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Abstract

We propose a new method for the approximation of exact controls of a second order
infinite dimensional system with bounded input operator. The algorithm combines
Russell’s “stabilizability implies controllability” principle with the Galerkin’s method.
The main new feature brought in by this work consists in giving precise error estimates.
In order to test the efficiency of the method, we consider two illustrative examples
(with the finite element approximations of the wave and the beam equations) and we
describe the corresponding simulations.
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1 Introduction

The numerical study of the exact controls of infinite dimensional systems started in the 90’s
with a series of papers of Glowinski and Lions (see [7, 8]) where algorithms to determine the
minimal L2−norm exact controls (sometimes called HUM controls) are provided. Several
abnormalities presented in these works stand at the origin of a large number of articles in
which a great variety of numerical methods are presented and analyzed (see, for instance,
[21], [6] and the references therein). However, except the recent work [5], where the
approximation of the HUM controls for the one dimensional wave equation is considered,
to our knowledge, there are no results on the rate of convergence of the approximative
controls.
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The aim of this work is to provide an efficient numerical method for computing exact
controls for a class of infinite dimensional systems modeling elastic vibrations. Our main
theoretical result gives the rate of convergence of our approximations to an exact control.
Moreover, to illustrate the efficiency of this approach, we apply it to several systems gov-
erned by PDE’s and we describe the associated numerical simulations. Our methodology
combines Russell’s “stabilizability implies controllability” principle with error estimates
for finite element type approximations of the considered infinite dimensional systems. We
focus on the case of bounded input operators which excludes boundary control for systems
governed by partial differential equations. However, the method can be partially extended
to the unbounded input operator case, see Remark 2.7 below.

In order to give the precise statement of our results we need some notation. Let H
be a Hilbert space and assume that A0 : D(A0) → H is a self-adjoint, strictly positive
operator with compact resolvents. Then, according to classical results, the operator A0 is
diagonalizable with an orthonormal basis (ϕk)k>1 of eigenvectors and the corresponding
family of positive eigenvalues (λk)k>1 satisfies limk→∞ λk = ∞. Moreover, we have

D(A0) =



z ∈ H

∣∣∣∣∣∣

∑

k>1

λ2
k |〈z, ϕk〉|2 <∞



 ,

and
A0z =

∑

k>1

λk 〈z, ϕk〉ϕk (z ∈ D(A0)).

For α > 0 the operator Aα
0 is defined by

D(Aα
0 ) =



z ∈ H

∣∣∣∣∣∣

∑

k>1

λ2α
k |〈z, ϕk〉|2 <∞



 , (1.1)

and
Aα

0 z =
∑

k>1

λα
k 〈z, ϕk〉ϕk (z ∈ D(Aα

0 )).

For every α > 0 we denote by Hα the space D(Aα
0 ) endowed with the inner product

〈ϕ,ψ〉α = 〈Aα
0ϕ,A

α
0ψ〉 (ϕ, ψ ∈ Hα).

The induced norm is denoted by ‖·‖α. From the above facts it follows that for every α > 0
the operator A0 is a unitary operator from Hα+1 onto Hα and A0 is strictly positive on
Hα.

Let U be another Hilbert space and let B0 ∈ L(U,H) be an input operator. Consider
the system

q̈(t) +A0q(t) +B0u(t) = 0 (t > 0), (1.2)

q(0) = q0, q̇(0) = q1. (1.3)

The above system is said exactly controllable in time τ > 0 if for every q0 ∈ H 1
2
, q1 ∈ H

there exists a control u ∈ L2([0, τ ], U) such that q(τ) = q̇(τ) = 0. In order to provide
a numerical method to approximate such a control u, we need more assumptions and
notation.
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Assume that there exists family (Vh)h>0 of finite dimensional subspaces of H 1
2

and that

there exist θ > 0, h∗ > 0, C0 > 0 such that, for every h ∈ (0, h∗),

‖πhϕ− ϕ‖ 1
2
≤ C0 h

θ‖ϕ‖1 (ϕ ∈ H1), (1.4)

‖πhϕ− ϕ‖ ≤ C0 h
θ‖ϕ‖ 1

2
(ϕ ∈ H 1

2
), (1.5)

where πh is the orthogonal projector from H 1
2

onto Vh. Assumptions (1.4)-(1.5) are, in

particular, satisfied when finite elements are used for the approximation of Sobolev spaces.
The inner product in Vh is the restriction of the inner product on H and it is still denoted
by 〈·, ·〉. We define the linear operator A0h ∈ L(Vh) by

〈A0hϕh, ψh〉 = 〈A
1
2
0 ϕh, A

1
2
0 ψh〉 (ϕh, ψh ∈ Vh). (1.6)

The operator A0h is clearly symmetric and strictly positive.

Denote Uh = B∗
0Vh ⊂ U and define the operators B0h ∈ L(U,H) by

B0hu = π̃hB0u (u ∈ U), (1.7)

where π̃h is the orthogonal projection of H onto Vh. Note that RanB0h ⊂ Vh. As well-
known, since it is a projector, the operator π̃h ∈ L(H) is self-adjoint. Moreover, from (1.5)
we deduce that

‖ϕ− π̃hϕ‖ 6 ‖ϕ− πhϕ‖ 6 C0 h
θ‖ϕ‖ 1

2
(ϕ ∈ H 1

2
). (1.8)

The adjoint B∗
0h ∈ L(H,U) of B0h is

B∗
0hϕ = B∗

0 π̃hϕ (ϕ ∈ H). (1.9)

Since Uh = B∗
0Vh, from (1.9) it follows that RanB∗

0h = Uh and that

〈B∗
0hϕh, B

∗
0hψh〉U = 〈B∗

0ϕh, B
∗
0ψh〉U (ϕh, ψh ∈ Vh). (1.10)

The above assumptions imply that, for every h∗ > 0, the family
(
‖B0h‖L(U,H)

)
h∈(0,h∗)

is

bounded.

In what follows, we give an algorithm to compute an approximation uh ∈ C([0, τ ];Uh)
of an exact control u ∈ C([0, τ ];U), which drives the solution of (1.2)-(1.3) from the initial
state [ q0

q1 ] ∈ H1 × H 1
2

to rest in time τ . For every h > 0 and n > 1 we consider the

following second order ODE’s :

ẅn
h(t) +A0hw

n
h(t) +B0hB

∗
0hẇ

n
h(t) = 0 (t > 0) (1.11)

wn
h(0) =

{
πhq0, if n = 1

wn−1
b,h (0), if n > 1

ẇn
h(0) =

{
πhq1, if n = 1

ẇn−1
b,h (0), if n > 1,

(1.12)

and
ẅn

b,h(t) +A0hw
n
b,h(t) −B0hB

∗
0hẇ

n
b,h(t) = 0 (t 6 τ) (1.13)

wn
b,h(τ) = wn

h(τ), ẇn
b,h(τ) = ẇn

h(τ). (1.14)
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For every h > 0 we appropriately choose N(h) ∈ N (see Theorem 1.1 below) and we
define [

w0h

w1h

]
=

[
πhq0
πhq1

]
+

N(h)∑

n=1

[
wn

b,h(0)

ẇn
b,h(0)

]
(1.15)

With this notation, uh is defined by

uh = B∗
0hẇh +B∗

0hẇb,h, (1.16)

where wh and wb,h are the solution of

ẅh(t) +A0hwh(t) +B0hB
∗
0hẇh(t) = 0 (t > 0) (1.17)

wh(0) = w0h, ẇh(0) = w1h, (1.18)

ẅb,h(t) +A0hwb,h(t) −B0hB
∗
0hẇb,h(t) = 0 (t 6 τ) (1.19)

wb,h(τ) = wh(τ), ẇb,h(τ) = ẇh(τ). (1.20)

We can now formulate the main result of this paper.

Theorem 1.1. With the above notation and assumptions, assume furthermore that the
system (1.2), (1.3) is exactly controllable in some time τ > 0 and that B0B

∗
0 ∈ L(H1,H 1

2
).

Then there exists a constant mτ > 0 such that the sequence (uh)h>0 of C([0, τ ];Uh) defined
in (1.16) with N(h) =

[
θmτ ln(h−1)

]
, converges when h → 0 to an exact control in time

τ of (1.2), (1.3), denoted by u, for every Q0 = [ q0
q1 ] ∈ H 3

2
× H1. Moreover, there exist

constants h∗ > 0 and C := Cτ such that we have

‖u− uh‖C([0,τ ];U) 6 Chθ ln2(h−1)‖Q0‖H 3
2
×H1 (0 < h < h∗). (1.21)

We prove this theorem in Section 4. In the second section we recall some background
on exact controllability and stabilizability. Section 3 provides some error estimates. In
Section 5 we apply our results to the wave equation in two space dimensions and to the
Euler-Bernoulli beam equation, providing numerical simulations.

2 Some background on exact controllability and uniform stabilization

In this section we recall, with no claim of originality, some background concerning the exact
controllability and uniform stabilizability of the system (1.2), (1.3). We give, in particular,
a short proof, adapted to our case, of Russell’s “stabilizability implies controllability”
principle. This principle has been originally stated in Russell [15, 16] (see also Chen [4]).

Consider the second order differential equation

ẅ(t) +A0w(t) +B0B
∗
0ẇ(t) = 0 (t > 0), (2.1)

w(0) = w0, ẇ(0) = w1. (2.2)

It is well known that the above equation defines a well posed dynamical system in the
state space X = H 1

2
×H. More precisely, the solution [ w

ẇ ] of (2.1), (2.2) is given by

[
w(t)
ẇ(t)

]
= Tt

[
w0

w1

] ([
w0

w1

]
∈ X, t > 0

)
, (2.3)
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where T is the contraction semigroup on X generated by A − BB∗ and A : D(A) → X,
B ∈ L(U,X) are defined by

D(A) = H1 ×H 1
2
, A =

[
0 I

−A0 0

]
, B =

[
0
B0

]
.

We also consider the backwards system

ẅb(t) +A0wb(t) −B0B
∗
0ẇb(t) = 0 (t 6 τ), (2.4)

wb(τ) = w(τ), ẇb(τ) = ẇ(τ). (2.5)

It is not difficult to check that the solution
[ wb

ẇb

]
of (2.4), (2.5) is given by

[
wb(t)
ẇb(t)

]
= Sτ−t

[
w(τ)
ẇ(τ)

]
(t ∈ [0, τ ]), (2.6)

where S is the contraction semigroup in X generated by −A− BB∗.

We define Lτ ∈ L(X) by

Lτ

[
w0

w1

]
=

[
wb(0)
ẇb(0)

] ([
w0

w1

]
∈ X

)
. (2.7)

With the above notation, the operator Lτ clearly satisfies Lτ = SτTτ .

Proposition 2.1. With the above notation, assume that the system (1.2), (1.3) is exactly
controllable in some time τ > 0. Then the semigroups T and S are exponentially stable
and we have ‖Tτ‖L(X) < 1 and ‖Sτ‖L(X) < 1. Moreover, the operator I −Lτ is invertible
and we have

(I − Lτ )
−1 =

∑

n>0

Ln
τ . (2.8)

Proof. The fact that T and S are exponentially stable is well-known (see, for instance,
Haraux [9] and Liu [12]). The more precise facts that ‖Tτ‖L(X) < 1 and ‖Sτ‖L(X) < 1
are easy to establish (see, for instance, Lemma 2.2 in Ito, Ramdani and Tucsnak [10]).
Finally, (2.8) follows from ‖Lτ‖L(X) < 1.

The particular case of Russell’s principle [16], which we need in this work, is given by
the following result:

Proposition 2.2. Assume that (1.2), (1.3) is exactly controllable in time τ > 0. Then a
control u ∈ C([0, τ ];U) for (1.2), (1.3) steering the initial state [ q0

q1 ] ∈ X to rest in time τ
is given by

u = B∗
0ẇ +B∗

0ẇb, (2.9)

where w and wb are the solutions of (2.1)-(2.2) and (2.4)-(2.5) respectively, with

[
w0

w1

]
= (I − Lτ )

−1

[
q0
q1

]
. (2.10)
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Remark 2.3. The original assumption of Russell’s principle was essentially the exponen-
tial stability of the semigroups T and S, whence the name “stabilizability implies control-
lability”. Since, according to Proposition 2.1, these stability properties are equivalent to
the exact controllability of (1.2), (1.3), we made this assumption explicitly in Proposition
2.2. The essential thing retained from the original Russell’s principle is the specific form
(2.9) of u, obtained using the “closed loop semigroups” T and S.

Proof of Proposition 2.2. Denote

q(t) = w(t) − wb(t) (t ∈ [0, τ ]).

Then q clearly satisfies (1.2) with u given by (2.9). Moreover, from (2.10) it follows that
q satisfies the initial conditions (1.3). Finally, from (2.5) it follows that

q(τ) = q̇(τ) = 0.

Remark 2.4. Using the semigroup notation, an alternative way of writing (2.9) is

u(t) = B∗
Tt

[
w0

w1

]
+ B∗

Sτ−tTτ

[
w0

w1

]
(t ∈ [0, τ ]), (2.11)

where w0, w1 satisfy (2.10).

We need below the fact that the restrictions of T and S to H1 × H 1
2

and H 3
2
× H1

are exponentially stable semigroups. Sufficient conditions for this are given in the result
below.

Proposition 2.5. Assume that B0B
∗
0 ∈ L(H1,H 1

2
). Then the restrictions of T and S to

H1 × H 1
2

and H 3
2
× H1 are contraction semigroups on these spaces with generators the

restrictions of A−BB∗ and −A−BB∗ to H 3
2
×H1 and H2 ×H 3

2
respectively. Moreover,

if (1.2), (1.3) is exactly controllable in time τ > 0 then

‖Tτ‖L(H 3
2
×H1) < 1, ‖Sτ‖L(H 3

2
×H1) < 1. (2.12)

Proof. From a well-known result (see, for instance, [19, Proposition 2.10.4]) it follows that
the restriction of T to D(A−BB∗) = H1 ×H 1

2
is a contraction semigroup on D(A−BB∗)

(endowed with the graph norm) whose generator is the restriction of A−BB∗ to D((A−
BB∗)2). Since B0B

∗
0 ∈ L(H1,H 1

2
), it is easy to check that D((A − BB∗)2) = H 3

2
× H1.

It follows that indeed the restriction of T to H1 ×H 1
2

is a contraction semigroup on this

space with generator the restriction of A− BB∗ to H 3
2
×H1. The second assertion on T

can be easily obtained by iterating this argument. The corresponding assertions for S can
be proved in a completely similar manner. Finally, the estimates (2.12) follow from the
corresponding estimates for the norms in L(H1 ×H 1

2
) (see Proposition 2.1) by applying

again Proposition 2.10.4 in [19].

Remark 2.6. An important property of the control u constructed in (1.16) is that, under
appropriate assumptions on B0, its regularity increases when the initial data are more
regular. For instance, if B0B

∗
0 ∈ L(H1,H 1

2
) and [ q0

q1 ] ∈ H 3
2
×H1 then, by Proposition 2.5,

[ w0
w1 ] = (I − Lτ )

−1 [ q0
q1 ] ∈ H 3

2
×H1 so that u ∈ C1([0, τ ];U) and B0u ∈ C([0, τ ];H 1

2
).
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Remark 2.7. Russell’s principle can be extended to the the case of unbounded input
operators B0 ∈ L(U,H− 1

2
), where H− 1

2
is the dual of H 1

2
with respect to the pivot space

H. In this case the system (2.1)-(2.2) is still well-posed and it keeps most of the properties
holding for bounded B0 (see, for instance, [20], [18] and references therein). For a quite
general form of Russell’s principle for unbounded input operators we refer to [14].

3 An approximation result

The aim of this section is to provide error estimates for the approximations of (2.1) by
finite-dimensional systems. Using the notation in Section 1 for the families of spaces
(Vh)h>0, (Uh)h>0 and the families of operators (πh)h>0, (A0h)h>0, (B0h)h>0, we consider
the family of finite dimensional systems

ẅh(t) +A0hwh(t) +B0hB
∗
0hẇh(t) = 0, (3.1)

wh(0) = πhw0 , ẇh(0) = πhw1 . (3.2)

In the case in which B0 = 0 and A0 is the Dirichlet Laplacian, it has been shown in Baker
[1] that, given w0 ∈ H 3

2
, w1 ∈ H1, the solutions of (3.1) converge when h → 0 to the

solution of (2.1). Moreover, [1] contains precise estimates of the convergence rate. The
result below shows that the same error estimates hold when A0 is an arbitrary positive
operator and B0 6= 0. Throughout this section we assume that B0B

∗
0 ∈ L(H1,H 1

2
).

Proposition 3.1. Let w0 ∈ H 3
2
, w1 ∈ H1 and let w,wh be the corresponding solutions of

(2.1), (2.2) and (3.1), (3.2). Moreover, assume that B0B
∗
0 ∈ L(H1,H 1

2
). Then there exist

three constants K0, K1, h
∗ > 0 such that, for every h ∈ (0, h∗), we have

‖ẇ(t) − ẇh(t)‖ + ‖w(t) − wh(t)‖ 1
2

6 (K0 +K1 t)h
θ
(
‖w0‖ 3

2
+ ‖w1‖1

)
(t > 0). (3.3)

Proof. We first note that, according to Proposition 2.5, we have

w ∈ C([0,∞);H 3
2
) ∩ C1([0,∞);H1) ∩ C2([0,∞);H 1

2
),

‖ẅ(t)‖ 1
2

+ ‖ẇ(t)‖1 + ‖w(t)‖ 3
2

6 ‖w1‖1 + ‖w0‖ 3
2

(t > 0). (3.4)

Equation (2.1) can be written

〈ẅ, v〉 + 〈A
1
2
0 w,A

1
2
0 v〉 + 〈B∗

0ẇ, B
∗
0v〉U = 0 (v ∈ H 1

2
),

whereas, using (1.6) and (1.10), we see that (3.1) is equivalent to

〈ẅh, vh〉 + 〈A
1
2
0 wh, A

1
2
0 vh〉 + 〈B∗

0ẇh, B
∗
0vh〉U = 0 (vh ∈ Vh).

Taking v = vh in the first one of the above relations and subtracting side by side it follows
that

〈ẅ − ẅh, vh〉 + 〈A
1
2
0 (w −wh), A

1
2
0 vh〉 + 〈B∗

0ẇ −B∗
0ẇh, B

∗
0vh〉U = 0 (vh ∈ Vh),

7



which yields (recall that πh is the orthogonal projector from H 1
2

onto Vh) that

〈πhẅ − ẅh, vh〉 + 〈A
1
2
0 (πhw − wh), A

1
2
0 vh〉

= 〈πhẅ − ẅ, vh〉 − 〈B∗
0ẇ −B∗

0ẇh, B
∗
0vh〉U (vh ∈ Vh). (3.5)

We set

Eh(t) =
1

2
‖πhẇ − ẇh‖2 +

1

2
‖A

1
2
0 (πhw − wh)‖2.

Using (3.5) it follows that

Ėh(t) = 〈πhẅ − ẅ, πhẇ − ẇh〉 − 〈B∗
0(ẇ − ẇh), B∗

0(πhẇ − ẇh)〉U
= 〈πhẅ − ẅ, πhẇ − ẇh〉 − ‖B∗

0(πhẇ − ẇh)‖2
U + 〈B0B

∗
0(πhẇ − ẇ), (πhẇ − ẇh)〉.

We have thus shown that

Ėh(t) 6 M (‖πhẅ − ẅ‖ + ‖πhẇ − ẇ‖) ‖πhẇ − ẇh‖,

where M = 1 + ‖B0B
∗
0‖. It follows that

2 E
1
2
h (t)

d

dt
E

1
2
h (t) 6 M

√
2 (‖πhẅ − ẅ‖ + ‖πhẇ − ẇ‖) E

1
2
h (t),

which yields

E
1
2
h (t) 6 E

1
2
h (0) +M

√
2

∫ t

0
(‖πhẅ − ẅ‖ + ‖πhẇ − ẇ‖) dt (t > 0).

The above estimate, combined with (3.4), to the fact that Eh(0) = 0 and to (1.5), implies
that there exist two constants K̃, h̃∗ > 0 such that, for every h ∈ (0, h̃∗), we have

E
1
2
h (t) 6 t K̃hθ

(
‖w0‖ 3

2
+ ‖w1‖1

)
dt (t > 0). (3.6)

On the other hand, using (3.4), combined with (1.4) and (1.5), we have that there exists
a constant ĥ∗ > 0 such that, for every h ∈ (0, ĥ∗),

‖ẇ(t) − ẇh(t)‖ 6 ‖ẇ(t) − πhẇ(t)‖ + ‖πhẇ(t) − ẇh(t)‖

6 K

[
hθ

(
‖w0‖ 3

2
+ ‖w1‖1

)
+ E

1
2
h (t)

]
,

‖w(t) − wh(t)‖ 1
2

6 ‖w(t) − πhw(t)‖ 1
2

+ ‖πhw(t) − wh(t)‖ 1
2

6 K

[
hθ

(
‖w0‖ 3

2
+ ‖w1‖1

)
+ E

1
2
h (t)

]
,

for some constant K > 0. The last two inequalities, combined to (3.6) yield the conclusion
(3.3).
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For h > 0 we denote Xh = Vh × Vh and we consider the operators

Ah =

[
0 I

−A0h 0

]
, Bh =

[
0
B0h

]
. (3.7)

The discrete analogues of the semigroups T, S and of the operator Lt, denoted by Th, Sh

and Lh,t respectively, are defined, for every h > 0, by

Th,t = et(Ah−BhB
∗

h
), Sh,t = et(−Ah−BhB

∗

h
), Lh,t = Sh,tTh,t (t > 0). (3.8)

For every h > 0 we define Πh ∈ L(H 1
2
×H 1

2
,Xh) by

Πh =

[
πh 0
0 πh

]
. (3.9)

The following two results are consequences of Proposition 3.1.

Corollary 3.2. There exist two constants C1, h
∗ > 0 such that, for every h ∈ (0, h∗) and

t > 0, we have (recall that Lt = StTt for every t > 0):

‖ΠhTtZ0 − Th,tΠhZ0‖X 6 C1th
θ‖Z0‖H 3

2
×H1 (Z0 ∈ H 3

2
×H1), (3.10)

‖ΠhStZ0 − Sh,tΠhZ0‖X 6 C1th
θ‖Z0‖H 3

2
×H1 (Z0 ∈ H 3

2
×H1), (3.11)

‖ΠhLtZ0 − Lh,tΠhZ0‖X 6 C1th
θ‖Z0‖H 3

2
×H1 (Z0 ∈ H 3

2
×H1). (3.12)

Proof. The estimate (3.10) is nothing else but (3.6) rewritten in semigroup terms. To
prove (3.11), it suffices to notice that PSt = TtP where

P

[
w0

w1

]
=

[
w0

−w1

] ([
w0

w1

]
∈ X

)
.

Finally, estimate (3.12) can be easily obtained from (3.10) and (3.11).

Corollary 3.3. There exist three constants C0, C1, h
∗ > 0 such that, for every t > 0,

h ∈ (0, h∗) and k ∈ N we have

‖Lk
tZ0 − Lk

h,tΠhZ0‖X 6 (C0 + kC1t)h
θ‖Z0‖H 3

2
×H1 (Z0 ∈ H 3

2
×H1).

Proof. We have

‖Lk
tZ0 − Lk

h,tΠhZ0‖X 6 ‖Lk
tZ0 − ΠhL

k
tZ0‖X + ‖ΠhL

k
tZ0 − Lk

h,tΠhZ0‖X . (3.13)

From Proposition 2.5 it follows that, for every t > 0, H 3
2
×H1 is an invariant space for Lt.

Using this fact combined to (1.4) and (1.5) we obtain that there exists a constant C0 > 0
such that the first term of the right-hand side of the above inequality satisfies

‖Lk
tZ0 − ΠhL

k
tZ0‖X 6 C0h

θ‖Z0‖H 3
2
×H1. (3.14)

For the second term of the right-hand side in (3.13) we have

‖ΠhL
k
tZ0−Lk

h,tΠhZ0‖X 6 ‖ΠhL
k
tZ0−Lh,tΠhL

k−1
t Z0‖X +‖Lh,tΠhL

k−1
t Z0−Lk

h,tΠhZ0‖X

= ‖ΠhLt(L
k−1
t Z0) − Lh,tΠhL

k−1
t Z0‖X + ‖Lh,t(ΠhL

k−1
t Z0 − Lk−1

h,t ΠhZ0)‖X .
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Applying (3.12), we obtain

‖ΠhL
k
tZ0 − Lk

h,tΠhZ0‖X 6 C1th
θ‖Z0‖H 3

2
×H1 + ‖ΠhL

k−1
t Z0 − Lk−1

h,t ΠhZ0‖X .

By an obvious induction argument it follows that

‖ΠhL
k
tZ0 − Lk

h,tΠhZ0‖X 6 C1tkh
θ‖Z0‖H 3

2
×H1 (Z0 ∈ H 3

2
×H1). (3.15)

Finally, combining (3.13)-(3.15), we obtain the conclusion of the corollary.

4 Proof of the main result

In this section we continue to use the notation from (3.7)-(3.9) for Ah, Bh, Th, Sh, Lh and
Πh. We first give the following result:

Lemma 4.1. Suppose that the system (1.2), (1.3) is exactly controllable in time τ > 0
and that B0B

∗
0 ∈ L(H1,H 1

2
). Let Q0 = [ q0

q1 ] ∈ H 3
2
×H1 and let u be the control given by

(2.11), where W0 = [ w0
w1 ] is given by (2.10). Let vh : [0, τ ] → Uh be defined by

vh(t) = B∗
hTh,tΠhW0 + B∗

hSh,τ−tTh,τΠhW0 (t ∈ [0, τ ]). (4.1)

Then there exist three constants C2, C3, h
∗ > 0 such that, for every h ∈ (0, h∗), we have

‖(u− vh)(t)‖U 6
C2 + tC3

1 − ‖Lτ‖L(H 3
2
×H1)

hθ‖Q0‖H 3
2
×H1 (t ∈ [0, τ ]). (4.2)

Proof. We first note that from Proposition 2.5 and the fact that Q0 ∈ H 3
2
×H1 it follows

that W0 given by (2.10) still belongs to H 3
2
×H1. Using (2.11), (4.1), (1.9) and (3.7) we

see that for every t ∈ [0, τ ] we have :

‖(u− vh)(t)‖U = ‖B∗
TtW0 + B∗

Sτ−tTτW0 − B∗
hTh,tΠhW0 − B∗

hSh,τ−tTh,τΠhW0‖U

6
∥∥B∗

TtW0 −
[
0 B∗

0h

]
TtW0

∥∥
U

+
∥∥[

0 B∗
0h

]
(TtW0 − Th,tΠhW0)

∥∥
U

+
∥∥B∗

Sτ−tTτW0 −
[
0 B∗

0h

]
Sτ−tTτW0

∥∥
U

+
∥∥[

0 B∗
0h

]
(Sτ−tTτW0 − Sh,τ−tTh,τΠhW0)

∥∥
U
. (4.3)

Let h∗ > 0 be chosen like in Proposition 3.1. To bound the first term in the right hand
side of (4.3) we note that since B∗ =

[
0 B∗

0

]
and B∗

0h = B∗
0 π̃h we have that

∥∥B∗
TtW0 −

[
0 B∗

0h

]
TtW0

∥∥
U

= ‖B∗
0 (ẇ(t) − π̃hẇ(t))‖U 6 ‖B∗

0‖L(H,U)‖ẇ(t) − π̃hẇ(t)‖,

where we have denoted TtW0 =
[

w(t)
ẇ(t)

]
. Using next (1.8) and Proposition 2.5 we obtain

that there exists a constant C0 > 0 such that

∥∥B∗
TtW0 −

[
0 B∗

0h

]
TtW0

∥∥
U

6 C0h
θ ‖ẇ(t)‖ 1

2
6 C0h

θ‖W0‖H 3
2
×H1. (4.4)

Similarly we show that the third term in the right hand side of (4.3) satisfies

∥∥B∗
Sτ−tTτW0 −

[
0 B∗

0h

]
Sτ−tTτW0

∥∥
U

6 C0h
θ‖W0‖H 3

2
×H1. (4.5)
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To bound the second term in the right hand side of (4.3) we use the uniform boundedness
of the family of operators (B∗

0h)h∈(0,h∗) in L(H,U) and Proposition 3.1 to get
∥∥[

0 B∗
0h

]
(TtW0 − Th,tΠhW0)

∥∥
U

6 (K0 +K1 t)h
θ‖W0‖H 3

2
×H1. (4.6)

The forth term in the right hand side of (4.3) can be estimated similarly to get
∥∥[

0 B∗
0h

]
(Sτ−tTτW0 − Sh,τ−tTh,τΠhW0)

∥∥
U

6 (K0 +K1 t)h
θ‖W0‖H 3

2
×H1. (4.7)

Using (4.4)-(4.7), relation (4.3) yields

‖(u− vh)(t)‖U 6 (C2 + tC3)h
θ‖W0‖H 3

2
×H1,

for some constants C2, C3 > 0 and h ∈ (0, h∗). Using in the above estimate the fact,
following from Proposition 2.5 and (2.10), that

‖W0‖H 3
2
×H1 6

1

1 − ‖Lτ‖L(H 3
2
×H1)

‖Q0‖H 3
2
×H1 ,

we obtain the conclusion of this lemma.

We are now in a position to prove the main result of this work.

Proof of Theorem 1.1. Using the semigroup notation introduced in Section 2 we can write
uh given by (1.16) as

uh(t) = B∗
hTh,t

[
w0h

w1h

]
+ B∗

hSh,τ−tTh,τ

[
w0h

w1h

]
(t ∈ [0, τ ]), (4.8)

where [
w0h

w1h

]
=

N(h)∑

n=0

Ln
h,τΠh

[
q0
q1

]
. (4.9)

Since
‖u− uh‖L2([0,τ ],U) 6 ‖u− vh‖L2([0,τ ],U) + ‖vh − uh‖L2([0,τ ],U), (4.10)

it suffices to evaluate the two terms from the right, where vh is given by (4.1).

To estimate the second term in the right-hand side of (4.10) we first note that

(vh − uh)(t)

= B∗
hTh,tΠhW0 + B∗

hSh,τ−tTh,τΠhW0 − B∗
hTh,tΠh

[
w0h

w1h

]
− B∗

hSh,τ−tTh,τΠh

[
w0h

w1h

]
.

It follows that there exists a positive constant C with

‖(vh − uh)(t)‖U 6

∥∥∥∥B∗
hTh,tΠhW0 − B∗

hTh,tΠh

[
w0h

w1h

]∥∥∥∥
U

+

∥∥∥∥B∗
hSh,τ−tTh,τΠhW0 − B∗

hSh,τ−tTh,τΠh

[
w0h

w1h

]∥∥∥∥
U

6 C

∥∥∥∥W0 −
[
w0h

w1h

]∥∥∥∥
X

= C

∥∥∥∥∥∥

∞∑

n=0

Ln
τQ0 −

N(h)∑

n=0

Ln
h,τΠhQ0

∥∥∥∥∥∥
X

6 C

∞∑

n=N(h)+1

‖Lτ‖n
L(X)‖Q0‖X + C

N(h)∑

n=0

‖(Ln
τ − Ln

h,τΠh)Q0‖X .
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The above estimate and Corollary 3.3 imply that there exists C̃ > 0 such that

‖(vh − uh)(t)‖U 6 C
‖Lτ‖N(h)+1

L(X)

1 − ‖Lτ‖L(X)
‖Q0‖X + Chθ

N∑

n=0

(C0 + nC1τ)‖Q0‖H 3
2
×H1

= C
‖Lτ‖N(h)+1

L(X)

1 − ‖Lτ‖L(X)
‖Q0‖X + C̃N2(h)(1 + τ)hθ‖Q0‖H 3

2
×H1

6
C̃(1 + τ)

1 − ‖Lτ‖L(X)

(
‖Lτ‖N(h)

L(X) +N2(h)hθ
)
‖Q0‖H 3

2
×H1 ,

By choosing N(h) =
[

θ
ln(‖Lτ ‖L(X))

ln(h)
]

we deduce that

‖(vh − uh)(t)‖U 6
C̃(1 + τ)

(1 − ‖Lτ‖L(X)) ln2(‖Lτ‖−1
L(X))

ln2(h−1)hθ‖Q0‖H 3
2
×H1.

Combining this last estimate with (4.2) and taking mτ = 1
ln(‖Lτ ‖

−1
L(X)

)
we obtain the con-

clusion (1.21).

Remark 4.2. The functions uh given by (1.16) or vh from (4.1) should not be confused
with the exact control ζh, obtained by applying Russell’s principle to the finite-dimensional
system

q̈h(t) +A0hqh(t) +B0hu = 0, (4.11)

qh(0) = πhq0 , q̇h(0) = πhq1 . (4.12)

Indeed, this control ζh is given by the formula

ζh(t) = B∗
hTh,tZh0 + B∗

hSh,τ−tTh,τZh0, Zh0 = (I − Lh,τ )
−1Πh [ q0

q1 ] , (4.13)

so that uh is obtained by “filtering” (in an appropriate sense) ζh. Note that, since Th and
Sh are not, in general, uniformly exponentially stable (with respect to h), the control ζh
does not, in general, converge to u (see, for instance, [21]).

5 Examples and numerical results

In this section we apply our numerical method to approximate exact controls for the two
dimensional wave equation and for the Euler-Bernoulli beam equation. For both examples
we consider distributed controls.

5.1 The wave equation

In this subsection we consider the approximation of an internal distributed exact control
for the wave equation with homogeneous Dirichlet boundary condition.

Let Ω ⊂ R
2 be an open connected set with boundary of class C2 or let Ω be a rectangular

domain. Let O ⊂ Ω, O 6= Ω be an open set. We consider the control problem

q̈(x, t) − ∆q(x, t) + χO(x)u(x, t) = 0, (x, t) ∈ Ω × [0, τ ] (5.1)

12



q(x, t) = 0, (x, t) ∈ ∂Ω × [0, τ ] (5.2)

q(x, 0) = q0(x), q̇(x, 0) = q1(x), x ∈ Ω, (5.3)

where χO ∈ D(Ω) is such that χO(x) = 1 for x ∈ O and χO(x) > 0 for x ∈ Ω.

In order to apply the method described in (1.11)-(1.20) to this case we need appropriate
choices of spaces and operators. We take H = L2(Ω), U = H and A0 : D(A0) → H with

D(A0) = H2(Ω) ∩H1
0(Ω), A0ϕ = −∆ϕ (ϕ ∈ D(A0)),

where we use the notation Hm(Ω), with m ∈ N, for the standard Sobolev spaces. It is well
known that A0 is a self-adjoint, strictly positive operator with compact resolvents. The
corresponding spaces H 3

2
, H1 and H 1

2
introduced in Section 1 are in this case given by

H 3
2

=
{
ϕ ∈ H3(Ω) ∩H1

0(Ω) | ∆ϕ = 0 on ∂Ω
}
,

H1 = H2(Ω) ∩H1
0(Ω), H 1

2
= H1

0(Ω).

The control operator B0 ∈ L(H) is defined by

B0u = χOu (u ∈ H).

The operator B0 is clearly self-adjoint and B0B
∗
0 ∈ L(H1,H 1

2
). Moreover, we assume

that τ and O are such that the system (5.1)-(5.3) is exactly controllable in time τ , i.e.,
that for every [ q0

q1 ] ∈ H1
0 (Ω) × L2(Ω) there exists a control u ∈ L2([0, τ ], U) such that

q(τ) = q̇(τ) = 0. Sufficient conditions in which this assumption holds are give in various
works, see Lions [11], Bardos, Lebeau and Rauch [2], Liu [12].

To construct an approximating family of spaces (Vh)h>0 we consider a quasi-uniform
triangulation Th of Ω of diameter h, as defined, for instance, in [3, p.106]. For each h > 0
we define Vh by

Vh =
{
ϕ ∈ C(Ω)

∣∣ ϕ|T ∈ P1(T ) for every T ∈ Th, ϕ|∂Ω = 0
}
,

where P1(T ) is the set of affine functions on T . It is well-known (see, for instance, [13,
p.96-97]) that the orthogonal projector πh from H 1

2
= H1

0(Ω) onto Vh satisfies (1.4) and

(1.5) for θ = 1.

We define Uh = {χOvh |vh ∈ Vh} ⊂ U and let B0h ∈ L(H) be given by B0hϕ = π̃h(χOϕ)
for every ϕ ∈ H. Note that B∗

0hϕh = χOϕh and 〈B0hB
∗
0hϕh, ψh〉 = 〈χ2

Oϕh, ψh〉 for every
ϕh, ψh ∈ Vh, where 〈·, ·〉 denotes the inner product in L2(Ω).

With the above choice of spaces and operators, denoting by N(h) =
[

θ
ln ‖Lτ‖

lnh
]
, the

first part of the general method described in (1.11)-(1.20) reduces to the computation of
the families of functions (wn

h)16n6N(h), (wn
b,h)16n6N(h) satisfying, for every vh ∈ Vh,

〈ẅn
h(t), vh〉 + 〈∇wn

h(t),∇vh〉 + 〈χ2
Oẇ

n
h(t), vh〉 = 0 (t ∈ [0, τ ]) (5.4)

wn
h(0) =

{
πhq0, if n = 1

wn−1
b,h (0), if n > 1

ẇn
h(0) =

{
πhq1, if n = 1

ẇn−1
b,h (0), if n > 1,

(5.5)

and
〈ẅn

b,h(t), vh〉 + 〈∇wn
b,h(t),∇vh〉 − 〈χ2

Oẇ
n
b,h(t), vh〉 = 0 (t ∈ [0, τ ]) (5.6)
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wn
b,h(τ) = wn

h(τ), ẇn
b,h(τ) = ẇn

h(τ). (5.7)

The second part of the method described in (1.11)-(1.20) reduces to the computation of
w0h and w1h defined by

[
w0h

w1h

]
=

[
πhq0
πhq1

]
+

N(h)∑

n=1

[
wn

b,h(0)

ẇn
b,h(0)

]
. (5.8)

Finally, the approximation uh of the exact control u is given by

uh = χOẇh + χOẇb,h, (5.9)

where wh and wb,h are the solution of

〈ẅh(t), vh〉 + 〈∇wh(t),∇vh〉 + 〈χ2
Oẇh(t), vh〉 = 0 (vh ∈ Vh, t ∈ [0, τ ]) (5.10)

wh(0) = w0h, ẇh(0) = w1h (5.11)

〈ẅb,h(t), vh〉 + 〈∇wb,h(t),∇vh〉 − 〈χ2
Oẇb,h(t), vh〉 = 0 (vh ∈ Vh, t ∈ [0, τ ]) (5.12)

wb,h(τ) = wh(τ), ẇb,h(τ) = ẇh(τ). (5.13)

Since we checked above all the necessary assumptions, we can apply Theorem 1.1 to obtain
that (uh) converges in C([0, τ ];L2(Ω)) to an exact control u such that

‖u− uh‖C([0,τ ];L2(Ω)) 6 Ch ln2(h−1)(‖q0‖H3(Ω) + ‖q1‖H2(Ω)) (0 < h < h∗). (5.14)

for some constants h∗, C > 0.

The efficiency of the algorithm has been tested in the case Ω = [0, 1]2 and O =
[(x1, x2) × (0, 1)] ∪ [(0, 1) × (y1, y2)], where x1, x2, y1, y2 ∈ (0, 1) are such that x1 < x2

and y1 < y2. The initial data that we want to steer to zero are the “bubble” functions
q0(x, y) = q1(x, y) = x3y3(1 − x)3(1 − y)3 and the control time is τ = 2

√
2. Note that

[ q0
q1 ] ∈ H 3

2
×H 1

2
. We use 60 points of discretization in each space direction. For the time

discretization we used a classical centered-difference implicit scheme and the CFL number
is α = 1/20.

Figure 1 shows the norm decay of the solution of the discretized wave equation core-
sponding to (5.1)-(5.3), with a control uh given by (1.16).

Figure 2 displays the norm of the solution of the controlled discretized wave equation,
corresponding to (5.1)-(5.3), at the time τ for different values of N used in calculus of
[ w0h
w1h

].

5.2 The Euler-Bernoulli beam equation

This subsection is dedicated to the problem of the approximation of an internal distributed
exact control for the Euler-Bernoulli beam equation.

Let Ω = (0, 1) and let O ⊂ Ω be an open and nonempty interval included in Ω. We
consider the following problem

q̈(x, t) +
∂4q

∂x4
(x, t) + χO(x)u(x, t) = 0, (x, t) ∈ Ω × [0, τ ] (5.15)

q(0, t) =
∂2q

∂x2
(0, t) = q(1, t) =

∂2q

∂x2
(1, t) = 0, t ∈ [0, τ ] (5.16)

q(x, 0) = q0(x), q̇(x, 0) = q1(x), x ∈ Ω, (5.17)
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Figure 1: The norms of the solution of the controlled wave equation with the control uh

given by (1.16). In continuous line is the norm H1
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Figure 2: The energy of the controlled wave equation solution at the time τ versus the
number of terms N in the approximation of the control uh.

modeling a beam hinged at the both ends with a control u applied in an internal region.
We denote by χO ∈ D(Ω) a positive function which satisfies χO(x) = 1 for every x ∈ O.
It is well known (see, for instance, [19, Example 6.8.3]) that the system (5.15)-(5.17) is
exactly controllable in any time τ > 0.
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In order to apply the method described in this paper we need to choose appropriate
spaces and operators. Let H = L2(Ω), U = H and consider the operator A0 : D(A0) → H,
defined by

D(A0) =

{
ϕ ∈ H4(Ω) | ϕ(0) =

d2ϕ

dx2
(0) = ϕ(1) =

d2ϕ

dx2
(1) = 0

}
,

A0ϕ =
d4ϕ

dx4
(ϕ ∈ D(A0)).

It is well known that A0 is a self-adjoint, strictly positive operator with compact resolvents.
The corresponding spaces H 3

2
, H1 and H 1

2
introduced in Section 1 are now given by

H 3
2

=

{
ϕ ∈ H6(Ω) | ϕ(0) = ϕ(1) =

d2ϕ

dx2
(0) =

d2ϕ

dx2
(1) =

d4ϕ

dx4
(0) =

d4ϕ

dx4
(1) = 0

}
,

H1 =

{
ϕ ∈ H4(Ω) | ϕ(0) =

d2ϕ

dx2
(0) = ϕ(1) =

d2ϕ

dx2
(1) = 0

}
, H 1

2
= H2(Ω) ∩H1

0(Ω).

As in the case of the wave equation the control operator B0 ∈ L(H) is defined by B0u =
χOu for every u ∈ H. Clearly B0 is self-adjoint and B0 ∈ L(H1,H 1

2
).

To construct an approximating family of spaces (Vh)h>0 we consider an uniform dis-
cretization Ih of the interval (0, 1) formed by N points and h = 1/(N −1). For each h > 0
we define Vh by

Vh = {ϕ ∈ C1([0, 1]) | ϕ|I ∈ P3(T ) for every I ∈ Ih, ϕ(0) = ϕ(1) = 0},

where P3(I) is the set of polynomial functions of degree 3 on I. Note that Vh is the cubic
Hermite finite element space. Denoting by πh the orthogonal projector from H 1

2
to Vh and

applying the Theorem 3.3 from Strang and Fix [17, p. 144] we obtain estimates (1.4) and
(1.5) with θ = 2.

The method described by (1.11)-(1.20) reduces to the computation of the families of
functions (wn

h)16n6N(h), (wn
b,h)16n6N(h) satisfying, for every vh ∈ Vh,

〈ẅn
h(t), vh〉 +

〈
∂2wn

h

∂x2
(t),

d2vh

dx2

〉
+ 〈χ2

Oẇ
n
h(t), vh〉 = 0 (t ∈ [0, τ ]) (5.18)

wn
h(0) =

{
πhq0, if n = 1

wn−1
b,h (0), if n > 1

ẇn
h(0) =

{
πhq1, if n = 1

ẇn−1
b,h (0), if n > 1,

(5.19)

and

〈ẅn
b,h(t), vh〉 +

〈
∂2wn

b,h

∂x2
(t),

d2vh

dx2

〉
− 〈χ2

Oẇ
n
b,h(t), vh〉 = 0 (t ∈ [0, τ ]) (5.20)

wn
b,h(τ) = wn

h(τ), ẇn
b,h(τ) = ẇn

h(τ). (5.21)

The second part of the method described in (1.11)-(1.20) reduces to the computation of
w0h and w1h defined by

[
w0h

w1h

]
=

[
πhq0
πhq1

]
+

N(h)∑

n=1

[
wn

b,h(0)

ẇn
b,h(0)

]
. (5.22)
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Finally, the approximation uh of the exact control u is given by

uh = χOẇh + χOẇb,h, (5.23)

where wh and wb,h are the solution of

〈ẅh(t), vh〉 +

〈
∂2wh

∂x2
(t),

d2vh

dx2

〉
+ 〈χ2

Oẇh(t), vh〉 = 0 (t ∈ [0, τ ]) (5.24)

wh(0) = w0h, ẇh(0) = w1h (5.25)

〈ẅb,h(t), vh〉 +

〈
∂2wb,h

∂x2
(t),

d2vh

dx2

〉
− 〈χ2

Oẇb,h(t), vh〉 = 0 (t ∈ [0, τ ]) (5.26)

wb,h(τ) = wh(τ), ẇb,h(τ) = ẇh(τ). (5.27)

From Theorem 1.1 we obtain that (uh) converges in C([0, τ ];L2(Ω)) to an exact control
u such that

‖u− uh‖C([0,τ ];L2(Ω)) 6 Ch2 ln2(h−1)(‖q0‖H6(Ω) + ‖q1‖H4(Ω)) (0 < h < h∗). (5.28)

for some constants h∗, C > 0.

We tested the algorithm in the case O = (1
3 ,

2
3) and the initial data that we want to

steer to zero are q0(x) = x5(1 − x)5, q1(x) = −q0(x) and the control time is τ = 1. Note
that [ q0

q1 ] ∈ H 3
2
× H1. We used N = 100 discretization points in space and in time an

implicit centered-difference scheme with the CFL number equal to 0.1.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

0 10 20 30 40
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(a) (b)

Time : t

N
o
rm

es
ti
m

a
te

s

‖q(t)‖H2∩H1

0‖q̇(t)‖L2

Norm of q(t) and q̇(t)

E
n
er

g
y

n
o
rm

o
f
[ q

(τ
)

q̇
(τ

)

]

Number of iterations (N)

Figure 3: (a) The norm of the solution of the controlled beam equation, with u = uh and
the initial state q0(x) = x5(1− x)5, q1(x) = −q0(x). (b) The energy of the solution of the
controlled beam at time τ versus the number of terms N in the approximation of uh.

Figure 3(a) shows the norm decay of the solution of the discretized beam equation
coresponding to (5.15)-(5.17), with a control uh given by (1.16). Figure 3(b) displays the
dependence of the norm of the solution of (5.15)-(5.17), at the time τ , to the number N
of terms used in the calculus of [ w0h

w1h
].

In Figure 4 is given the form of the approximate control uh corresponding to the initial
data [ q0

q1 ] considered in the example below.
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Figure 4: The approximation uh with the initial state q0(x) = x5(1− x)5, q1(x) = −q0(x)
and the control time τ = 1.
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