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CONSTRUCTIBLE REPRESENTATIONS AND BASIC SETS IN TYPE B

NICOLAS JACON

Abstract. We study the parametrizations of simple modules provided by the
theory of basic sets for all finite Weyl groups. In the case of type Bn, we show the
existence of basic sets for the matrices of constructible representations. Then we
study bijections between the various basic sets and show that they are controlled
by the matrices of the constructible representations.

1. Introduction

One of the main problem in the modular representation theory of Hecke algebras
of finite Weyl groups is to find “good” parametrizations of the set of simple modules.
There is a natural way to solve that problem by studying the associated decomposition
matrices. In fact, in characteristic zero, using these matrices, it is possible to prove
the existence of certain indexing sets called “basic sets” which are in natural bijection
with the set of simple modules for the Hecke algebra. Once we have the existence of
these sets, it is another problem to have an explicit characterization of them. This
has been achieved in type An−1 by Dipper and James [7], in type Bn combining works
by M. Chlouveraki, M.Geck, and the author [6], [18], in type Dn by M. Geck [13] and
the author [25] and for the exceptional types by Geck, Müller and Lux, [11], [20],
[34], [35]. Importantly, these results remain valid in positive characteristic under the
assumptions of certain Lusztig conjectures. We refer to [15] for a survey of these
results.

In the case of type Bn, the theory of basic sets provides several natural ways to
label the same set of simple modules. In this paper, we are mainly interested on the
connections between these various basic sets. First, we show the existence of analogues
of basic sets for other types of representation introduced by Lusztig: the constructible
representations (see [33]). In fact, given the matrix of the constructible characters for
a choice of parameters (this includes the case where these parameters are negative),
we show the existence of two different associated basic sets. As a consequence, we
obtain two natural ways to parametrize the constructible characters, extending the
work of Lusztig [31], [32], [33]. In addition, we describe the bijection between these
two basic sets. All these results use as a crucial tool the works of Lusztig, Leclerc and
Miyachi [30] and the combinatorics developped therein.

The last part of the paper is devoted to the study of the various bijections between
the basic sets in type Bn. It turns out that the bipartitions labelling these sets are
difficult to describe in general (we only have in principle a recursive description of
them). Then, in the same spirit as in [29], we show the existence of an action of the

affine extended symmetric group Ŝ2 on these basic sets. We observe the two following
remarkable facts:

• there is an easy description of the basic sets lying in a fundamental domain
associated with the above action,

• the action of Ŝ2 on the set of basic sets can be explicitly described combining
our previous results with results obtained in [29].

It is then possible to describe the basic sets as orbits of the elements of the funda-
mental domain under this action. Finally, we remark that this action is in some sense
controlled by the matrices of constructible representations. In particular the bijec-
tions between the various basic sets can be essentially read through these matrices.
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2 NICOLAS JACON

We end the paper with an explanation of this phenomenon.

2. Decomposition matrices for Hecke algebras

Let (W, S) be a finite Weyl group. We assume that we have a decomposition
S = S+⊔S− where no elements of S+ is conjugate to an element of S−. Let φ : S → Z

be such that

φ(s) = φ(s′) if (s, s′) ∈ S2
+ and φ(s) = φ(s′) if (s, s′) ∈ S2

− (⋆)

Let q be an indeterminate and choose q1/2 a root of q. We then have an associated
Iwahori-Hecke algebra H(W, S, φ) over A = Z[q1/2, q−1/2]. The basis is given by
{Tw}w∈W and the multiplication is determined by the following rules:

{
TwTw′ = Tww′ if l(ww′) = l(w) + l(w′)
(Ts − qφ(s))(Ts + 1) = 0

In this section, we study the representation theory of these algebras in both the
semisimple and the modular case and give extensions of some definitions and proper-
ties which were previously only known when φ(S) ⊂ N

2.1. Decomposition matrices. Let K be the field of fractions of A. Then by [21,
§9.3.5], the algebra HK(W, S, φ) := K ⊗A H(W, S, φ) is split semisimple and by Tits’
deformation theorem, we have a canonical bijection between Irr(HK(W, S, φ)) and
Irr(W ). Let Λ is an indexing set for Irr(W ):

Irr(W ) =
{
Eλ | λ ∈ Λ

}
.

We then have:
Irr(HK(W, S, φ)) =

{
V λ

φ | λ ∈ Λ
}

Let k be a field and ξ ∈ k× be an element which has a square root in k×. Then
there is a ring homomorphism θ : A → k such that θ(q) = ξ. Considering k as
an A-module via θ, we set Hk(W, S, φ) := k ⊗A HA(W, S, φ). As noted above, we
have a canonical way to parametrize the simple modules for HK(W, S, φ). It is also
desirable to obtain a “good” parametrization of the simple Hk(W, S, φ)-modules. As
Hk(W, S, φ) is not semisimple in general, Tits’ deformation theorem cannot be applied.
However, following [15, §4.10], one can use the associated decomposition matrix to
solve that problem. Let λ ∈ Λ and let

ρλ : HK(W, S, φ) → Md(K)
Tw 7→ (aij(Tw))1≤i,j≤d

be a matrix representation affording the module V λ
φ ∈ Irr(HK(W, S, φ)) of dimension

d. The ideal p = ker(θ) is a prime ideal in A and the localization Ap is a regular local
ring of Krull dimension ≤ 2. Hence, by Du–Parshall–Scott [9, §1.1.1], we can assume
that ρλ satisfies the condition

ρλ(Tw) ∈ Md(Ap) for all w ∈ W.

Now, θ extends to a ring homomorphism θp : Ap → k. Applying θp, we obtain a
representation

ρλ
k,ξ : Hk(W, S, φ) → Md(k),

Tw 7→ (θp(aij(Tw)))1≤i,j≤d.

This representation may no longer be irreducible. For any M ∈ Irr(Hk(W, S, φ)), let
[V λ

φ : M ] be the multiplicity of M as a composition factor of the Hk(W, S, φ)-module

affording ρλ
k,ξ. This is well defined by [9, §1.1.2]. Thus, we obtain a well-defined

matrix
Dφ

θ =
(
[V λ

φ : M ]
)
λ∈Λ,M∈Irr(Hk(W,S,φ))

which is called the decomposition matrix associated with θ. Let R(HK(W, S, φ))
(resp. R(Hk(W, S, φ))) be the Grothendieck group of finitely generated HK(W, S, φ)-
modules (resp. Hk(W, S, φ)-modules). It is generated by the classes [U ] of the simple
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HK(W, S, φ)-modules (resp. Hk(W, S, φ)-modules) U . Then we obtained a well de-
fined decomposition map:

dφ
θ : R(HK(W, S, φ)) → R(Hk(W, S, φ))

such that for all λ ∈ Λ we have:

dφ
θ ([V λ

φ ]) =
∑

M∈Irr(Hk(W,S,φ))

[V λ
φ : M ][M ]

The notion of basic sets of simple modules for Hecke algebras has first been con-
sidered by Geck in [12]. The definition depends on the decomposition matrix and has
been originally given in the case where φ is constant and positive and then in the case
where φ is positive in [15]. Using the above discussion, we will be able to generalize
these notions to all possible φ.

2.2. Basic sets. In this section, we adopt the following notations. Let φ : S → Z be
a map satisfying

φ(s) = φ(s′) if (s, s′) ∈ S2
+ and φ(s) = φ(s′) if (s, s′) ∈ S2

− (⋆).

We denote by |φ| : S → Z the map such that |φ|(s) = |φ(s)| for all s ∈ S. Note that
this map satisfy (⋆). Set:

S− := {s ∈ S | φ(s) < 0} .

Let ε : W → Q× be the one dimensional representation of W such that ε(s) = 1 if
s ∈ S+ and ε(s) = −1 if s ∈ S−. For λ ∈ Λ, the module (Eλ)ε remains simple and
we define λε ∈ Λ such that Eλε

≃ (Eλ)ε.
We turn to the definition of basic sets associated with a specialization of the Hecke

algebra.

Definition 2.1. We say that H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to
θ : A → k and to a map αφ : Λ → Q if and only if:

(1) For all M ∈ Irr(Hk(W, S, φ)) there exists λM ∈ B(φ) such that

[V λM

φ , M ] = 1 and αφ(µ) > αφ(λM ) if [V µ
φ , M ] 6= 0

(2) The map

Irr(Hk(W, S, φ)) → B(φ)
M 7→ λM

is a bijection

Assume that H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to θ and to a
map αφ : Λ → Q. This implies that the associated decomposition matrix has a lower
triangular shape with one along the diagonal for a “good” order on Λ induced by the
map αφ. Hence, it gives a way to label Irr(Hk(W, S, φ)).

It is now natural to ask if these basic sets always exist. The question has been
considered in [23], [12], [15] (see [19] for a complete survey on this theory) and in [6]
(where the question of existence of basic sets in characteristic 0 and for any weight
function is complete),

The first step is to define the canonical map aφ : Λ → N which will play the role of
αφ. This can be done using the symmetric algebra structure of H(W, S, φ) We define
a linear map τ : H(W, S, φ) → A by

τ(T1) = 1 and τ(Tw) = 0 for w 6= 1.

Then one can show that τ is a trace function and we have

τ(TwTw′) =

{
π(w) if w′ = w−1,

0 otherwise.

This implies that H(W, S, φ) is a symmetric algebra (see [21, Ch. 7] for a study of
the representation theory of this type of algebras). The above trace form extends to
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a trace form τK : HK(W, S, φ) → A. Now since HK(W, S, φ) is split semisimple, we
have

τK(Tw) =
∑

λ∈Λ

1

cλ

trace(Tw, V λ
φ ), for all w ∈ W,

where cλ ∈ A is called the Schur element associated to λ ∈ Λ. For all λ ∈ Λ, we now
have

cλ = fλq−aφ
λ + combination of higher powers of q,

where fλ and aφ
λ are both integers such that fλ > 0 and aφ

λ ≥ 0 (see [21, Ch. 20] for
details.) The map

aφ : Λ → N

λ 7→ aφ
λ

is called the Lusztig a-function.
In the next theorem, we need the following definition: we say that k is good with

respect to H(W, S, φ) if fλ1k 6= 0 for all λ ∈ Λ. The proof of the existence of basic
set for Hecke algebras (in characretistic 0) with respect to the a-function has been
given Geck and Geck-Rouquier (see [15]) whenΦ is positive. The following proposition
obtained in [6, Prop 2.5] allows the extension of the result for arbitrary Φ. This result
will also be crucial in the rest of the paper.

Proposition 2.2. For all λ ∈ Λ, we have:

aφ(V λ
φ ) = a|φ|(V λε

|φ| )

The theorem of existence becomes then the following:

Theorem 2.3. We keep the above notations. Assume in addition that Lusztig’s
conjectures P1-P15 in [33, §14.2] hold and that k is good with respect to H(W, S, φ).
Then H(W, S, φ) admits a basic set B(φ) ⊂ Λ with respect to any specialization and
to the map aφ, the Lusztig a-function. This basic set is called the canonical basic set
and it only depends on e and φ.

Remark 2.4. Lusztig’s conjectures are known to hold in the following cases:

(1) For all finite Weyl group, in the so called “equal parameter case”, that is
when there exists a ∈ N such that φ(s) = a for all s ∈ S by Lusztig (see [33,
Ch. 15].)

(2) In type Bn, in the so called “asymptotic case” by the works of Bonnafé-Iancu
[4], Bonnafé [2], Geck [16] and Geck-Iancu [17].

In fact, the results in [6] show that the canonical basic set B(φ) ⊂ Λ can be deduced
from B(|φ|). We illustrate this fact in type Bn which is our main centre of interest in
this paper. Hence, let W be a Weyl group of type Bn.

Bn i i i · · · i
t s1 s2 sn−1

In this case, Λ can be defined to be the set Π2
n of bipartitions of rank n. In the

following, it will be useful to introduce a “more generic” Hecke algebra than the one
defined in the introduction of this section.

Let V and v be indeterminates and consider the generic Hecke algebra H({V, v})
of type Bn over Z[V ±1/2, v±1/2] with presentation as follows:

(T0 − V )(T0 + 1) = 0
(Ti − v)(Ti + 1) = 0 if i = 1, ..., n − 1

Let K be the field of fractions of A. We set

Irr(HK({V, v})) = {V λ | λ ∈ Π2
n}.

and Λ = Π2
n.

We assume that we have a specialization θ : Z[V ±1/2, v±1/2] → k where k is a
field. By results of Dipper and James [8, Th. 4.17], one can restrict ourselves to the
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following case. We assume that θ(V ) = −qda and θ(v) = qa for (a, b) ∈ N2 and for
q ∈ k×. The resulting algebra Hk({qa,−qad}) has a presentation as follows:

(T0 + qda)(T0 + 1) = 0
(Ti − qa)(Ti + 1) = 0 if i = 1, ..., n − 1.

It is in general a non semisimple algebra and as in §2.1, we have an associated de-
composition matrix.

D = ([V λ : M ])λ∈Π2
n,M∈Irr(Hk({qa,−qad}))

By a deep theorem of Ariki [1, Thm 14.49], this matrix is nothing but the (evaluation

at v = 1 of the) matrix of the canonical basis for the irreducible highest weight Uv(ŝle)-
module with weight Λd + Λ0 (where the Λi with i ∈ Z/eZ denote the fundamental
weights).

Applying [6] to type Bn leads the following proposition.

Proposition 2.5. Let (W, S) be the Weyl group of type Bn. We assume that we have
a map φ : S = {t, s1, ..., sn} → Z satisfying (⋆). We set |φ| : S = {t, s1, ..., sn} → Z

such that |φ|(s) = |φ(s)| for all s ∈ S. Then, for all specialization θ, we have

B(φ) =
{
(λ0, λ1)ε | (λ0, λ1) ∈ B(|φ|)

}

where

(1) (λ0, λ1)ε = (λ1, λ0) if S+ = {s1, ..., sn−1} and S− = {t},

(2) (λ0, λ1)ε = (λ1′, λ0′) if S+ = ∅ and S− = {s1, ..., sn−1, t},

(3) (λ0, λ1)ε = (λ0′, λ1′) if S+ = {t} and S− = {s1, ..., sn−1},

From now, we will denote κ(λ0, λ1) := (λ1, λ0).

2.3. Constructible representations. From the above definitions and the results in
[3], it will be easy to extend known results of constructible representations as defined
by Lusztig [33, §22.1]. Let (W, S) be a Weyl group and let φ be a map φ : S → Z

satisfying (⋆). Let I ⊂ S and let (WI , I) be the corresponding parabolic subgroup.
Let φI be the restriction of φ to I. Each simple C[W ]-module Eλ can be seen as a
specialization of a simple H(W, S, φ)-module V λ

φ . By §2.2, each simple C[W ]-module

U comes equipped with an associated invariant aφ(U) depending on the choice of φ.
Let U be a simple C[WI ]-module. Then we can uniquely write:

IndS
I (U) = U(0) ⊕ U(1) ⊕ ....

where for any integer i

U(i) =
⊕

V

[IndS
I (U) : V ]V (sum over all V ∈ Irr(C[W ]) such that aφ(V ) = i).

Then the J-induction of a simple C[WI ]-module U is

JS
I (U) = U(aφI (U))

Using this “truncated” induction, the constructible representations with respect to φ
are defined inductively in the following way:

(1) If W = {1}, only the trivial module is constructible.
(2) If W 6= {1}, the set of constructible C[W ]-modules consists of the C[W ]-

modules of the form

JS
I (V ) or sgn ⊗ JS

I (V ),

where sgn is the sign representation of W , and I some proper subset of S.

One can define an analogue of the decomposition matrix for this type of representa-
tions: the constructible matrix Dφ

cons which is defined as follows.

• The rows are labelled by Λ,
• the coefficients in a fixed column give the expansion of the corresponding

constructible representation in terms of the irreducible ones.
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Proposition 2.6. Let φ : S → Z be a map satisfying (⋆). Keeping the above no-
tations

⊕
λ∈Λ αλV λ

φ is a constructible C[W ]-module with respect to φ if and only if⊕
λ∈Λ αλV λε

|φ| is a constructible C[W ]-module with respect to |φ|

Proof. The result follows directly from Prop. 2.2 and the definition of the con-
structible representation. �

Remark 2.7. If φ is positive, the blocks of the matrix Dφ
cons are known as the families

of characters. This notion plays an important role in the theory of reductive group.
In fact, it is possible to generalize the definition of families of characters to any map
φ (ie. not necessary positive) and to a wider class of algebras : the cyclotomic Hecke
algebras, using the notion of Rouquier blocks. The associated families have been
studied by Chlouveraki [5]. When W is a Weyl group, one can easily see that for any
map φ, the blocks of the matrix Dφ

cons corresponds to the families of characters as
given in [5].

3. Bijections of basic sets

We now focus on the case of the Hecke algebras of type Bn. Before the study of
the representation theory, we first give the formula for the Lusztig a-function in the
case where φ(t) = b ≥ 0 and φ(si) = a ≥ 0 for i = 1, ..., n − 1.

3.1. a-function in type Bn. We first introduce a combinatorial object which will
be useful in the following: the shifted symbol of a bipartition. Let β = (β1, ..., βk) be
a sequence of strictly increasing integers and let s be a rational nonnegative number.
We denote by [s] the integer part of s. We set

β(s) := (s − [s], s − [s] + 1, ..., s − 1, β1 + s, ..., βk + s).

Let r ∈ Q and let λ = (λ0, λ1) be a bipartition of rank n. Let h0 and h1 be
the heights of the partitions λ0 and λ1 and let h be a positive integer such that
h ≥ max(h0, h1) + 1. We say that h is an admissible size for λ. We define two
sequences of strictly decreasing integers

β0 = (λ0
h − h + h, ..., λ0

j − j + h, ..., λ0
1 − 1 + h)

and

β1 = (λ1
h − h + h, ..., λ1

j − j + h, ..., λ1
1 − 1 + h)

The shifted r-symbol of λ of size h is then the family of sequence

Br(λ) := (B0, B1)

such that

B0 =

{
β0(r) if r ≥ 0
β1(−r) otherwise.

and B1 =

{
β0 if r ≤ 0
β1 otherwise.

The shifted symbol of size h is usually written as a two row tableaux as follows:

Br(λ) :=

(
B0

B1

)

Note that Br(λ) = B−r(κ(λ)).

Example 3.1. Let r = 1/2 and λ = (2.1, 3.3.2). We have h0 = 2 and h1 = 3. Then
the associated shifted r-symbol of size 4 is

(
1/2 3/2 7/2 11/2
0 3 5 6

)

Let r = −5/2 and λ = (2.1, 3.3.2). We have h0 = 2 and h1 = 3 then the associated
shifted r-symbol of size 4 is

(
1/2 3/2 1/2 7/2 11/2 13/2
0 1 3 5

)
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Assume now that φ(t) = b ≥ 0 and φ(si) = a > 0 for i = 1, ..., n − 1. Let λ ∈ Λ
and let Bb/a(λ) be the shifted b/a symbol of λ of size h. Let

γ1 ≥ γ2 ≥ .... ≥ γt,

be the elements of this symbol written in decreasing order (with repetition). Then
write

aφ,h
1 (λ) =

t∑

i=1

(i − 1)γi.

Then by Lusztig [33, §22.14], we have:

aφ(λ) = aφ,h
1 (λ) − aφ,h

1 (∅).

Regarding the above definition and the connection between Lusztig a-function when
b < 0 and b > 0 given by Prop. 2.2, we deduce:

Proposition 3.2. Assume that φ(t) = b and φ(si) = a ≥ 0 for i = 1, ..., n − 1. Let
λ ∈ Λ and let Bb/a(λ) = (B0, B1) be the shifted b/a-symbol of λ. Let

γ1 ≥ γ2 ≥ .... ≥ γt

be the elements of this symbol written in decreasing order (with repetition). We denote
γh

b/a(λ) = (γ1, ..., γt) the associated partition. We then write

aφ
1 (λ) =

t∑

i=1

(i − 1)γi

Then we have:
ab/a(λ) := aφ(λ) = aφ,h

1 (λ) − aφ,h
1 (∅)

It does not depend on the size of the symbol.

Proof. When b ≥ 0, this is a result of Lusztig. Assume that b < 0, then we have by
Prop. 2.2,

ab/a(λ) := a−b/a(κ(λ))

and Bb/a(λ) = B−b/a(κ(λ)) so the result follows �

The following result is a direct consequence of the formula of the a-function.

Corollary 3.3. Assume that φ(t) = b and φ(si) = a ≥ 0 for i = 1, ..., n−1. Let λ ∈ Λ
and µ ∈ Λ. Let h be an admissible size for λ and µ. Assume that γh

b/a(λ) ⊲ γh
b/a(µ)

then we have ab/a(λ) < ab/a(µ).

3.2. Constructible representations in type Bn. Let V and v be indeterminates
and consider the Hecke algebra H({V, v}) of type Bn over Z[V ±1/2, v±1/2] as in §2.2.
We have

Irr(HK({V, v})) = {V λ | λ ∈ Π2
n}.

We assume that we have a specialization θ : Z[V ±1/2, v±1/2] → Q(q
1
2 ) where q is an

indeterminate such that θ(V ) = −qda and θ(v) = qa for (a, b) ∈ N2. For d ∈ Z. Then
we have an associated decomposition matrix.

Dθ = ([V λ : M ])λ∈Π2
n,M∈Irr(H

Q(q1/2)
(qa,−qda))

By Ariki’s theorem, this decomposition matrix is the matrix of the canonical basis
of the irreducible highest weight Uv(sl∞)-module with weight Λd + Λ0. Assume that
d ≥ 0 then it has another interpretation in terms of Kazhdan-Lusztig theory: this
is the matrix Dφ

cons of the constructible representations for the algebra H(W, S, φ)
where φ(t) = d and φ(si) = 1 for all i = 1, ..., n − 1. Thus, we have Dφ

cons =
Dθ. In other words, the columns of this decomposition matrix give the expansion
of the constructible representations associated to the map φ in terms of the simple
H(W, S, φ)-modules V µ

φ .
It is natural to ask if a basic set as defined in Def. 2.1 can be find in this situation

that is if one can order the rows and columns of the constructible matrix such that
it has a unitriangular shape. The explicit determination of the matrix Dθ has been
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given by Lusztig and by Leclerc-Miyachi using different technics when d ≥ 0. We here
follows the latter exposition [30] and extend it to the case d ∈ Z.

Hence we assume from now that φ is such that φ(t) = d ∈ Z and φ(si) = 1 for all
i = 1, ..., n − 1. First, we need some additional combinatorial definition. Let λ be a
bipartition and consider its d-symbol Bd(λ) = (B0, B1). We say that λ is standard,
or equivalently that Bd(λ) is standard if

B1
i ≥ B0

i for all i ≥ 1.

The set of standard bipartitions is denoted by Std(d).
Let Bd(λ) be a standard symbol. We define an injection Ψ : B1 → B0 such that

Ψ(j) ≤ j for all j ∈ B1. It is obtained by describing the subsets

B1
l := {j ∈ B1 | Ψ(j) = j − l}.

We set B1
0 = B1 ∩ B0 and for l ≥ 1, we put:

B1
l = {j ∈ B1 \ {B1

0 , ..., B1
l−1} | j − l ∈ B0 \ Ψ(B1

0 ∪ ... ∪ B1
l−1)}

the pairs (j, Ψ(j)) with Ψ(j) 6= j are called the pairs of the symbols Bd(λ). Let C(λ)
be the set of all bipartitions µ such that the symbol of µ is obtained from Bd(λ) by
permuting some pairs in Bd(λ) and reordering the rows. We also define Invd(λ) to
be the bipartition in C(λ) whose symbols is obtained from the symbol of λ after all
possible pemutations of the pairs.

The following is a result by Lusztig and Leclerc-Miyachi when d ≥ 0 which is easily
extend in the case where d ∈ Z by Prop. 2.6 and by the definition of symbols.

Proposition 3.4. Assume that φ is such that φ(t) = d ∈ Z and φ(si) = 1 for all
i = 1, ..., n − 1. The constructible representations with respect to φ are labelled by
the standard bipartitions. Moreover, if λ is a standard bipartition, the associated
constructible representation with respect to φ is

⊕

µ∈C(λ)

V µ
φ .

Example 3.5. We consider the Weyl group of type B3. Let φ be such that φ(t) =
2 ∈ Z and φ(si) = 1 for all i = 1, 2. From above, one can check that the only non
trivial constructible representations are:

V
(∅,3)
φ ⊕ V

(1,2)
φ , V

(1,2)
φ ⊕ V

(1.1,1)
φ , V

(1.1,1)
φ ⊕ V

(1.1.1,∅)
φ

In other words, we have:

Dφ
cons =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0




(∅, 3)
(∅, 2.1)

(∅, 1.1.1)
(1, 2)

(1, 1.1)
(2, 1)

(1.1, 1)
(3, ∅)

(2.1, ∅)
(1.1.1, ∅)

Note that the constructible representations are labelled by the set of standard bipar-
titions which is in this case Π2

3 \ {(1.1.1, ∅)}. Note also that the unique non trivial
block of the above matrix is given by the following set of bipartitions

{(∅, 3), (1, 2), (1.1, 2), (1.1.1, ∅)}

which corresponds to the unique non trivial family of characters.
Now, if we set φ′ be such that φ′(t) = −2 ∈ Z and φ′(si) = 1 for all i = 1, 2. From

above, one can check that the only non trivial constructible representations are:

V
(3,∅)
φ′ ⊕ V

(2,1)
φ′ , V

(2,1)
φ′ ⊕ V

(1,1.1)
φ′ , V

(1,1.1)
φ′ ⊕ V

(∅,1.1.1)
φ′
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The unique non trivial block of the above matrix is given by the following set of
bipartitions

{(3, ∅), (2, 1), (1, 1.1), (∅, 1.1.1)}

which corresponds to the unique non trivial family of characters.

3.3. Basic sets of constructible representations. The aim of this section is to
show the existence of basic sets for the matrix affording the constructible represen-
tations. To do this, we have to study the matrix Dφ

cons of the constructible rep-
resentations for the algebra H(W, S, φ) where φ(t) = d ∈ Z and φ(si) = 1 for all
i = 1, ..., n − 1. We denote by Cons(d) the set of constructible H(W, S, φ)-modules.
The main result of this section is the following one.

Theorem 3.6. We keep the above notations and we put r ∈ Q such that r 6= d.

(1) For all U ∈ Cons(d) there exists λU ∈ Λ such that

[V λU , U ] = 1 and ar(µ) > ar(λU ) if [V µ, U ] 6= 0

(2) Let

Br
∞ := {λU | U ∈ Cons(d)}

Then the map
Cons(d) → Br

∞

U 7→ λU

is a bijection
(3) We have

Br
∞ =

{
Std(d) if r < d
Invd(Std(d)) if r > d

Proof. Let us first assume that d ≥ 0. Let λ be a standard bipartition then by Prop
3.4, we have an associated constructible representation labelled by this bipartition.
Assume that V µ

φ appears as an irreducible constituent in the expansion of this con-
structible representation. Then µ can be constructed from λ by permuting some
pairs in the shifted d-symbol of λ. Let h be an admissible size for λ. By construction,
it implies that this size is admissible for µ. Let Bd(µ) = (B0, B1) be the shifted
d-symbol of µ of size h. By §3.1, we have B0 = β0(d) and a = β1.

• If r > d the shifted r-symbol of µ is Br(µ) = (B0(r − d), B1). By the
definition of C(λ), It is easy to see that

γh
r (Invd(λ)) D γh

r (µ),

for all µ ∈ C(λ). Hence by Cor 3.3, we obtain:

ar(Invd(λ)) ≤ ar(µ)

• if r < d, the shifted r-symbol of µ of size h is Br(µ) = (B0(d− r), B1) if r is
positive. In this case, by the definition of C(λ) It is easy to see that

γh
r (λ) D γh

r (µ),

for all µ ∈ C(λ) such that µ 6= λ . Hence we obtain:

ar(λ) ≤ ar(µ).

If r is negative, the shifted r-symbol of µ of size h + d is Br(µ) = (B1(d −
r), B0). In this case, by the definition of C(λ) It is easy to see that

γh+d
r (λ) ⊲ γh+d

r (µ),

and we can conclude as above.

To summarize, We know that an arbitrary column of the constructible matrix Dθ

is naturally labelled by a standard bipartition λU with U ∈ Cons(d). The above
discussion shows that the minimal bipartition λ with respect to ar such that [V λ :
M ] 6= 0 is λ = λU if r < d, λ = Invd(λU ) otherwise. In addition by Prop 3.4, if
[V λ : U ] 6= 0 then [V λ : U ] = 1. This proves the Theorem if d > 0.
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The case d < 0 is deduced from the above one using Prop. 2.2 and the facts that
κ(Std(d)) = Std(−d), κ(Invd(Std(d))) = Inv−d(Std(−d))

�

In the expansion of a constructible character, all the simple modules have the same
value with respect ad. This follows from the definition of constructible representations
and can also be easily seen in the formula above. Theorem 3.6 shows that modifying
the a-function by adding an integer s to d leads to a natural way to order the rows
and columns of the constructible matrix so that it is unitriangular. This induces the
existence of a canonical basic set which only depends on the sign of s.

Let us now describe the consequences on the parametrisations of the simple modules
for Hecke algebras of type Bn in the modular case.

4. Basic sets in type Bn

4.1. Explicit determination in a special case. Recall that A := Z[q1/2, q−1/2].
Let φ such that φ(t) = b ≥ 0 and φ(si) = a > 0 for i = 1, ..., n − 1, Let

θ : A → Q(q
1/2
0 )

be a specialization such that θ(q) = q0 ∈ C∗. Let e ≥ 2 be the multiplicative order
of ηe := qa

0 . Assume that qb
0 = −qad

0 for some d ∈ Z. We have an associated
decomposition matrix Dθ and a canonical basic set B(φ) which will, from now, be

rather denoted by B
b/a
e . Consider now φ1 such that φ1(t) = b + ae and φ1(si) =

a for i = 1, ..., n − 1. Applying the specialization θ, we obtain again the algebra

Hk(qa
0 ,−qda

0 ). Hence we have another basic set denoted by B
b/a+e
e which has the same

cardinality as B
b/a
e but is computed with respect to the a-function ab/a+e. Continuing

in this way we obtain several basic sets

Bb/a,Bb/a+e
e , ...,Bb/a+te

e , ...

and one can assume that 0 ≤ b/a < e.
These basic sets have been computed in [18] without the assumptions of P1-P15 in

characteristic 0. It has been shown that the bipartitions labelling these sets are given
by the so called Uglov bipartitions. These bipartitions appear as natural labelling of
the Kashiwara’s crystal basis for irreducible highest weight-modules of level two. As
several combinatorial definitions are necessary to introduce them, we have chosen to
omit the definition of these bipartitions here. We refer to [19] or [28] for details on
them.

Theorem 4.1 (Geck-Jacon). We keep the above notations. Let e ≥ 2 be the multi-
plicative order of qa and let p0 ∈ Z be such that

d + p0e <
b

a
< d + (p0 + 1)e.

(Note that the above conditions imply that b/a 6≡ d mod e.) Then for all t ≥ 0, we
have

Bb/a+te
e = Φ(d+(p0+t)e,0)

e,n

where Φ
(d+(p0+t)e,0)
e,n is defined in [18, Def. 4.4].

Without loss of generality, one can (and do) assume that p0 = 0. By the results
in the second section, the datum of φ′ such that φ′(t) = ε1b and φ′(si) = ε2a (for
i = 1, ..., n − 1) with (ε1, ε2) ∈ {±1}2 also yields the existence of a basic set B(φ′).
By Prop. 2.5, they can be easily computed using the above theorem. In particular,
the case ε2 = 1 and ε1 = −1 implies the existence of a basic set B−b/a. In fact,
considering all the basic sets we have already obtained:

Bb/a,Bb/a+e
e , ...,Bb/a+te

e , ...

we obtain several other basic sets

B−b/a,B−b/a−e
e , ...,B−b/a−te

e , ...
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Now recall the specialization

θ : A → Q(q
1/2
0 )

such that θ(q) = q0. Looking at the Hecke algebra H({q−b, qa}) and applying the
specisalization θ, we obtain a decomposition matrix which can be identify with Dθ by
[6, §3.1] . Keeping the above notations, we have: q−b+ae

0 = −q−ad
0 . Note that −b+ae

and a are both positives. We then obtain a basic set B−b/a+e. Actually, using the
same arguments as above, one obtain several basic sets:

B−b/a+e,B−b/a+2e
e , ...,B−b/a+te

e , ...

Keeping the notation of thm 4.1 (recall that p0 = 0), note that we have

−d < −
b

a
+ e < −d + e.

The above theorem gives also the explicit determination of these basic sets:

Corollary 4.2. Keeping the above notations, for all t > 0, we have

B−b/a+te
e = Φ(−d+(t−1)e,0)

e,n

where Φ
(−d+(t−1)e,0)
e,n is defined in [18, Def. 4.4].

Finally, as above, the existence of basic sets

B−b/a+e,B−b/a+2e
e , ...,B−b/a+te

e , ...

yields the existence of basic sets:

Bb/a−e,Bb/a−2e
e , ...,Bb/a−te

e , ...

by Prop 3.6.

4.2. An Action of the affine Weyl group Ŝ2. Let us summarize the different
basic sets we have obtained and the parametrizations by the Uglov l-partitions. The
results in [28] allow to change the parametrization of the sets. First by [28, Prop. 3.1
(2)] For all (s0, s1) ∈ Z2, we have

κ(Φ(s0,s1)
e,n ) = Φ(s1,s0+e)

e,n

Moreover, by [28, Prop 3.1 (1)], for all m ∈ Z, we have:

Φ(s0,s1)
e,n = Φ(s0+m,s1+m)

e,n

To summarize, the following tabular gives the basic sets and the parametrizations by
the Uglov bipartitions.

Basic set with Associated set Basic set with Associated set
positive parameters of bipartitions negative parameters of bipartitions
... ... ... ...

B
−b/a+te
e Φ

(0,d−(t−1)e)
e,n B

b/a−te
e Φ

(d−te,0)
e,n

... ... ... ...

B
−b/a+2e
e Φ

(0,d−e)
e,n B

b/a−2e
e Φ

(d−2e,0)
e,n

B
−b/a+e
e Φ

(0,d)
e,n B

b/a−e
e Φ

(d−e,0)
e,n

B
b/a
e Φ

(d,0)
e,n B

−b/a
e Φ

(0,d+e)
e,n

B
b/a+e
e Φ

(d+e,0)
e,n B

−b/a−e
e Φ

(0,d+2e)
e,n

B
b/a+2e
e Φ

(d+2e,0)
e,n B

−b/a−2e
e Φ

(0,d+3e)
e,n

... ... ... ...

B
b/a+te
e Φ

(d+te,0)
e,n B

−b/a−te
e Φ

(0,d+(t+1)e)
e,n

... ... ... ...
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Following [29], we set

F = {±b/a + te | t ∈ Z}

Let Ŝ2 be the extended affine symmetric group with generators σ and y0, y1 and
relations

y0y1 = y1y0, σ2 = 1, y0 = σy1σ.

One can define an action of Ŝ2 on F determined by the following identities. For
all t ∈ Z, we set:

σ.(b/a + te) = −b/a− te, y0.(b/a + te) = b/a + (t + 1)e,

y0.(−b/a + te) = −b/a + (t + 1)e

One can easily check that this action is well defined. The above dicussion yields the

existence of an action on the basic sets by setting for all w ∈ Ŝ2 and γ ∈ F :

w.Bγ
e = Bw.γ

e

By Prop 3.6, we have:

σ.Bγ
e = κ(Bγ

e )
=

{
(λ0, λ1) | (λ1, λ0) ∈ Bγ

e

}

Hence, to describe the action of Ŝ2 on F , it suffices to understand the action of y0

on an arbitrary basic set. By the results in [28] (see also the generalizations in [29])
together with Thm 4.1, the action of y0 corresponds to a crystal isomorphism. Using
the combinatorial study of this isomorphism in this paper, It can be expressed using
the map InvD defined in the previous section. This is given by the following theorem
which uses the combinatorics developed in [28].

Theorem 4.3. Assume that γ ∈ F . Then there exists D ∈ Z such that:

Bγ
e = Φ(D−e,0)

e,n

To describe the action of y0, one can assume that D ≥ 0, then we have

y0.B
γ
e = InvD(Bγ

e )

Proof. Let γ ∈ F . By Thm 4.1, there exists D ∈ Z such that Bγ
e = Φ

(D−e,0)
e,n . Since

we know that σ.Bδ
e = κ(Bδ

e) for all δ ∈ F , one can assume that D ≥ 0.

Let (λ0, λ1) ∈ Bγ
e = Φ

(D−e,0)
e,n . Then by [28, Prop. 3.1], we have (λ1, λ0) ∈ Φ

(0,D)
e,n .

Using [28, Prop. 4.1], we deduce that (λ0, λ1) ∈ Std(D). Again, by [28, Prop. 4.1],

we have κ(InvD(λ0, λ1)) ∈ Φ
(0,D+e)
e,n which implies that InvD(λ0, λ1) ∈ Φ

(D,0)
e,n . The

map sending (λ0, λ1) ∈ Φ
(D−e,0)
e,n to InvD(λ0, λ1) ∈ Φ

(D,0)
e,n is a bijection. �

Hence, remarkably, this action does not depend on e but only on D ! This will be
developed in the following section.

Remark 4.4. Assume that b/a = −b/a + e then 2b = ae and we have q2b
0 = 1. Then

we have two cases to consider

• if qb
0 = 1 then qad

0 = −1 implies that e is even and d = e/2 which is impossible

because then qb
0 = q

ae/2
0 = −q

ae/2
0 .

• if qb
0 = −1 then qad

0 = 1 implies d = e and d = 0.

In this case, note that Φ
(d,0)
e,n = Φ

(0,d)
e,n and then B

b/a
e = B

−b/a+e
e . Hence the above

result is coherent with this case.
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4.3. Factorization of the decomposition map. The aim of this section is to give
an interpretation of Prop. 4.3 in terms of constructible representations. We here keep
the notations of this proposition.

Let H(W, S, {Q, qa}) be the generic Hecke algebra with parameters Q and qa (where
Q and q are indeterminates). We consider a first specialization:

θq : Z[Q±1/2, q±1/2] → Q(q
1
2 )

We obtain a well defined decomposition map:

dθq : R(HQ(Q1/2,q1/2)(W, S, {Q, qa})) → R(HQ(q1/2)(W, S, {−qD.a, qa}))

and an associated decomposition matrix Dθq . We also have a specialization

θ : A → k

We obtain a well defined decomposition map:

dθ : R(HQ(q1/2)(W, S, {−qD.a, qa})) → R(H
Q(q

1/2
0 )

(W, S, {−qD.a
0 , qa

0}))

and an associated decomposition matrix Dθ. On the other hand, one can also define
a specialization

θ1 : Z[Q±1/2, q±1/2] → Q(q
1/2
0 )

We obtain a well defined decomposition map:

dθ1 : R(HQ±1/2,q±1/2(W, S, {Q, qa})) → R(H
Q(q

1/2
0 )

(W, S, {−qD.a
0 , qa

0}))

and an associated decomposition matrix Dθ1 .

Theorem 4.5 (Geck [10], [14] Geck-Rouquier [22]). The following diagram is com-
mutative

R(HQ(q1/2,Q1/2)(W, S, {Q, qa}))
dθ1

//

dθq

))TTTTTTTTTTTTTTTTTTT

R(H
Q(q

1/2
0 )

(W, S, {−qDa
0 , qa

0}))

R(HQ(q1/2)(W, S, {−qDa, qa}))

dθ

55jjjjjjjjjjjjjjjjjj

In other words, we have:

Dθ1 = DθqDθ

The following gives a first consequence of this result which can be also easily checked
using the results of the previous sections and the properties of Uglov biartitions.

Corollary 4.6. We have:

Bγ
e ⊂ Bγ

∞.

Proof. This follows directly from the above theorem.
�

Proposition 4.3 and the above result show that the bijection between y0.Bγ
e and Bγ

e

is “controlled” by the matrix of the constructible representations through the above
factorization in the following sense.

Note that γ < D < γ + e. We have a bijection

Ψ : Bγ
∞ → Bγ+e

∞

which is naturally defined using Dθq . Consider a constructible character and the
expansion of it in the standard basis. This is given by a column of Dθq . Let λ be the
element appearing in this column with non zero coefficient and with minimal value
with respect of aγ . Then λ ∈ Bγ

∞. Let λ be the element appearing in this column with
non zero coefficient and with minimal value with respect to aγ+e. Then λ ∈ Bγ+e

∞ .
We then set Ψ(µ) = λ. Combining this with the above result we get

Ψ(Bγ
e ) = Bγ+e

e .
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