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Quantifying the PR Interval Pattern During
Dynamic Exercise and Recovery

Aline Cabasson∗, Student Member, IEEE, Olivier Meste, Member, IEEE, Grégory Blain, and Stéphane Bermon

Abstract—We present a novel analysis tool for time delay estima-
tion in electrocardiographic signal processing. This tool enhances
PR interval estimation (index of the atrioventricular conduction
time) by limiting the distortion effect of the T wave overlapping
the P wave at high heart rates. Our approach consists of modeling
the T wave, canceling its influence, and finally estimating the PR
intervals during exercise and recovery with the proposed general-
ized Woody method. Different models of the T wave are presented
and compared in a statistical summary that quantitatively justifies
the improvements introduced by this study. Among the different
models tested, we found that a piecewise linear function signifi-
cantly reduces the T wave-induced bias in the estimation process.
Combining this modeling with the proposed time delay estimation
method leads to accurate PR interval estimation. Using this method
on real ECGs recorded during exercise and its recovery, we found:
1) that the slopes of PR interval series in the early recovery phase
are dependent on the subjects’ training status (average of the slopes
for sedentary men = 0.11 ms/s, and for athlete men = 0.28 ms/s),
and 2) an hysteresis phenomenon exists in the relation PR/RR in-
tervals when data from exercise and recovery are compared.

Index Terms—Electrocardiography (ECG), exercise, maximum
likelihood estimation, PR interval, PR/RR hysteresis, time delay
estimation.

I. INTRODUCTION

E
STIMATING variability of the heart period series during

exercise and recovery is a real challenge in biomedical

engineering. One reason is that the global understanding of the

interaction between the neural activity and the cardiac outputs is

relevant to improving performances of future pacemakers, and

to enriching knowledge for medical diagnosis. For instance, the

analysis of the PR interval pattern could be performed in order

to evaluate not only the sympathetic–parasympathetic balance,

but also to reveal the atrioventricular conduction properties [1].

The analysis of PR intervals during exercise and recovery has

been rarely addressed to date [2], [3]. The main reason is that the

estimation of these intervals is particularly difficult at high heart

rates because T wave tends to overlap the P one, which biases P

Manuscript received March 11, 2009; revised June 1, 2009 and June 29, 2009.
First published August 18, 2009; current version published October 16, 2009.
Asterisk indicates corresponding author.

∗A. Cabasson is with the Laboratory I3S, Centre National de la Recherche
Scientifique, University of Nice, Sophia Antipolis 06903, France (e-mail:
cabasson@i3s.unice.fr).

O. Meste is with the Laboratory I3S, Centre National de la Recherche
Scientifique, University of Nice, Sophia Antipolis 06903, France (e-mail:
meste@i3s.unice.fr)

G. Blain is with the Laboratory of Physiological Adaptations, Motor Per-
formance and Health, Faculty of Sports Sciences, Nice 06205, France (e-mail:
blain@unice.fr).

S. Bermon is with the Institute of Sports Medicine and Surgery, Monte Carlo
98000, Monaco (e-mail: bermons@im2s.mc).

Digital Object Identifier 10.1109/TBME.2009.2028694

Fig. 1. Example of (a) a real ECG where the T and P waves are disjointed at
rest and (b) overlapped during exercise.

wave occurrence detection (see Fig. 1). Consequently, new ad

hoc time delay estimators have to be designed. In this paper, we

focus on time delay estimation (TDE) in electrocardiographic

signals on healthy subjects.

Among the well-known time delay estimators, some tech-

niques have been proposed in different areas of biomedical pro-

cessing to solve TDE problems for noisy and unknown signals.

Cross-correlation approaches, which are based on the detection

of the maximum of the cross-correlation, are the most frequently

used for TDE [4], [5]. Similar problems are solved using the

generalized cross-correlation technique [6], [7]. In particular,

the maximum likelihood (ML) TDE has been shown to pro-

vide an unbiased time delay estimate under ideal conditions,

i.e., without shape or time scale changes of the signals of inter-

est [8]. When the signal under consideration is unknown, i.e.,

the P wave in our case, Woody’s method [9] is a good candi-

date that belongs to the cross-correlation family. Besides, the

Improved Woody method outperforms significantly Woody’s

technique [10]. Moreover, for TDE problems, several other

techniques have been used mainly working in the frequency

domain [11]–[13]. Unfortunately, the introduction of an a priori

concerning the overlapping T wave is tedious in the frequency

domain. Alternatively, the monophasic behavior can be well

described in the time domain. Also, the wavelet transform is

a good candidate for bioelectrical signal analysis and interval

estimation [14]. While it has been shown to be a promising tool,

these typical methods do not overcome the overlapping problem

because the T and the P waves share the same frequency band.

This drawback will be illustrated in the following. Even so,

the wavelet transform applied to ECG characterization could be

seen as a derivative function. The zero-crossing locations pro-

vide the maximum of the wave of interest. Instead of using this

transform, the derivative of the signal can be directly estimated,
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even in presence of noise [15], [16]. While this application is

attractive, it can not deal with the problem of overlapping.

Therefore, in this paper an original analysis tool which im-

proves significantly the estimation of the PR intervals during

rest, exercise and recovery is proposed. This method combines:

1) a generalized version of the Woody technique using an iter-

ative ML estimator (MLE) and 2) efficient modelings of the T

wave which overlaps the P wave. The remainder of the paper is

organized as follows. Section II deals with the proposed Gener-

alized Woody method where the observation model accounts for

an additional interfering wave. In Section III, different models

for the T wave are presented: a constrained polynomial function

or a constrained piecewise linear function. In Section IV, per-

formance of the different methods are evaluated using synthetic

data. This analysis is supplemented by findings from real ECG

data. Then, the obtained results are discussed in Section V. Fi-

nally, a conclusion is made and some perspectives are suggested

in Section VI.

II. GENERALIZED WOODY METHOD

During high-intensity exercise, the P wave onset measure-

ment is not reliable because of the superimposed T wave (see

Fig. 1), and the P wave peak location could be influenced by

shape changing, as mentioned in [17]. In addition to the effect

of noise, it is clear that the use of these fiducial points will be

biased. While the shape of the P wave is subject to changes

during exercise, its global width is almost invariant [18]. This

property will permit one to use the correlation-based method,

as will be shown in the following. The aim is to reduce the bias

of this time delay estimation since the variability of this interval

between exercise and recovery is about 10 ms for a same given

heart period (see Fig. 8) [4], [5].

Woody [9] presented a system that is based on iterative

correlation-averaging techniques. Later, Pham et al. studied the

estimation of variable latencies of noisy signals [12]. Jaśkowski

and Verleger [13] referred to a more general model in which

the amplitude variability defined by the coefficient αi is also

allowed

xi(n) = αisd i
(n) + ei(n) (1)

where, in our case, s is the P wave.

However, this observation model is too simple for studying the

P wave during exercise. In the signal model (1), xi(n) represents

the amplitude of the ith observation at time sample n (0 <

n < N , where N denotes the number of data samples for each

trial, and i = 1, . . . , I , where I is the number of trial). Each

observation contains an unknown transient template wave s(n),
delayed by di , as sd i

(n) = s(n − di). In this simple case, the

only interfering component is the observation random noise

ei(n), which follows a normal distribution law N (0, σ2).
As in exercise tests the observation segment includes the

T wave, this interfering wave can be added to our global ob-

servation model as a function f(θi) linearly parameterized. We

assume that the T wave should be described by a regular and

smooth function, for instance an Lth order polynomial function,

or by a piecewise defined function. Note that different models

are described in Section III.

Finally, our global observation model is expressed as

xi(n) = αisd i
(n) + f(n;θi) + ei(n) (2)

where i, i = 1, . . . , I , is the index of the trial, αi is a positive

coefficient, and the variable di is the ith PR interval to be

estimated up to a constant. It is clear that s is not uniquely

defined since shifting s leads to shift in an opposite direction

all the dis values. This lack of identifiability will be solved by

imposing the average of the estimated delays to be equal to a

constant (e.g., 0).

In order to estimate the delays di , the iterative MLE is used.

The details of the demonstration are reported in the Appendix.

In summary, the criterion to be minimized is J

J =

I∑

i=1

∥∥∥∥∥xi − f(θi)−
αi

I

I∑

k=1

1

αk

(xk,di −dk
− fd i −dk

(θk ))

∥∥∥∥∥

2

.

(3)

Note that the third term in (3) is the average of the synchronized

observations where the corresponding fd i
has been subtracted.

Thanks to the development given in the Appendix in Section VII,

the criterion J can be minimized in an iterative way. This cor-

responding algorithm starts by replacing the third term by the

average of the original observations. For the next step, the third

term will be updated using the estimated parameters. For each

step, i.e., each i, di is chosen in a given expected range in order

to shift the average. Thus, thanks to linearity, αi and θi are

given by the least square (LS) estimator, and the corresponding

Ji(di) are computed. Finally, the estimated d̂i corresponds to

the minimum value of Ji(di). For the next step, a new template

is computed using the estimated parameters. If necessary, the

process can be iterated depending on the convergence of the al-

gorithm. After convergence, the algorithm produces estimated

d̂i : the estimated PR intervals up to a constant.

From a theoretical point of view, the global modeling of the

observations will involve the unknown delays in a nonlinear

manner. Unlike the similar models introduced in [12] and [13],

we will assume that a ML estimator exists. In [11], [19], it has

been shown that, when this identification model is addressed

with an ML approach, saddle point singularities appear. Thus,

this theoretical assessment will not be in the scope of this paper.

The following section presents different models of the func-

tion f(θi) that is the overlapping T wave. In order to reduce

the bias in the estimation, we take into account the T wave

properties, such as its monophasic shape. This will lead to a

constrained solution where f(θi) will be supposed to be strictly

decreasing in the observation window. According to this de-

creasing constraint, the estimation method based on an iterative

ML technique appears to be a sum of LS problem with linear-

inequality constraint (LSI problem), that will be converted in a

least distance programming (LDP) problem [20].

III. MODELING OF OVERLAPPING T WAVE

In this section, different models of the T wave are proposed.

For instance, a template could be optimally segmented from a

real T wave in the resting period. Unfortunately, the shape of

the T wave varies as long as the effort increases, discarding this
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Fig. 2. Example of a real T wave modeled as a decreasing piecewise linear
function based on three functions vl (MP−3 ). The piecewise function corre-
sponds to the estimated T wave by the proposed method using the vectors v1 ,
v2 , and v3 in a real case.

simple approach. Moreover, methods based on spline interpola-

tion can not be applied because the anchor points of the T wave

are hidden when the fusion occurs.

The outline of our PR intervals estimator algorithm is:

1) modeling of the decreasing part of the T wave imposing

additional constraints; these constraints will account for

the decreasing behavior of the ending part of the T wave

(see Fig. 2);

2) adaptation of the T wave model to our global observation

model presented in Section II;

3) estimation of the PR intervals using an iterative ML tech-

nique which includes Least Square solution with linear

inequality constraints.

We recall that we consider a model for the observations which

is defined by the equation (2) where the variable di is the ith
PR interval to be estimated up to a constant and the decreasing

part of the T wave is represented by a function f(θi) linearly

parameterized. Note that the function f(θi) is dependent to i in

order to allow the shape variation of the T wave.

A. Model Using Lth Order Polynomial Function (ML )

We assume that the decreasing part of the T wave is described

by a regular and smooth function, i.e., an Lth order polynomial

function characterized by its coefficients in the vector θi

f(n;θi) =

L∑

l=0

θi [l]n
l . (4)

In a previous work [21], we considered that L = 1, i.e., we

take into account the T wave modeled as a straight line (M1).

This method have been tested for a 2nd order but we will only

present in this work the model corresponding to a 3rd order

polynomial function (M3)

f(n;θi) = θi [3]n3 + θi [2]n2 + θi [1]n + θi [0]. (5)

The decreasing constraint is fulfilled introducing following

inequalities on θi :





θi [3] > 0,

θi [1] < 0,

3.θi [3]N 2 + 2.θi [2]N + θi [1] < 0
(6)

with N the length of our observation’s window.

Note that if we consider the function f(θi) in the model

(2) as an unconstrained straight line (i.e., L = 1), the residual

influence of the baseline can be modeled and canceled on the

ECG.

B. Model Using Piecewise Linear Function (MP )

The decreasing part of the T wave is considered as a piecewise

linear function f(θi), defined as a weighted sum of a collection

of functions vl (see Fig. 2)

f(n;θi) =

L∑

l=1

θi [l]vl [n]. (7)

We build a collection of L functions vl which defines L intervals

of width K. We note this model as MP −L . L and K are chosen

arbitrarily such as the length L × K corresponds to the expected

maximal width of the segmented decreasing part of the T wave.

The accuracy of this knowledge is not crucial. But it has to

be chosen in accordance with the trade-off between the good

approximation of the T wave and the variance of the estimated

parameters of f (7). Given the estimation process, increasing

the number of functions will reduce the approximation error

while the variance of the estimated weights increases. For all

subjects, empirical values of L and K have been chosen equal

to 3(MP−3) and 20, respectively. The selection of these values

have not been considered as the part of the global optimization.

As it will be shown in the sequel, this modeling will provide

us a tractable solution that accounts for our a priori information

concerning the T wave. So, it is expected that this knowledge

reduces the bias avoiding the nonexistence of an unique solution.

In the Fig. 2, functions vl are chosen as piecewise linear

functions. In order to be consistent with the observations, some

constraints are added:

1) in each interval, a negative slope is imposed for any func-

tions combination;

2) in order to keep the continuity of the modeled T wave,

the joining points between two consecutive intervals must

respect the following constraint: the last point of the lth
interval must be identical to the first point of the (l + 1)th
interval.

The aim is to build a collection of L functions vl . We choose

arbitrarily L = 3 and K = 20 as in the Fig. 2, for a sampling

frequency equal to 1000 Hz (Note that L does not influence a

lot the bias of the estimator on simulated data). Therefore, three

intervals are considered.

Choosing functions as in Fig. 2, on each interval, for n ∈ [k ×
K : (k + 1) × K] (with k = 0, . . . , 2), the T wave is modeled

by a linear function that is a weighted sum of two non-zero

functions






f [n] = θ1 .v1 [n] + θ2 .v2 [n]; n ∈ [0 : K],
f [n] = θ2 .v2 [n] + θ3 .v3 [n]; n ∈ [K : 2K],
f [n] = θ3 .v3 [n]; n ∈ [2K : 3K].

Moreover, the T wave has to be modeled by a decreasing

linear function, so the following conditions on each interval
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must be imposed:





f ′[n] = θ1 .v
′
1 [n] + θ2 .v

′
2 [n] ≤ 0; n ∈ [0 : K],

f ′[n] = θ2 .v
′
2 [n] + θ3 .v

′
3 [n] ≤ 0; n ∈ [K : 2K],

f ′[n] = θ3 .v
′
3 [n] ≤ 0; n ∈ [2K : 3K]

where f ′ stands for the temporal derivative of f .

In order to obtain a tractable relation linking the coefficients

θi , the 3 functions vl are chosen arbitrarily as





v′
1 [n] < 0; n ∈ [0 : K],

v′
1 [n] = −v′

2 [n]; n ∈ [0 : K],
v′

2 [n] = −v′
3 [n]; n ∈ [K : 2K].

(8)

These relations imply that v1 and v3 are decreasing respec-

tively on the intervals [0 : K] and [2K : 3K].
Imposing these properties to the functions, the conditions of

continuity at the joining points (n = K and n = 2K) between

two consecutive intervals need to be checked. Thus, for example

when n = K, we get

θ1v1 [K] + θ2v2 [K] = θ2v2 [K] + θ3v3 [K]. (9)

However, using (8), on each interval we obtain the relations
{

v1 [n] = −v2 [n] + C1 ; n ∈ [0 : K],
v2 [n] = −v3 [n] + C2 ; n ∈ [K : 2K]

(10)

where C1 and C2 are constant values.

By replacing in (9) the results (10) with n = K, we get

(θ2 − θ1)v2 [K] + θ1C1 = (θ3 − θ2)v3 [K] + θ2C2 . (11)

We impose that v1 [K] = v3 [K] = 0 which implies, given the

relations (10), that C1 = C2 . So, the continuity for n = K is

ensured.

Finally, when building a collection of L functions vl such as

in Fig. 2, these rules are applied:

1) the first function is decreasing on the interval [0 : K] and

is null after;

2) the last function is null for n ∈ [0 : (L − 2)K] and is de-

creasing on the interval [(L − 1)K : LK].
This implies that θL must be positive in order to keep the

decreasing property of the modeled T wave. Besides, thanks to

the hypotheses (8) and (10), the constraints on the θis are

∀ l ∈ [1 : L − 1], θi [l] > θi [l + 1] > 0. (12)

Note that the previous development has been given without

lack of generality since it is valid for any number L of functions

vl .

IV. RESULTS

A. Simulation Study

The synthesized ECG during exercise using Gaussian func-

tions is presented in Fig. 3. This ECG has constant PR intervals,

and a time-varying T-P duration. This duration decreases lin-

early as the beat number increases. In Fig. 3, the extreme left-

hand side and the extreme right-hand side T waves correspond

respectively to the 1st and the 400th beat.

Theoretically, the estimated delays, i.e., the PR intervals,

should be constant. It is expected that the T wave introduces

Fig. 3. Synthetic data of ECG during exercise. This ECG has constant PR
intervals, and a time-varying T-P duration. This duration decreases linearly as
the beat number increases. The extreme left-hand side and the extreme right-
hand side T waves correspond, respectively, to the 1st and the 400th beat.

Fig. 4. Bias of the time delay estimator for the three considered models and
with the wavelet technique at scale 23 [14].

bias with a value depending on the overlapping ratio. Fig. 4

shows the time course of the bias between the real PR intervals

and the estimated ones (in function of the beat number) obtained

with our piecewise solution (MP ) represented with a thick solid

curve. This figure also shows the bias obtained with two other

models: the dashed line and the solid one correspond to a model

based on a constrained third-order polynomial function (M3) or

a decreasing single straight line (M1), respectively. The dotted

curve corresponds to an estimation of the PR intervals without

T wave accounting.

Whatever the chosen model, the bias is low when the T-P

fusion occurs weakly. When the beat number increases, the

model MP outperforms the others. This result shows that, at

least in simulation, our piecewise T wave model (MP ) is more

accurate than the others when the overlapping appears.

Besides, Fig. 4 exhibits the bias of the estimator computed

with the wavelet tool. The used wavelet is the first derivative of

a Gaussian smoothing function, and the zero-crossing computa-

tion of the wavelet transform provides the location of the signal

shape variation points [14]. It is known that the power spectrum

of the P and T waves lie in the same range [22]. In order to

avoid errors due to artifacts, the scale 23 is chosen to detect the

onset and the offset of the P and T waves as proposed in [14].

From Fig. 4, it is clear that the fusion of the two waves bias the

zero-crossing location.

B. Results on Real Data

Using the proposed method of TDE, we estimate PR intervals

from real ECG recorded in healthy humans during exercise and

recovery.
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TABLE I
TRAINING STATUS AND MAXIMAL OXYGEN UPTAKE (VO 2

MAX) OF STUDIED

POPULATION. SED: SEDENTARY SUBJECTS; ATH: ATHLETES

1) Experimental Design:

a) Subjects: Five sedentary men (SED) and seven athlete

men (ATH), whose physical characteristics are shown in Table I,

participated in the present study. All subjects were non-smokers,

and none was taking any medication. Physical activity and al-

cohol and caffeinated beverages consumption were prohibited

24 h before any exercise testing session.

b) Protocol: All subjects performed a maximal graded

exercise test. The initial load was fixed at 75 W for sedentary

subjects or 150 W for athletes and increased by 37.5 W every 2

min until exhaustion. The pedaling rate was kept constant at 75

and 90 r/min for the SED and ATH group, respectively. During

the exercise test and the preceding 5 min (rest), a one-lead ECG

was recorded and digitized on-line by a 12-bit analog-to-digital

converter at a sampling rate of 1000 Hz on a personal computer.

The lead is placed collinearly to the standard DII derivation

directly on the chest in order to avoid limbs motion artifacts.

The DII lead is chosen because it exhibits the highest amplitude

of the P wave. Besides, it assures the T wave of being positive

and monophasic, and it minimizes the presence of the U wave.

All subjects completed the exercise test without any clinical

abnormalities or discomfort.

2) Estimation of PR Intervals: Two pre-processing methods

provide us the position of the R waves [5]. First, a threshold

technique applied on the high-pass filtered and demodulated

ECG, refines the estimation of the time occurrences tk of the

R waves, that are roughly the R peaks locations. The high-pass

filtering is a 500th order FIR filter designed with a hamming

window and a cutoff frequency equal to 5 Hz. Segments

including each expected P wave and its corresponding R wave

in sequence are formed time locked with the tk . The length of

the segments is fixed for all beats and depends of the subject. For

each heart rate, the left boundary of the segment is adjusted in

order to get only the decreasing part of the T wave, and to ensure

that the whole P wave is encompassed (see Fig. 2). In a real

case, this condition is readily achieved and the T wave should

not be present in our observation window for low heart rates.

While the PR intervals estimator provides reliable results

regarding the T wave overlapping, it is biased by the presence

of a baseline corresponding to the respiration and other artifacts.

We use the baseline removal approach proposed in [5], based

on an order one polynomial substraction. Finally, we consider

in the model (2) the segments xi including each expected P

wave and the decreasing part of the T wave (when both waves

overlapped).

The instantaneous, or time course, of PR interval is not in the

scope of this paper. Then, in order to reduce the effect of noise

at the maximum exercise intensity, each set of 10 PR interval

segments was replaced by the corresponding average [23], [24].

Fig. 5. Representative example of PR interval pattern in an athlete subject.
The T wave was modeled by a constrained piecewise linear function (MP ).
The interval IPR is used for the calculation of the slope SPR , indicative of the
“recovery rate”; the interval IPR is defined between the end of the exercise and
the abrupt change of slope, and is delimited by the two dotted vertical lines.

Fig. 6. Scatter diagram of the observations for the 12 subjects. Relation be-
tween the time of abrupt change of slope for PR (IPR ) and RR (IRR ) intervals
(r = 0.784; p-value < 0.001).

By computing our generalized Woody method presented in

Section II, the coefficients of the model (M1 , M3 , or MP−3)

and the obtained d̂is corresponding to the PR intervals up to

a constant are estimated. The convergence of the algorithm is

achieved after 10 iterations.

Fig. 5 shows a representative example of the PR interval

pattern using the MP−3 model. The constant of the di has been

evaluated on the maximum of the P wave average, s, provided

by the algorithm.

3) Observations During Early Recovery Phase: Consistent

with our previous observations [21], [25], we show an abrupt

change of PR interval slope on the early recovery phase, which

is significantly correlated with the RR interval slope. This result

is valid for all the models of the T wave proposed in Section III.

Fig. 6 shows the scatter diagram which characterizes the rela-

tionship between the PR and RR duration of the early recovery

phase (IPR and IRR ). The estimated PR intervals presented

in this scatter diagram correspond to a piecewise linear func-

tion model (MP−3). The correlation coefficients of the relation

between IPR and IRR with different models are presented in

Table II. The time occurrence of abrupt change of slope on PR

and RR for all subjects are computed as follows. We consider

two phases in the beginning of the recovery, each one being

modeled as a straight line. The total time interval is divided into

two corresponding segments. The index that splits the whole

segment in two, i.e., IPR in Fig. 5 in the case of PR intervals,

minimizes the sum of mean error of the least square modeling

of the two lines.
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TABLE II
CORRELATION COEFFICIENTS OF SCATTER DIAGRAMS (IPR , IRR ) FOR

DIFFERENT T WAVE MODELS; p-VALUE < 0.001

Fig. 7. Relationship between the slope of the evolutions of the PR and RR
intervals for the 12 subjects. The two groups can be clustered according the PR
slopes.

The time locations of these changes of slope referenced to the

end of exercise, on PR and RR are related to each subject, with-

out any effect of the training level. Additionally, the slope SRR

and SPR of the RR and PR intervals respectively, are computed

for all subjects on the time interval IRR and IPR bounded by the

two dotted vertical lines in Fig. 5. These two bounds correspond

to the end of the exercise and the time location of the change

of slope respectively. This slope should convey informations

relative to the “recovery rate” of the subject.

Fig. 7 relates the slopes SPR in function of SRR for the 12

subjects using the MP−3 model. The values of the slopes of PR

are higher in ATH than in SED subjects. A k-means clustering

algorithm has been applied on our data set assuming a cluster for

the SED and an other one for the ATH. While exploiting data of

both PR and RR intervals, we obtain 33% of misclassification,

60% considering the data of the RR intervals only and 0%
considering the data of the PR intervals only.

Similar results (with less resolution however) are obtained

using the single straight line (M1) or the third-order polynomial

function (M3) models. To compare the different models with

a number of cluster equal to 2, we compute the statistic of the

Welch’s test, t, and a k-means criterion, C, defined as

C =
distance between the two centroids

sum of the two radius
. (13)

Raw PR intervals indexes (without modeling improvement)

are not reported because of the 25% of misclassification of the

k-means algorithm. For the three models, the Welch’s test is

positive with a p-value < 0.001. The criterion C for the three

models is presented in Table III. The highest value is provided

by the MP model meaning that the best clustering is reached for

this model.

4) PR/RR Hysteresis Phenomenon: Previous studies on

ECG recordings under exercise conditions show that there

TABLE III
CRITERION C OF K-MEANS ALGORITHM DEFINED ON (13)

FOR DIFFERENT MODELS

Fig. 8. Evolutionof PR intervals (MP−3 model) in function of RR intervals
during exercise (+) and recovery (◦). We note a clockwise hysteresis phe-
nomenon.

TABLE IV
MEAN AND STANDARD DEVIATION OF HYSTERESIS CRITERION

FOR DIFFERENTLY TRAINED ATHLETES GROUPS AND DIFFERENT T-WAVE

MODELS

exists a nonlinear relationship between PR and RR intervals

which exhibits an hysteresis shape, [4], [5].

Fig. 8 shows a representative example of the PR versus RR

interval relationship in one athlete. PR intervals were estimated

with the piecewise linear function model (MP−3). Note that for

a same value of RR interval in exercise and recovery, the PR

interval is increased during the recovery.

To quantify the presence of an hysteresis phenomenon, we

calculated an hysteresis criterion defined as the difference of

areas between the recovery curve and the exercise curve, nor-

malized by the range of RR intervals of each subject. The study

of this criterion reveals the existence of the hysteresis phe-

nomenon for all subjects. The mean and the standard deviation

of this criterion for all T-wave models are presented in Table IV

for the two groups of subjects. As in the previous Section IV-B3,

the two groups of subjects are identified according the mean of

the hysteresis criterion: the SED and the ATH. Using a Welch’s

test, we find that the averaged hysteresis criterion is significantly

different between groups (p-value < 0.001). We also note that

subjects with the more pronounced early recovery PR slope have

a substantially greater hysteresis.

V. DISCUSSION

Our findings based on real ECG data showed that: 1) the

PR/RR interval relationship during exercise and its recov-

ery demonstrates an hysteresis pattern; 2) this hysteresis phe-

nomenon tends to be more pronounced in athletes versus
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nonathletes; and 3) the slope of PR return toward control values

during the early recovery phase tends to be more accentuated in

athletes versus nonathletes.

The atrioventricular (AV) and sinus nodes activity is tightly

regulated by the autonomic nervous system to match the organ-

ism demand (metabolic in particular). Despite that autonomic

stimulation tends to produce similar changes in the heart pe-

riod and AV conduction time (i.e., lengthen and shorten with

vagal and sympathetic stimulation, respectively), it has been

demonstrated that the net autonomic effect on the AV and sinus

nodes are independent of each other [26], [27]. For instance,

Kowallick et al. showed in healthy subjects that sudden spon-

taneous increases in heart rate with change in position during

sleep, are associated with either a concomitant shortening, no

change or a lengthening of PR interval. Similarly, using phar-

macological blockade in patients with implanted dual-chamber

devices, Kannankeril et al. found poor correlation among the

parasympathetic effects on the AV and sinus nodes during ex-

ercise and recovery. This data are consistent with the previous

studies [28], [29] which demonstrated that the neural circuitry

which innervates the AV and the sinus nodes is specific and in-

dependent. Based on these findings, we speculate that a greater

parasympathetic re-engagement at the AV versus sinus node

level would explain the hysteresis in the PR–RR relationship,

when data from exercise and recovery are compared.

Moreover, the vagal mediated-recovery in heart rate (sinus

node level) has been shown to occur more rapidly in athletes

compared to non-athletes [30], [31]. We make the assumption

that vagal re-engagement at the AV level is also more accen-

tuated in athletes compared to nonathletes. This would explain

the greater hysteresis and the steeper PR slope observed in ath-

letes during early recovery phase. Further studies are required

to verify these different assumptions. Besides, the age influence

should be checked on a larger dataset.

VI. CONCLUSION

The problem of time delay estimation for noisy and unknown

signals is considered. The generalization of the observation

model is proposed and permits us to address more difficult TDE

problems in electrocardiographic signal processing. In particu-

lar, a focus is made on the TDE method applied to the PR inter-

vals estimation in ECG recorded during exercise. This topic is

particulary difficult as the T-P fusion occurs during high heart

rate in exercise. Several models are also proposed for the T

wave in order to reduce its influence on the estimation of the PR

intervals. The feasibility of the proposed technique is corrobo-

rated by the results on synthetic data and finally on real ECG

recorded in exercise. Furthermore, the proposed TDE method

can be used for many other problems in biomedical signal pro-

cessing, and not necessarily in the electrocardiographic area.

Actually, the proposed generalization can be used for any time

delay estimation problem where possible disturbance can be

modeled, excluding the proposed PR intervals estimation in ex-

ercise. This new tool can be adapted for QT interval estimation

in ECG recorded in exercise whilst taking into account the P

wave in this instance.

Results on synthetic data or on real ECG recorded in exercise

exhibit better performances when the PR interval estimation is

computed by combining a piecewise linear function model for

the T wave and our generalized Woody method. The introduc-

tion of the decreasing requirement is due to a need to reduce

the variance in the estimation process. The corresponding con-

straints have a cost: it is assumed that the T wave is observed in

its decreasing part. That is met using adapted derivation leads

and a matched window. A refinement to a fixed window defini-

tion would be to adapt its position using the Bazett correction

or any Q-T predictor [32], [33].

Applications of the PR intervals estimation on real ECG

recordings on sedentary and athlete subjects lead to many re-

sults: 1) the subjects can be characterized according to their

training level studying the PR slope in the early recovery phase;

and 2) an hysteresis phenomenon exists in the relation PR–RR

when data from exercise and its recovery are compared.

The problem of estimating heart periods and consequently the

problem of understanding the autonomic nervous system activ-

ity during exercise and recovery is still of interest since it would

contribute to improve performances of cardiac pacemakers by

optimizing the programming of these pacing systems.

APPENDIX

Considering the observation model defined by (2), the itera-

tive MLE is used in order to estimate the delays di .

The noise ei(n) is assume to be white Gaussian with null

mean and variance σ2 . Then, the probability of xi at time sample

n, given s(n), θi , αi and di , can be expressed with

p(xi(n); s(n), di ,θi , αi)

=
1

σ
√

2π
exp

(
− 1

2σ2
(xi(n) − f(n;θi) − αisd i

(n))2

)
.

(14)

Since the noise at different instants is independent, so are the

observations. Then, for xi = [xi(1), xi(2), . . . , xi(N)]T where

N denotes the number of data samples for each trial

p(xi) =
N∏

n=1

p(xi(n)). (15)

Thus,

p(xi ; s, di ,θi , αi)

=
1

(2πσ2)
N
2

exp

(
− 1

2σ2

N∑

n=1

(xi(n)−f(n;θi))−αisd i
(n))2

)
.

(16)

Then, for all i, the pdf of the processes xis, given the delay

dis, the coefficients θi , the parameter of amplitude jitter αi and

signal vectors s, is

p(X; s,d,θi , αi) =
1

(2πσ2)
N I
2

exp

(
− 1

2σ2

I∑

i=1

N∑

n=1

(xi(n)

− f(n;θi) − αisd i
(n))2

)
(17)
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where X = [x1 ,x2 , . . . ,xI ], s = [s1s2 , . . . , sI ]
T , and d =

[d1d2 , . . . , dI ]
T .

The objective is to estimate the dis for all i, in other words to

maximize p(X; s,d,θi , αi). So, according the MLE, the crite-

rion J to be minimized is

J =
I∑

i=1

‖xi − αisd i
− f(θi)‖2 (18)

where f(θi) = [f(1;θi), f(2;θi), . . . , f(N ;θi)]
T , where N

denotes the number of data samples for each trial. To solve

this kind of problem, first we make a change of variables

yi = xi − f(θi). (19)

So, we consider the criterion

J =

I∑

i=1

‖yi −αisd i
‖2 =

I∑

i=1

(yT
i yi + α2

i s
T
d i

sd i
−2αiy

T
i sd i

).

(20)

The noise sweeps ei(n) are modeled as trials of a common

zero mean stationary Gaussian process and we assume that ej

and ek are independent for j 	= k. Since the signal s(n) is un-

known and has a bounded support, the properties sT
d i

sd i
= sT s

and yT
i sd i

= yT
i,−d i

s are valid. Note that it could be proven in

the continuous time domain assuming that s is not truncated in

the observation window for any values of di . The minimization

of the criterion (20) with respect to s(n) is then

ŝ =
1

I

I∑

k=1

1

αk

yk,−dk
. (21)

Substituting this estimation for s in (20), we obtain

J =

I∑

i=1

‖yi − αi ŝd i
‖2

=

I∑

i=1

∥∥∥∥∥yi −
αi

I

I∑

k=1

1

αk

yk,di −dk

∥∥∥∥∥

2

=

I∑

i=1

∥∥∥∥∥yi −
αi

I

I∑

k=1

1

αk

(xk,di −dk
− fd i −dk

(θk ))

∥∥∥∥∥

2

.

Using the equation (19), we obtain the criterion to minimize

J =

I∑

i=1

∥∥∥∥∥xi − f(θi)−
αi

I

I∑

k=1

1

αk

(xk,di −dk
− fd i −dk

(θk ))

∥∥∥∥∥

2

.

(22)

Developing (22), we get

J =

∥∥∥∥∥x1 − f(θ1) −
α1

I

(
1

α1
(x1,0 − f(θ1))

+
1

α2
(x2,d1 −d2

− fd1 −d2
(θ2)) + · · ·

) ∥∥∥∥∥

2

+ · · ·

+

∥∥∥∥∥xi − f(θi) −
αi

I

(
1

α1
(x1,d i −d1

− fd i −d1
(θ1))

+
1

α2
(xi,di −d2

− fd i −d2
(θ2)) + · · ·

) ∥∥∥∥∥

2

+ · · ·

We observe that di appears especially in the ith term and

is present only once in the others terms. Then, we can make

the approximation that in the others terms the dis influence is

negligible if we consider that I is large enough. This global min-

imization can be split in a sum of functions Ji to be minimized

Ji =

∥∥∥∥∥xi − f(θi) −
αi

I

I∑

k=1

1

αk

(xk,di −dk
− fd i −dk

(θk ))

∥∥∥∥∥

2

.

(23)

This global minimization will be performed in an iterative man-

ner as in [10].
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