsThe following result is a direct consequence of the formula of the a-function. Assume that φ(t) = b and φ(s i ) = a ≥ 0 for i = 1, ..., n-1. Let λ ∈ Λ and µ ∈ Λ. Let h be an admissible size for λ and µ. Assume that γ h b/a (λ) ⊲ γ h b/a (µ) then we have a b/a (λ) < a b/a (µ).

  with respect to the a-function a b/a+e . Continuing in this way we obtain several basic sets B b/a , B b/a+e e , ..., B b/a+te e , ... and one can assume that 0 ≤ b/a < e.

d

  + p 0 e < b a < d + (p 0 + 1)e.(Note that the above conditions imply that b/a ≡ d mod e.) Then for all t ≥ 0, we have B

B

  b/a , B b/a+e e , ..., B b/a+te e , ... we obtain several other basic sets B -b/a , B -b/a-e e , ..., B -b/a-te e , ...

BCorollary 4 . 2 ., 2 .B

 422 -b/a+e , B -b/a+2e e , ..., B -b/a+te e , ... Keeping the notation of thm 4.1 (recall that p 0 = 0), note that we have -d < -b a + e < -d + e.The above theorem gives also the explicit determination of these basic sets: Keeping the above notations, for all t > 0, we haveB -b/a+te e = Φ (-d+(t-1)e,0) e,nwhere Φ(-d+(t-1)e,0) e,nis defined in[START_REF] Geck | Canonical basic sets in type Bn[END_REF] Def. 4.4]. Finally, as above, the existence of basic sets B -b/a+e , B -b/a+2e e , ..., B -b/a+te e , ... yields the existence of basic sets: B b/a-e , B b/a-2e e , ..., B b/a-te e An Action of the affine Weyl group S 2 .Let us summarize the different basic sets we have obtained and the parametrizations by the Uglov l-partitions. The results in[START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF] allow to change the parametrization of the sets. First by[START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF] Prop. 3.1 (2)] For all (s 0 , s 1 ) ∈ Z 2 , we haveκ(Φ (s0,s1) e,n ) = Φ (s1,s0+e) e,nMoreover, by[START_REF] Jacon | Crystal graphs of irreducible Uv( b sle)-modules of level two and Uglov bipartitions[END_REF] Prop 3.1 (1)], for all m ∈ Z, we have:Φ (s0,s1) e,n = Φ (s0+m,s1+m) e,nTo summarize, the following tabular gives the basic sets and the parametrizations by the Uglov bipartitions.Basic set withAssociated set Basic set with Associated set positive parameters of bipartitions negative parameters of bipartitions .-b/a-te e Φ (0,d+(t+1)e) e,n ... ... ... ...

  σ.(b/a + te) = -b/ate, y 0 .(b/a + te) = b/a + (t + 1)e, y 0 .(-b/a + te) = -b/a + (t + 1)e One can easily check that this action is well defined. The above dicussion yields the existence of an action on the basic sets by setting for all w ∈ S 2 and γ ∈ F: w.B γ e = B w.γ e By Prop 3.6, we have:

Theorem 4 . 3 .

 43 Assume that γ ∈ F. Then there exists D ∈ Z such that: B γ e = Φ (D-e,0) e,n To describe the action of y 0 , one can assume that D ≥ 0, then we have y 0 .B γ e = Inv D (B γ e ) Proof. Let γ ∈ F. By Thm 4.1, there exists D ∈ Z such that B γ e = Φ (D-e,0) e,n . Since we know that σ.B δ e = κ(B δ e ) for all δ ∈ F, one can assume that D ≥ 0. Let (λ 0 , λ 1 ) ∈ B γ e = Φ (D-e,0) e,n . Then by [28, Prop. 3.1], we have (λ 1 , λ 0 ) ∈ Φ (0,D) e,n . Using [28, Prop. 4.1], we deduce that (λ 0 , λ 1 ) ∈ Std(D). Again, by [28, Prop. 4.1], we have κ(Inv D (λ 0 , λ 1 )) ∈ Φ (0,D+e) e,n which implies that Inv D (λ 0 , λ 1 ) ∈ Φ (D,0) e,n . The map sending (λ 0 , λ 1 ) ∈ Φ (D-e,0) e,n to Inv D (λ 0 , λ 1 ) ∈ Φ (D,0) e,n is a bijection.Hence, remarkably, this action does not depend on e but only on D ! This will be developed in the following section.

Remark 4 . 4 .

 44 Assume that b/a = -b/a + e then 2b = ae and we have q 2b 0 = 1. Then we have two cases to consider

  (d,0) e,n = Φ (0,d) e,n and then B b/a e = B -b/a+e e . Hence the above result is coherent with this case.

4. 3 .

 3 Factorization of the decomposition map. The aim of this section is to give an interpretation of Prop. 4.3 in terms of constructible representations. We here keep the notations of this proposition.

Proposition 4 .

 4 [START_REF] Bonnafé | Semicontinuity properties of Kazhdan-Lusztig cells[END_REF] and the above result show that the bijection between y 0 .B γ e and B γ e is "controlled" by the matrix of the constructible representations through the above factorization in the following sense.Note that γ < D < γ + e. We have a bijectionΨ : B γ ∞ → B γ+e ∞

  Keeping the above notations λ∈Λ α λ V λ φ is a constructible C[W ]-module with respect to φ if and only if λ∈Λ α λ V λ ε |φ| is a constructible C[W ]-module with respect to |φ| Proof. The result follows directly from Prop. 2.2 and the definition of the constructible representation.

• The rows are labelled by Λ, • the coefficients in a fixed column give the expansion of the corresponding constructible representation in terms of the irreducible ones.

Proposition 2.6. Let φ : S → Z be a map satisfying (⋆).