
HAL Id: hal-00430346
https://hal.science/hal-00430346v1

Preprint submitted on 6 Nov 2009 (v1), last revised 18 Dec 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virial identity and weak dispersion for the magnetic
Dirac equation

Nabile Boussaid, Piero d’Ancona, Luca Fanelli

To cite this version:
Nabile Boussaid, Piero d’Ancona, Luca Fanelli. Virial identity and weak dispersion for the magnetic
Dirac equation. 2009. �hal-00430346v1�

https://hal.science/hal-00430346v1
https://hal.archives-ouvertes.fr


VIRIAL IDENTITY AND WEAK DISPERSION FOR THE

MAGNETIC DIRAC EQUATION

NABILE BOUSSAID, PIERO D’ANCONA, AND LUCA FANELLI

Abstract. We analyze the dispersive properties of a Dirac system perturbed
with a magnetic field. We prove a general virial identity; as applications,
we obtain smoothing and endpoint Strichartz estimates which are optimal
from the decay point of view. We also prove a Hardy-type inequality for the
perturbed Dirac operator.

1. Introduction

The Dirac equation is one of the fundamental systems of modern physics and
mathematics, used to describe a spin 1/2 particle in quantum electrodynamics.
Even if the physical interpretation of Dirac fields is not completely unambiguous,
the very rich mathematical structure of this system makes it an interesting object
of study. We refer to [19] for a thorough treatment of the subject, including the
physical validity of the model.

We fix our notations. The Dirac equation is the 4×4 constant coefficient system

(1.1) iut = mβu + Du, m ∈ R

where u : Rt × R3
x → C4, the operator D is defined as

D = i−1
3
∑

k=1

αk∂k

and the 4 × 4 Dirac matrices can be written

αk =

(

0 σk

σk 0

)

, β =

(

I2 0
0 −I2

)

, k = 1, 2, 3

in terms of the Pauli matrices

I2 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

The coefficient m is called the mass and we shall distingush the massless case
m = 0 from the massive case m 6= 0. This distinction is important in relation to
the dispersive properties of the equation. Indeed, the commutation rules

αℓαk + αkαℓ = 2δklI4

imply the identity

D2 = −∆I4.

Thus we have the property

(i∂t −D)(i∂t + D) = (∆ − ∂2
tt)I4
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showing the intimate relation between the Dirac and the wave equation. A similar
computation in the massive case produces a Klein-Gordon equation with positive
mass m2:

(i∂t −D − mβ)(i∂t + D + mβ) = (∆ − m2 − ∂2
tt)I4

It is then straightforward to derive dispersive and smoothing properties of the free
flows from the corresponding ones for the scalar equations using these identities
(see e.g. [8]). Our purpose here is to extend these properties to the case of system
perturbed by a magnetostatic potential

A = A(x) = (A1(x), A2(x), A3(x)) : R
3 → R

3.

In virtue of the principle of minimal electromagnetic coupling, the influence of the
field is introduced in the equation by replacing the standard derivatives with the
covariant derivatives

∇A := ∇− iA,

so that the operator D is replaced by

(1.2) DA = i−1
3
∑

j=1

αk(∂k − iAk)

We shall also use the unified notation

(1.3) H = i−1α · ∇A + mβ = DA + mβ

for the perturbed operator, which covers both the massive and the massless case.
Thus our main goal here is to investigate the dispersive properties of the flow
u = eitHf relative to the Cauchy problem

(1.4) iut(t, x) + Hu(t, x) = 0, u(0, x) = f(x)

where u(t, x) : R × R3 → C4, f(x) : R3 → C4, and m ∈ R.
It is natural to require that the operator H be selfadjoint. Several sufficient

conditions on the potential A are known; e.g., if the field A is smooth or satisfies

|A(x)| ≤
a

|x|
+ b, a < 1, b > 0

then H admits a unique selfadjoint extension. We refer to [19] for a discussion of
this problem; here we prefer to make an all-encompassing abstract assumption on
the operator:

Self-adjointness assumption (A): the operator H is essentially
selfadjoint on C∞

c (Rn), and in addition, for initial data in C∞
c (Rn),

the flow eitHf belongs to C(R, H3/2).

The density condition allows to approximate rough solutions with smoother ones,
locally uniformly in time, and is easily verified in concrete cases.

Dispersive, smoothing and Strichartz estimates for a perturbed Dirac equation
of the form

iut = H0u + V (x)u

were obtained earlier in [7, 8, 3, 4], for a general potential V = V ∗ ∈ C4×4 satisfying
suitable smallness and decay conditions. In those works we used a perturbative
approach, relying heavily on spectral methods. Here we follow a different approach,
based on multiplier methods, with two major advantages. First, we can partially
overcome the smallness assumption; and second, the assumptions are more natural
from the physical point of view since they are expressed in terms of the magnetic
field

B = curl A,
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which is the physically relevant quantity. Actually, all assumptions are in terms of
the quantities

Bτ =
x

|x|
∧ B, ∂rB = (∂rB

1, ∂rB
2, ∂rB

3),

which are, respectively, the tangential component and the radial derivative of the
field B. Moreover, we establish for the first time a virial identity for the perturbed
Dirac equation, which has several application not restricted to smoothing properties
of the solution. Multiplier methods in relation with weak dispersion properties have
a long story, starting from Morawetz [15] for the Klein-Gordon equation and [6],
[18], [20] for the Schrödinger equation, and adapted to more general situations in
[16], [17]. Potential perturbations for the Schrödinger equation were considered in
[1], [2], while the magnetic case was studied in [11]. The perturbed Dirac equation
was studied in [7], [8], [3] and [4] using spectral instead of multiplier methods, which
are applied for the first time here.

The paper is organized as follows. In the rest of the Introduction we shall de-
scribe the main results of the paper, namely a general virial identity and optimal
smoothing and Strichartz estimates for the Dirac equation perturbed with a mag-
netostatic potential. Sections 2, 3 and 4 are devoted to the proofs. In the Appendix
we prove a magnetic Hardy inequality (Proposition 1.5) which is elementary but
has maybe an independent interest.

1.1. Virial identities. The Dirac operator does not have a definite sign and this is
a substantial difficulty for a direct application of multiplier methods. To overcome
it we shall resort to the squared Dirac equation

(i∂t −H)(i∂t + H) = (−∂tt −H2).

Thus we are reduced to study a diagonal system of wave (Klein-Gordon) equations
of the form

(1.5) utt(t, x) + Lu(t, x) = 0, L = (m2 − ∆)I

with u = u(t, x) : R × R3 → C4. Our first result is a formal virial identity for solu-
tions of a general system of wave equations like (1.5), with L being any selfadjoint
operator on L2(Rn; Ck). In the following, round brackets

(F, G) =

∫

Rn

F · Gdx

denote the inner product in L2(Rn; Ck), while [S, T ] = ST −TS is the commutator
of operators.

Theorem 1.1 (Virial identity for the wave equation). Given a function φ : Rn →
R, define the quantity

(1.6) Θ(t) = (φut, ut) + ℜ ((2φL − Lφ)u, u) .

Then any solution u(t, x) of (1.5) satisfies the formal identities

Θ̇(t) = ℜ ([L, φ]u, ut)(1.7)

Θ̈(t) = −
1

2
([L, [L, φ]]u, u) .(1.8)

We recall that the virial identity for a magnetic wave equation first appeared
in [10, 11]; the abstract formulation given here can be applied to more general
equations including magnetic Dirac systems. Thus, as an application of (1.7), (1.8)
we obtain:
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Theorem 1.2 (Virial identity for the Dirac equation). Assume the operator H
defined by (1.3) satisfies assumption (A) and let φ : R3 → R be a real valued
function. Then any solution u(t, x) of (1.4) satisfies the formal virial identity,
where DB = [∂jBi]i,j=1,3 and S = i

4α ∧ α is the spin operator:

2

∫

R3

∇AuD2φ∇Au −
1

2

∫

R3

|u|2∆2φ + 2ℑ

∫

R3

uφ′Bτ · ∇Au + 2

∫

R3

[S · (DB∇φ) u] · u

(1.9)

= −
d

dt
ℜ

(
∫

R3

ut(2∇φ · ∇Au + u∆φ)

)

.

Remark 1.1. In the following, we will always consider radial multipliers φ, in which
case the last term at the left-hand side of (1.9) simplifies to

S · DB∇φ = φ′S · ∂rB.

In order to deduce a smoothing estimate from the virial identity, it will be
necessary to impose suitable smallness conditions on the components of B appearing
in (1.9), for which no natural positivity assumption holds in general.

1.2. Local smoothing for the magnetic Dirac Equation. As a first applica-
tion of the virial identity, we prove some smoothing estimates for the magnetic
Dirac equation. For f : R3 → C, denote by

‖f‖Lp
rL∞(Sr) := ‖ sup

|x|=r

|f | ‖Lp
r

=

(

∫ +∞

0

( sup
|x|=r

|f |)pdr

)
1

p

.

Moreover, by ∇r
Au and ∇τ

Au we denote, respectively, the radial and tangential
components of the covariant gradient ∇A = ∇− iA(t, x):

(1.10) ∇r
Au =

x

|x|
· ∇Au, ∇τ

Au = ∇Au −
x

|x|
∇r

Au,

so that
|∇r

Au|2 + |∇τ
Au|2 = |∇Au|2.

We can now state our main result.

Theorem 1.3. Let H satisfy the self-adjointness assumption (A). Let B = curl A =
B1 + B2 with B2 ∈ L∞(Rn) and inroduce the quantities

C0 = ‖|x|2B1‖L∞(Rn), C1 = ‖|x|
3

2 Bτ‖L2
rL∞(Sr), C2 = ‖|x|2∂rB‖L1

rL∞(Sr).

We shall assume the smallness conditions

(1.11) C0 <
1

4
, C2

1 + 3C2 + C1

√

C2
1 + 6C2 ≤ 1

and that the L∞ part of B is absent in the massless case:

(1.12) m = 0 =⇒ B2 ≡ 0.

Then for all f ∈ L2, the following estimate holds:

(1.13)

∫ +∞

−∞

sup
R>0

1

R

∫

|x|≤R

|eitHf |2dxdt . ‖f‖2
L2.

Assume moreover that the second inequality in (1.11) is strict; then for any f ∈
D(H) the following estimate is true:

∫ +∞

−∞

sup
R>0

1

R

∫

|x|≤R

|∇AeitHf |2dxdt + ‖eitHf‖2
L∞

x L2

t
(1.14)

+

∫ +∞

−∞

∫

R3

|∇τ
AeitHf |2

|x|
dxdt +

∫ +∞

−∞

sup
R>0

1

R2

∫

|x|=R

|eitHf |2dσdt . ‖Hf‖2
L2.
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Remark 1.2. Notice that all the assumptions in the smoothing Theorem 1.3 are
expressed in terms of the magnetic field B, and consequently the gauge invariance
of the result is preserved.

Example 1.4. Explicit examples of magnetic fields satisfying assumption (1.11)
are of the following form

(1.15) ω

(

x

|x|

)

x

|x|
+ ǫB(x),

where ω is a smooth function on the unit sphere, while ǫ is sufficiently small and
B : R

3 → R
3 satisfies

|Bτ (x)| ≤
1

|x|2−δ + |x|2+δ
, |∂rB| ≤

1

|x|3−δ + |x|3+δ
,

for some δ > 0.

In the proof of Theorem 1.3, we shall use the following Hardy inequality for the
magnetic Dirac operator, proved in the Appendix at the end of the paper. Compare
with [9] for parallel results.

Proposition 1.5. Let B = curl A = B1 + B2 and assume that

(1.16) C0 = ‖|x|2B1‖L∞(Rn) < ∞, ‖B2‖L∞(Rn) < ∞

Then, for any f : R3 → C4 such that Hf ∈ L2, and any ǫ < 1, the following
inequality holds:
(1.17)

m2

∫

|f |2 +

(

1 − ǫ

4
− C0

)
∫

|f |2

|x|2
+ ǫ

∫

|∇Af |2 ≤

(

1 +
‖B2‖L∞

m2

)
∫

R3

|Hf |2.

When m = 0, B2 ≡ 0, the right hand side is to be intepreted simply as
∫

|Hf |2dx.

1.3. Strichartz Estimates. As a natural application of the local smoothing esti-
mates, we now derive from them the Strichartz estimates for the perturbed Dirac
equation. We recall that the solution u(t, x) = eitDf of the free massless Dirac
system with initial value u(0, x) = f(x) satisfies

(1.18) ‖eitDf‖
LpḢ

1

q
−

1

p
−

1

2

q

. ‖f‖L2,

for all wave admissible (p, q)

(1.19)
2

p
+

2

q
=

2

2
, 2 < p ≤ ∞, ∞ > q ≥ 2

while in the massive case m 6= 0 we have

(1.20) ‖eit(D+mβ)f‖
LpH

1

q
−

1

p
−

1

2

q

. ‖f‖L2,

for all Schrödinger admissible (p, q)

(1.21)
2

p
+

3

q
=

3

2
, 2 ≤ p ≤ ∞, 6 ≥ q ≥ 2.

For a proof of these estimates see [8]. In the perturbed case we obtain exactly the
same results:

Theorem 1.6. Assume H and DA satisfy (A). Moreover, assume that (1.11),
(1.12) hold and that

(1.22)
∑

j∈Z

2j sup
|x|∼2j

|A| < ∞.
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Then the massless perturbed flow satisfies the Strichartz estimates

(1.23) ‖eitDAf‖
LpḢ

1

q
−

1

p
−

1

2

q

. ‖f‖L2

for all wave admissible couple (p, q), (in particular, p 6= 2), while in the massive
case we have, for all Schrödinger admissible couple (p, q),

(1.24) ‖eitHf‖
LpH

1

q
−

1

p
−

1

2

q

. ‖f‖L2 (m 6= 0).

2. Proof of the Virial Identities

Proof of Theorem 1.1. The proof relies on a direct computation. By equation (1.5)
we have

(2.1)
d

dt
(φut, ut) = −2ℜ(φLu, ut),

and

(2.2)
d

dt
ℜ((2φL − Lφ)u, u) = ℜ((φL + Lφ)u, ut),

since φ and L are symmetric operators. Summing (2.1) and (2.2) we get (1.7). An
additional differentiation gives

(2.3)
d

dt
ℜ([L, φ]u, ut) = ℜ([L, φ]ut, ut) −ℜ([L, φ]u, Lu).

Since [L, φ] is anti-symmetric, we have

(2.4) ℜ([L, φ]ut, ut) = 0

and also

(2.5) −ℜ([L, φ]u, Lu) = −
1

2
{([L, φ]u, Lu) + (Lu, [L, φ]u)} = −

1

2
([L, [L, φ]]u, u).

Identities (2.3), (2.4) and (2.5) give (1.8). �

Proof of Theorem 1.2. Let u be a solution to equation (1.4). Using the identity

0 = (i∂t −H)(i∂t + H)u = (−∂tt −H2)u,

we see that u solves a Cauchy problem of the form (1.5):

(2.6)











utt + H2u = 0

u(0) = f

ut(0) = iHf

L = H2.

In order to apply (1.7), (1.8), we need to compute explicitly the commutators
appearing in the formulas with the choice L = H2.

In the following we shall need the spin operator S, defined as the triplet of
matrices

S =
i

4
α ∧ α =

i

4
(α2α3 − α3α2, α3α1 − α1α3, α1α2 − α2α1).

We also recall the formula

(2.7) (α · F )(α · G) = F · G + 2iS · (F ∧ G)

which holds for any matrix-valued vector fields F = (F 1, F 2, F 3), G = (G1, G2, G3),
with F i, Gi ∈ M4×4(C) (see [19] for an extensive list of algebraic identities con-
nected to Dirac operators). Thus expanding the square H2 we have

(2.8) H2 = H2
0 −H0(α · A) − (α · A)H0 + (α · A)(α · A),

where the unperturbed part is precisely

(2.9) H2
0 = (m2 − ∆)I4,
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and I4 denotes the identity matrix. Using (2.7) we compute
(2.10)
−H0(α·A)−(α·A)H0+(α·A)(α·A) = i(∇·A)+i(A·∇)+|A|2−2S ·(∇∧ A + A ∧∇) .

Now observe that

∇ ∧ A + A ∧∇ = curlA = B(2.11)

−∆ + i(∇ · A) + i(A · ∇) + |A|2 = (i∇− A)2 = −∆A.(2.12)

In conclusion, by (2.8), (2.9), (2.10), (2.11), (2.12) we obtain

(2.13) H2 = (m2 − ∆A)I4 − 2S · B.

Analogously, in the massless case we have

(2.14) D2
A = −∆AI4 − 2S · B.

Hence the commutator with φ reduces to

(2.15) [H2, φ] = [m2, φ] − [∆A, φ] − 2[S · B, φ] = −[∆A, φ].

Using the Leibnitz rule

∇A(fg) = g∇Af + f∇g,

we arrive at the explicit formula

(2.16) [H2, φ] = −[∆A, φ] = −2∇φ · ∇A − (∆φ).

Recalling (1.6), (1.7), we obtain

(2.17) Θ̇(t) = −ℜ

(
∫

R3

ut(2∇φ · ∇Au + u∆φ)

)

We now compute the second commutator between H2 and φ. By (2.13), (2.16)
we have

(2.18) [H2, [H2, φ]] = [∆A, [∆A, φ]] + 2[S · B, [∆A, φ]].

The term involving the magnetic Laplacian gives

(u, [∆A, [∆A, φ]]u) =4

∫

Rn

∇AuD2φ∇Au −

∫

Rn

|u|2∆2φ(2.19)

+ 4ℑ

∫

Rn

uφ′Bτ · ∇Au

(see formula (2.18) in [11] with V ≡ 0). By (2.16), the last term in (2.18) is equal
to

[S · B, [∆A, φ]] = 2[S · B,∇φ · ∇A] = 2(S · B∇φ · ∇A −∇φ · ∇AS · B).

Both φ and the components of the field B are scalars; moreover, we have

[B,∇A] = −DB,

where DB denotes the (matrix) gradient of the field B, and in conclusion

(2.20) 2[S · B, [∆A, φ]] = −4S · (DB∇φ) .

Finally, identity (1.9) follows from (1.8), (2.17), (2.18), (2.19) and (2.20). �
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3. The smoothing estimates

The formal computations leading to the virial identity (1.9) make sense for suf-
ficiently smooth solutions u ∈ C(R, H3/2) and the choice of multiplier φ we make
below. Thanks to the density assumption (A), if we approximate data f ∈ L2 (resp.
D(H)) with fj ∈ C∞

c , the corresponding solutions uj = eitHfj will converge to the
solution u = eitHf in C([−T, T ]; L2) (resp. C([−T, T ]; D(H))) for all T > 0.

We shall apply identity (1.9) to the solution u = eitHf of the problem

(3.1)

{

iut = Hu

u(0) = f

with an appropriate multiplier function φ.

3.1. Choice of the multiplier. Writing r = |x|, we define φ as follows (see [11])

φ0(x) =

∫ r=|x|

0

φ′
0(s) ds,

where

φ′
0 = φ′

0(r) =

{

M + 1
3r, r ≤ 1

M + 1
2 − 1

6r2 , r > 1,

and M is a positive constant we will choose later. We have

φ′′
0 (r) =

{

1
3 , r ≤ 1
1

3r3 , r > 1

while the bilaplacian is given by

∆2φ0(r) = −4πδx=0 − δ|x|=1.

Moreover, for any R > 0 we define

φR(r) = Rφ0

( r

R

)

,

so that by rescaling we have

(3.2) φ′
R(r) =

{

M + r
3R , r ≤ R

M + 1
2 − R2

6r2 , r > R

(3.3) φ′′
R(r) =

{

1
3R , r ≤ R
1
R · R3

3r3 , r > R

(3.4) ∆φR(r) =

{

1
R + 2M

r , r ≤ R
1+2M

r , r > R

(3.5) ∆2φR(r) = −4πδx=0 −
1

R2
δ|x|=R.

We notice that φ′
R, φ′′

R, ∆φR ≥ 0 and moreover

(3.6) sup
r≥0

φ′
R(r) ≤ M +

1

2
sup
r≥0

φ′′
R(r) ≤

1

3R
, ∆φR(r) ≤

1 + 2M

r
.
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3.2. Estimate of the RHS in (1.9). Consider the expression
∫

R3

ut(2∇φ · ∇Au + u∆φ) = (ut, 2∇φ · ∇Au + u∆φ)L2

appearing at the right hand side in (1.9). Using the equation, we can replace ut

with

ut = −iHu = −imβu − iDAu.

By the selfadjointess of β, it is easy to check that

ℜ [−im(βu, 2∇φ · ∇Au) − im(βu, ∆φu)] = 0,

so that

ℜ(ut, 2∇φ · ∇Au + u∆φ) = 2ℑ(DAu,∇φ · ∇Au) + ℑ(DAu, ∆φu)

and by Young we obtain

(3.7)

∣

∣

∣

∣

ℜ

(
∫

R3

ut(2∇φ · ∇Au + u∆φ)

)
∣

∣

∣

∣

≤
3

2
‖DAu‖2

L2+‖∇φ·∇Au‖2
L2+

1

2
‖u∆φ‖2

L2.

Recalling (3.6), and using Proposition 1.5 with the choice ǫ = 1 − 4C0, which is
positive in virtue of the assumption C0 < 4−1, we have

(3.8) ‖∇φ · ∇Au‖2
L2 ≤

1

1 − 4C0

(

M +
1

2

)

‖DAu‖2
L2.

The third term in (3.7), can be estimated using (3.6) and again the Hardy inequality
(1.17):

(3.9) ‖u∆φ‖2
L2 ≤

4

1 − 4C0
(1 + 2M)‖DAu‖2

L2.

Summing up, by (3.7), (3.8) and (3.9) we conclude that

(3.10)

∣

∣

∣

∣

ℜ

(
∫

R3

ut(2∇φ · ∇Au + u∆φ)

)
∣

∣

∣

∣

. ‖DAu‖2
L2,

for any t ∈ R.

3.3. Estimate of the LHS in (1.9). We shall use the elementary identity

(3.11) ∇AuD2φ∇Au =
φ′(r)

r
|∇τ

Au|2 + φ′′(r)|∇r
Au|2.

By (3.11), (3.2), (3.3) and (3.5), for the first two terms at the LHS of (1.9) we have

2

∫

R3

∇AuD2φR∇Au −
1

2

∫

R3

|u|2∆2φR

(3.12)

≥
2

3R

∫

|x|≤R

|∇Au|2dx + 2M

∫

R3

|∇τ
Au|2

|x|
dx + 2π|u(t, 0)|2 +

1

2R2

∫

|x|=R

|u|2dσ(x),

for any R > 0, where dσ denotes the surface measure on the sphere of radius R.
For the perturbative term involving Bτ in (1.9), by the Hölder inequality and (3.6)
we obtain

2ℑ

∫

R3

uφ′
RBτ · ∇Au

(3.13)

≥ −(2M + 1)

(

sup
R>0

1

R2

∫

|x|=R

|u|2dσ(x)

)
1

2 (∫

R3

|∇τ
Au|2

|x|
dx

)

1

2

‖|x|
3

2 Bτ‖L2
rL∞(Sr).
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For the remaining term in (1.9), observe that the operator norm of the components
of S = (S1, S2, S3) is

‖Sk‖C4→C4 =
1

2
;

hence we can write

2

∫

R3

|u|2S · [∇φRDB](3.14)

≥ −3

(

M +
1

2

)

(

sup
R>0

1

R2

∫

|x|=R

|u|2dσR(x)

)

‖|x|2∂rB‖L1
rL∞(Sr),

since φR is radial. Now we introduce the norms

‖u‖2
X := sup

R>0

1

R

∫

|x|≤R

|u|2dx

‖u‖2
Y := sup

R>0

1

R2

∫

|x|=R

|u|2dσR(x).

Taking the supremum over R > 0 in (3.12) and summing with (3.13), (3.14), we
obtain

2

∫

R3

∇AuD2φR∇Au −
1

2

∫

R3

|u|2∆2φR(3.15)

+ 2ℑ

∫

R3

uφ′
RBτ · ∇Au + 2

∫

R3

|u|2S · [∇φRDB]

≥
2

3
‖∇Au‖2

X +

(

1

2
− 3

(

M +
1

2

)

‖|x|2∂rB‖L1
rL∞(Sr)

)

‖u‖2
Y

− (2M + 1)‖|x|−
1

2∇τ
Au‖L2‖|x|

3

2 Bτ‖L2
rL∞(Sr)‖u‖Y

+ 2M‖|x|−
1

2∇τ
Au‖2

L2 + 2π|u(t, 0)|2.

In order to deduce (1.13), (1.14), we need to ensure the positivity of the right-hand
side of (3.15). Define p, q as

p = ‖|x|−
1

2∇τ
Au‖L2, q = ‖u‖Y ,

while C1, C2 are defined in the statement of the Theorem. Then we are led to study
the inequality

(3.16) 2Mp2 +

(

1

2
− 3

(

M +
1

2

)

C2

)

q2 − (2M + 1)C1pq ≥ 0

and it is immediate to check that (3.16) holds for all p, q ≥ 0 and M = C1/(2
√

C2
1 + 6C2),

provided C1 and C2 satisfy (1.11). Thus, dropping the corresponding nonnegative
terms, we arrive at the estimate

2

∫

R3

∇AuD2φR∇Au −
1

2

∫

R3

|u|2∆2φR(3.17)

+ 2ℑ

∫

R3

uφ′
RBτ · ∇Au + 2

∫

R3

|u|2S · [∇φRDB]

≥
2

3
‖∇Au‖2

X ≥
2

3
‖DAu‖2

X

where in the last step we used the pointwise inequality |DAu| ≤ |∇Au|. We now
integrate in time the virial identity on [−T, T ], and using (3.17) and (3.10) we get

(3.18)

∫ T

−T

‖DAu‖2
Xdt . ‖DAu(T )‖2

L2 + ‖DAu(−T )‖2
L2.

Notice that all the above computations do not depend on the sign of the mass m.
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Let us consider the range of DA, form Proposition 1.5, we have that for C0 < 1/4,
0 6∈ ker(DA) so Ran(DA) is either L2 if 0 is not in the essential spectrum of DA or it
is dense in L2. Now fix an arbitrary g ∈ Ran(DA), there exists f ∈ D(DA) = D(H)
with DAf = g; we consider then the solution u(t, x) of the problem

iut = −mβu + DAu, u(0, x) = f

with opposite mass, and notice that u satisfies estimate (3.18). If we apply to this
equation the operator DA we obtain, by the anticommutation rules,

i(DAu)t = βm(DAu) + DA(DAu), (DAu(0, x)) = DAf

or, in other words, the function v = DAu solves the problem

ivt = Hv, v(0, x) = g =⇒ v = eitHg.

Hence (3.18) can be written

(3.19)

∫ T

−T

‖v‖2
Xdt . ‖v(T )‖2

L2 + ‖v(−T )‖2
L2 = 2‖g‖L2

and letting T → ∞ we conclude that
∫ ∞

−∞

‖eitHg‖2
Xdt . ‖g‖L2

which is exactly (1.13) for g ∈ Ran(DA), which is dense in L2. So density arguments
provide (1.13).

In order to prove (1.14), let us come back to (3.15). If we take the strict inequality
in (3.16), which is equivalent to assume the strict inequality in (1.11), we have that

2

∫

R3

∇AuD2φR∇Au −
1

2

∫

R3

|u|2∆2φR(3.20)

+ 2ℑ

∫

R3

uφ′
RBτ · ∇Au + 2

∫

R3

|u|2S · [∇φRDB]

≥
2

3
‖∇Au‖2

X + ǫ‖u‖2
Y + ǫ‖|x|−

1

2∇τ
Au‖2

L2 + 2π|u(t, 0)|2.

By this inequality and (3.10) we obtain, after an integration in time on [−T, T ],

∫ T

−T

[

2

3
‖∇Au‖2

X + ǫ‖u‖2
Y + ǫ‖|x|−

1

2∇τ
Au‖2

L2 + 2π|u(t, 0)|2
]

dt ≤

≤ ‖DAu(T )‖2
L2 + ‖DAu(−T )‖2

L2.

The right hand side can be estimated using the obvious inequality

‖DAf‖2
L2 ≤ ‖Hf‖2

L2,

and the conservation of ‖Hu(t)‖L2. In order to complete the proof of (1.14), it
only remains to remark that the term ‖u‖L∞

x L2

t
in the inequality is obtained by the

term
∫ T

−T
|u(t, 0)|2dt by translating in space the multiplier φ. Letting T → ∞ we

conclude the proof.

4. Proof of Strichartz estimates

We pass to the proof of Theorem 1.6 for the massless case H = DA. We rewrite
u = eitDAf using the Duhamel formula:

(4.1) u(t) = eitDf +

∫ t

0

ei(t−s)Dα · Au(s)ds.
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The term eitDf is estimated directly via (1.18). For the Duhamel term, we follow
the Keel-Tao method (see [14], [12]): by the Christ-Kiselev Lemma in [5], it is
sufficient to estimate the untruncated integral

∫

ei(t−s)Dα · Au(s)ds = eitD

∫

e−isDα · Au(s)d

since we are only interested in the non-endpoint case. Again by (1.18) we obtain

(4.2)

∥

∥

∥

∥

eitD

∫ t

0

e−isDα · Au(s)ds

∥

∥

∥

∥

LpḢ
1

q
−

1

p
−

1

2

q

.

∥

∥

∥

∥

∫

e−isDα · Au(s)ds

∥

∥

∥

∥

L2

.

Now we use the dual form of the smoothing estimate (1.13), i.e.

(4.3)

∥

∥

∥

∥

∫

e−isDα · Au(s)ds

∥

∥

∥

∥

L2

≤
∑

j∈Z

2
j
2 ‖|A| · |u|‖L2

tL2(|x|∼2j).

Hence, by Hölder inequality, assumption (1.22) and estimate (1.13) we continue the
estimate as follows
(4.4)
∑

j∈Z

2
j
2 ‖|A| · |u|‖L2

tL2(|x|∼2j) ≤
∑

j∈Z

2j sup
|x|∼2j

|A| · sup
j∈Z

2−
j
2 ‖u‖L2

tL2(|x|∼2j) . ‖f‖L2,

and this concludes the proof of (1.23).
We pass now to the proof of (1.24) in the massive case. By mixing free Strichartz

estimates with the dual of (1.13), for the Duhamel term we obtain

(4.5)

∥

∥

∥

∥

eitH0

∫ t

0

e−isH0α · Au(s)ds

∥

∥

∥

∥

LpH
1

q
−

1

p
−

1

2

q

.
∑

j∈Z

2
j
2 ‖|A| · |u|‖L2

tL2(|x|∼2j),

for any Schrödinger admissible couple (p, q), with p ≥ 2. The endpoint here can be
recovered by using exactly the same technique as in [13], Lemma 3. The rest of the
proof is completely analogous to the massless case.

Appendix A. Magnetic Hardy Inequality for Dirac

We now prove Proposition 1.5. Denote by (·, ·) the inner product in L2(R3, C4),
‖ · ‖ the associated norm, and observe that, due to the formula (2.7), we have the
relation

‖DAf‖2 = (α · ∇Af, α · ∇Af) = −((α · ∇A)(α · ∇A)f, f)

= −(∇2
Af, f) − 2i(S · (∇A ∧∇A)f, f),

where S = i
4α ∧ α is the spin operator. Writing for brevity ∂A

j = ∂j − iAj , we can
compute explicitly

∇A ∧∇A =
(

[∂A
2 , ∂A

3 ], [∂A
3 , ∂A

1 ], [∂A
1 , ∂A

2 ]
)

= iB,

where B = curlA. Hence by the previous relation we obtain

0 ≤ ‖DAf‖2 = ‖∇Af‖2 + 2(S · Bf, f).

Notice that S is a triple of matrices of norm ≤ 1/2, hence we can write

|2(S · Bf, f)| ≤ C0‖|x|
−1f‖2

and this implies

(A.1) ‖DAf‖2 ≥ ‖∇Af‖2 − C0‖
f

|x|
‖2 − ‖B2‖L∞‖f‖2.

Now we recall the magnetic Hardy inequality

(A.2)
1

4

∫

|f |2

|x|2
dx ≤

∫

|∇Af |2dx,
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which is proved in [11]. To complete the proof of (1.17), it is sufficient to write

‖Hf‖2
L2 = (H2f, f) = m2‖f‖2 + ‖DAf‖2

and use the preceding estimates.
The ǫ inequality is obtained using

(1 − ǫ)
1

4

∫

|f |2

|x|2
dx + ǫ

∫

|∇Af |2dx ≤

∫

|∇Af |2dx.
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