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BIVARIATE COX MODEL AND COPULAS

MOHAMED ACHIBI AND MICHEL BRONIATOWSKI

Abstract. This paper introduces a new class of Cox models for dependent bivariate
data. The impact of the covariate on the dependence of the variables is captured through
the modification of their copula. Various classes of well known copulas are stable under
the model (archimedean type and extreme value copulas), meaning that the role of the
covariate acts in a simple and explicit way on the copula in the class; specific paramet-
ric classes are considered as well as approximation of Positive Quadrant Dependences
through extreme value copulas which are stable under the action of the covariate.

1. Some model of dependence for duration data

Suppose each individual in a homogeneous population is subject to two failure timesX and
Y which are both observed. Assume also that X and Y are both absolutely continuous
(a.c) non negative random variables (r.v’s) with joint cumulative distribution function
(cdf) H(x, y) := P(X ≤ x, Y ≤ y) and probability density function (pdf) h(x, y). The
corresponding survival distribution function (sdf) is H(x, y) := P(X > x, Y > y), and the
margins ofH will be denoted by F and G, from which H(x, y) = 1−F (x)−G(y)+H(x, y).
The hazard rate of X , also known as the instantaneous or age specific failure rate is

λX(x) ≡ lim
dx→0

P(x < X ≤ x+ dx |X > x)

dx
Regression models aim at modeling dependence upon explanatory variables. In the pro-
portional hazard model the cause specific hazard functions satisfy

(1.1)

{
λzX(x) = λ0

X(x)Φ(z)
λz

Y
(y) = λ0

Y
(y)Ψ(z)

Often the positive functions Φ(z) and Ψ(z) are assumed to be parametric functions,
with the standard Φ(z) = exp(α′z) and Ψ(z) = exp(β ′z), α, β ∈ Rd. Investigators are
rarely interested only in marginal behaviors as described in (1.1). This model ignores the
dependence between X and Y and can only be of little interest for practical applications.
In this paper we will consider models for dependence under explanatory variable. Let

(1.2) λY |X=x(y) ≡ lim
dy→0

P(y < Y ≤ y + dy |X = x, Y > y)

dy

and

(1.3) λY |X>x(y) ≡ lim
dy→0

P(y < Y ≤ y + dy |X > x, Y > y)

dy
.

Modeling the multivariate dependency through (1.2) and (1.3) leads to different types of
models, namely

(1.4)

{
λz

X
(x) = λ0

X
(x)Φ(z)

λz
Y |X=x

(y) = λ0
Y |X=x

(y)Ψ(z)
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or

(1.5) (M1)

{
λzX(x) = λ0

X(x)Φ(z)
λz

Y |X>x
(y) = λ0

Y |X>x
(y)Ψ(z)

Direct approaches based on regression type models cannot satisfy our purpose. Indeed
consider for example a model defined through

{
X = r(z, U)
Y = s(z, V )

with r(z, .) and s(z, .) strictly increasing for all z. Then following Nelsen (2006), Theorem
2.4.3, (X, Y ) has the same copula as (U, V ) for all z, which implies that the covariate z
plays no role in the dependency of X and Y . This fact motivates the present approach.
We are interested mainly in positive dependency between the two variables. Both models
(1.4) and (1.5) characterize the property that the failure of one component puts an extra
load on the other component, as for example in studies involving a two organ system. Are
such models mathematically valid ? That is, is there a sdf H

z
for the r.v. (X, Y ) and a

baseline sdf H
0
which are compatible with them ? Ignoring technicalities, this is indeed

always the case for Model (1.4). Model (1.5) is valid under certain restrictions on the
baseline hazard, as will be seen later. Model (1.4) has been widely studied, e.g. DeMasi
et al. (1998). Model (1.5) has been introduce in Depire (2006). The usual paradigm
in regression analysis is conditioning upon the observed value of the variable X . Note
however that in the present setting, the covariate is in fact z. The main difficulty with the
first model is that marginally it does not satisfy (1.1), the Cox paradigm, which trivially
holds true for the model (1.5) with the setting x = 0. For statistical estimation both
models have respective interest. The likelihood function in the first one can easily be
written, and hence the parameters can be estimated by partial likelihood maximization.
The second model allows a straightforward estimation of the parameters, which are defined
independently by the dependence structure induced by the model, setting x = 0 in the
second equation, and applying standard univariate estimation for the parameters of the
functions Φ and Ψ. In this model it will be shown that the dependence features are
captured through the copula of the bivariate baseline. Clearly model (1.5) leads to an
easy description of the sdf of the r.v. (X, Y ), while (1.4) is more adequate for handling
the properties of the pdf. This difference motivates our interest in model (1.5). Since the
sdf can easily be written as a function of the baseline and the covariate, it represents a
natural model for the regression of basic dependence indices on the covariate. Let us now
show the main results which we present in connection with model (1.5):

(1) The TP2 class of sdf’s is a subclass of the Positive Quadrant Dependence (PQD)
sdf class and is stable under the model which is properly defined when the hazard
baseline H

0
is TP2. This class appears quite naturally as the one under which

the model is properly defined, and it is appropriate for the description of positive
dependence between its margins.

(2) Since the TP2 property of a multivariate sdf refers only to its copula, model (1.5)
describes the changes of the baseline copula induced by the covariate. Also this
implies that the model is valid independently of marginal distributions. Only the
structure of dependence is involved in the domain of validity of the model.

(3) Two main classes of copulas are stable under the model namely: when the baseline
bivariate copula is in such a class, so is the copula for all value of the covariate
z. The class of extreme values copulas (evc) enjoys this property. The class of
extended archimedean copulas is also stable under the model. This class results
as a special by-product of a technique intended to produce asymmetric copulas
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due to Genest et al. (see Frees and Valdez, 2007). The so-called class of logistic
asymmetric copulas (see Tawn, 1988), which is a simple extension of the Gumbel
family of copulas, enjoys an important role in the present model. It is stable
under the model and admits a simple parametrization. The covariate z acts in an
adaptive way when the value of the covariate is changed. It is the only bivariate
distribution in the class of frailty models which enjoys such properties in the model.

(4) We can show that to some extent, any PQD copula can be well approximated by
an extreme value copula, which legitimates the restriction of the model to such
class, which is also stable under the model. Inside this class the covariate z acts
in an explicit and easy way.

This paper is organized as follows. In Section 2 we briefly recall the necessary background
from bivariate dependence. Section 3 describes the model. In Section 4 we focus on the
asymmetric Gumbel class of copulas, which is the natural parametric setting of our model;
we also provide some connection with bivariate frailty models. At the opposite in Section
5 we show that general PQD dependence can be handled through the model, making
use of some approximation results pertaining to extreme value copulas. All proofs are
deferred to the Appendix.

2. Some useful facts in bivariate dependence

Let X and Y be two random variables (r.v) with joint sdf H, with margins F and G. All
dependence properties of X and Y are captured through the survival copula C which is
a cdf defined on [0, 1]× [0, 1] through

C(u, v) = H(F
←
(u), G

←
(v))

where u and v belong to [0, 1] and where F
←
(t) := sup{x : F (x) ≥ t}. It is easily checked

that C is indeed a copula. The definition of a copula is given in Nelsen (2006), definition
2.2.2. We will make use of the following definition and notation.

Definition 1. A bivariate cdf H is min-infinitely divisible (min-id) if for all positive γ,
H

γ
is a sdf.

Assume that H is min-id and let V = (X, Y ) be a random vector with sdf H. Then for

all n in N, H
1/n

is a sdf. Further let (Xi, Yi) , i = 1, . . . , n be n copies independent and

identically distributed with sdf H
1/n
. It holds

V
d
= (min

i
Xi,min

i
Yi).

Definition 2. X and Y are positively quadrant dependent (PQD) iff, for all (x, y) in
R2,P(X > x, Y > y) ≥ P(X > x)P(Y > y); in this case we also say that H is PQD.

Definition 3. A mapping φ from R
2
onto R is totally positive of order 2 (TP2) if φ(x, y) ≥

0 for all (x, y) in R
2
and

∣∣∣∣
φ(x1, y1) φ(x1, y2)
φ(x2, y1) φ(x2, y2)

∣∣∣∣ = φ(x1, y1)φ(x2, y2)−φ(x1, y2)φ(x2, y1) ≥ 0,

for all x1 < x2 and y1 < y2.

Remark 1. When φ is C2, then φ is TP2 iff

(2.6)
∂φ

∂x
(x, y)

∂φ

∂y
(x, y) ≤

∂2φ

∂x∂y
(x, y)φ(x, y)

The proof is given in Resnick (1987), p.254.

We also recall the following results.
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Theorem 1 (Joe (1997), Theorem 2.3). If H is a TP2 sdf, then His PQD.

Theorem 2 (Joe (1997), Theorem 2.6). Let H be a cdf, then H is min-id iff H is TP2.

The relation between properties of the s.d.f’s and their copulas is captured in the following
result.

Lemma 1. Let H be a sdf with copula C. Then H is TP2 iff C is TP2.

Proof. By Remark 1, H TP2 ⇒ ∂H
∂x

(x, y)∂H
∂y

(x, y) ≤ ∂2H
∂x∂y

(x, y) × H(x, y). Furthermore,

H(x, y) = C(F (x), G(y)). Therefore,

∂H

∂x
(x, y) = −

∂C

∂u
(u,G(y))

∣∣∣
u=F (x)

× f(x)

∂H

∂y
(x, y) = −

∂C

∂v
(F (x), v)

∣∣∣
v=G(y)

× g(y)

∂2H

∂x∂y
(x, y) =

∂2C

∂u∂v
(u, v)

∣∣∣u=F (x)

v=G(y)

× f(x)× g(y)

Hence,

∂C

∂u
(u,G(y))

∣∣∣
u=F (x)

×
∂C

∂v
(F (x), v)

∣∣∣
v=G(y)

≤
∂2C

∂u∂v
(u, v)

∣∣∣u=F (x)

v=G(y)

× C(F (x), G(y))

�

Definition 4 (Archimedean copula). An Archimedean copula is a function C from [0, 1]2

to [0, 1] given by C(u, v) = ϕ[−1](ϕ(u) +ϕ(v)), where ϕ is a continuous strictly decreasing
convex function from [0, 1] to [0,∞] such that ϕ(1) = 0, and where ϕ[−1] denotes the
”pseudo-inverse” of ϕ, namely

ϕ[−1](t) =

{
ϕ−1(t) for t in [0, ϕ(0)]

0 for t ≥ ϕ(0)

When ϕ(0) = ∞, ϕ is said to be strict and ϕ[−1] ≡ ϕ−1. ϕ is called a generator.

The class of so called extreme value copulas (evc) is important in this model, although not
related here with the theory of bivariate extremes; therefore we define an extreme value
copula through the basic Pickands representation, without further reference to the theory
of bivariate extremes.

Proposition 1 (Pickands Theorem). C is an extreme value copula iff there exists a convex
function A defined on [0, 1], which satisfies A(0) = A(1) = 1 and max(t, 1− t) ≤ A(t) ≤ 1
such that

(2.7) C(u, v) = exp
[
log(uv)A

( log v

log uv

)]
.

The function A is referred to as the dependence function or Pickands function of the
copula C.

3. Introducing covariates in dependence models

3.1. Description of the model. Not all baseline survival d.f’s H
0
defines a model, so

that λz
X

and λz
Y |X>x

are the marginal and conditional specific cause hazards for some

bivariate sdf H
z
with margins F

z
and G

z
under a given covariate z. We conclude from

the first equation of (1.5) that F
z
(x) =

(
F

0
(x)
)Φ(z)

. By the second equation in (1.5),



BIVARIATE COX MODEL AND COPULAS 5

plugging x = 0, we get G
z
(y) =

(
G

0
(y)
)Ψ(z)

. The model is defined when z holds if
(
F

0
(x)
)Φ(z) (

H0
Y |X>x(y)

)Ψ(z)
defines a sdf. Notice that

(3.8) H
z
(x, y) =

(
H

0
(x, y)

)Ψ(z) (
F

0
(x)
)Φ(z)−Ψ(z)

which is indeed a sdf when Φ(z) ≥ Ψ(z) > 0 and
(
H

0
(x, y)

)Ψ(z)

is a sdf.

Also not all bivariate survival d.f’s H
0
are such that for all positive γ,

(
H

0
)γ

is a sdf.

Min-infinite divisibility of the baseline hazard seems to be a natural assumption here.
Assume therefore that:

(H) H0 is min-infinitely divisible

By Theorem 2 and Lemma 1, (H) holds iff C
H

0 is TP2. We have the following result.

Proposition 2. When (H) holds then H
z
defined in (3.8) is a sdf for all z such that

Φ(z) ≥ Ψ(z) > 0.

Let us consider the case when 0 < Φ(z) ≤ Ψ(z). Analogously with (1.5) the model may
then be written

(3.9) (M2)

{
λzY (y) = λ0

Y (y)Ψ(z)
λzX|Y >y(x) = λ0

X|Y>y(x)Φ(z)

permuting the role of X and Y . In a similar way to the above we have that

H
z
(x, y) =

(
H

0
(x, y)

)Φ(z) (
G

0
(y)
)Ψ(z)−Φ(z)

is a proper sdf. To summarize the above arguments we state:

Let the model be defined by (1.5) if Φ(z) ≥ Ψ(z) and by (3.9) if Φ(z) < Ψ(z). Call
(M) the model defined through

(M) := (M1)1Φ(z)≥Ψ(z) + (M2)1Φ(z)<Ψ(z).

This model is well defined, even if Φ(z) and Ψ(z) are not ordered uniformly on the co-
variate z (which can be multivariate); the functions Φ and Ψ can be easily estimated
through the data, since they characterize the marginal Cox models in (M). Suppose that

X and Y are fitted to the same scale under the baseline, namely F
0
(t) = G

0
(t) for all t.

Then Φ(z) ≥ Ψ(z) implies F
z
(t) ≤ G

z
(t) for all t, stretching the fact that X becomes

stochastically smaller than Y under the stress parameter z.

Identifiability of (M) holds; assume for example that Φ(z) ≥ Ψ(z). Then Φ(z) and
Ψ(z) are defined uniquely. Indeed, assume

H
z
(x, y) =

(
H

0
(x, y)

)Ψ(z) (
F

0
(x)
)Φ(z)−Ψ(z)

=
(
H

0
(x, y)

)Ψ′(z) (
F

0
(x)
)Φ′(z)−Ψ′(z)

,
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for all x, y. Then taking logarithms yields Φ(z) = Φ′(z) and Ψ(z) = Ψ′(z).
When (H) holds then for all z , H

z
is a sdf and

H
z
(x, y) = 1Φ(z)≥Ψ(z)

(
H

0
(x, y)

)Ψ(z) (
F

0
(x)
)Φ(z)−Ψ(z)

(3.10)

+1Φ(z)<Ψ(z)

(
H

0
(x, y)

)Φ(z) (
G

0
(y)
)Ψ(z)−Φ(z)

.

Min-infinite divisibility of the baseline will also make any Hz min-infinitely divisible,
showing that this class is stable under (M). Indeed for any positive γ,

(
H

z
(x, y)

)γ
= 1Φ(z)≥Ψ(z)

(
H

0
(x, y)

)γΨ(z) (
F

0
(x)
)γ[Φ(z)−Ψ(z)]

+1Φ(z)<Ψ(z)

(
H

0
(x, y)

)γΦ(z) (
G

0
(y)
)γ[Ψ(z)−Φ(z)]

,

which still is a sdf. By Theorem 2 and Lemma 1 min-infinite divisibility is not a property
of the cdf but of its copula. Formula (3.10) can be written for copulas through

CH
z(u, v) = 1Φ(z)≥Ψ(z)u

Φ(z)−Ψ(z)
Φ(z) C

H
0

(
u

1
Φ(z) , v

1
Ψ(z)

)Ψ(z)

(3.11)

+1Φ(z)<Ψ(z)v
Ψ(z)−Φ(z)

Ψ(z) C
H

0

(
u

1
Φ(z) , v

1
Ψ(z)

)Φ(z)

.

(H) is only a sufficient condition for the model to be defined. The following example
illustrates this fact.

Example 1. Let C
H

0(u, v) = uv exp {−θ log u log v}, with θ ∈ (0; 1]. This is the Gumbel-
Barnett family (see Nelsen, 2006, p.119). By (2.6) it is easy to check that C

H
0 is not

TP2. Using (3.11) and assuming Φ(z) ≥ Ψ(z) we obtain

CH
z(u, v) = uv exp

{
−

θ

Φ(z)
log u log v

}

which still is a Gumbel-Barnett copula when θ
Φ(z)

belongs to (0; 1].

This example shows that (H) is indeed the only acceptable condition for existence. Oth-

erwise the baseline hazard H
0
defines a model only for specific values of the covariate.

This motivates our interest in good classes of min-infinitely divisible copulas which we
intend to regress on the covariate z.

3.2. Stability properties of the model. We introduce two classes of copulas which
are stable under (M).

3.2.1. Extended archimedean copulas. Among all possible types of bivariate dependence
which can be described through the present bivariate Cox model, there exists a class of
copulas which contains the archimedean copulas and which enjoys peculiar stability prop-
erties.

From now on, denote

(3.12) α(z) = min

(
Ψ(z)

Φ(z)
, 1

)

and

(3.13) β(z) = min

(
Φ(z)

Ψ(z)
, 1

)
.
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Let ϕ0 be a generator and Cϕ0 be the archimedean copula with generator ϕ0. We assume

that Cϕ0 is TP2. When H
z
is defined, set CH

z its copula.

Proposition 3. Let H
0
be a sdf with copula Cϕ0. Then, H

z
is defined for all z in the

domain of Φ and Ψ. Further

(3.14) CH
z(u, v) = u1−α(z)v1−β(z)ϕ−1z

(
ϕz

(
uα(z)

)
+ ϕz

(
vβ(z)

))

with

(3.15) ϕz(t) = ϕ0

(
t

1
Φ(z)α(z)

)
= ϕ0

(
t

1
Ψ(z)β(z)

)
.

More generally we have, denoting Π(u, v) = uv

Proposition 4. Assume that

(3.16) C
H

0(u, v) = Π(u1−κ, v1−η)Cϕ0(u
κ, vη), 0 ≤ κ, η ≤ 1

then

(3.17) CH
z(u, v) = Π(u1−α(z)κ, v1−β(z)η)Cϕz(u

α(z)κ, vβ(z)η)

where Cϕz denotes the archimedean copula with generator ϕz defined in (3.15).

3.2.2. Extreme values copulas. We show that the class of evc’s also enjoys stability prop-
erties, as seen in the present Section. Extreme values copulas are TP2 (Hürlimann, 2003).
Among all classes of TP2 copulas, the evc’s enjoy good properties as seen in Proposition 9,
since they can nicely approximate PQD copulas and are parametrized through a smooth
function of only one variable; see Section 5 hereunder.

Proposition 5. When H
0
has an evc C

H
0 with Pickands function A then, denoting CH

z

the copula of H
z
and using (3.11), we have

(3.18) CH
z(u, v) = exp

[
log(uv)Bz

(
log v

log uv

)]

with
(3.19)

Bz(s) = 1−W (z)K(z)− sW (z)[1−K(z)] +W (z)[(1− s)K(z) + s]A

(
s

K(z)(1− s) + s

)

where K(z) = Ψ(z)
Φ(z)

andW (z) = min
(

1
K(z)

, 1
)
= β(z).

Remark 2. This basic result shows that CH
z is an evc with Pickands function Bz. Propo-

sition 5 shows that the class of evc’s is stable under (M). Although the copula of H
0
is an

evc, this does not imply in any respect that its marginals should be extreme value sdf’s.

From (3.19) we deduce the transition formula which links Bz′ to Bz for two different
values of the covariate. It holds

Proposition 6. Under (M) let H
0
has an evc. Then with the above notation, for all z,

z′,
(3.20)

Bz′(s) = 1−
α(z′)

α(z)
+

(
α(z′)

α(z)
−
β(z′)

β(z)

)
s+

[
(1− s)

α(z′)

α(z)
+ s

β(z′)

β(z)

]
Bz

(
sβ(z

′)
β(z)

(1− s) α(z′)
α(z)

+ sβ(z
′)

β(z)

)
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Proposition 6 proves that the transition from z to z′ is independent of the baseline depen-
dence function. Formulas (3.20) can be seen as a kind of expression of the proportional
hazard property, which links two hazard rates independently on the baseline. When the
covariate acts equally on X and Y , i.e. Φ(z) = Ψ(z) for all z, then Bz(s) = A(s) for all
values of s as seen in Proposition 5. Thus, the copula of H

z
equals that of the baseline

H
0
; the dependency structure of X and Y should not be altered through (M). Only the

marginal distributions of X and Y in this case reflect the role of the covariate.

We propose some illustration. We use Φ(z) = eαz , with α = 1.5 and Ψ(z) = eβz, with
β = 2. Figure 3.1 illustrates formula (3.14). We represent the change of the density of
CH

z with z. The archimedean copula is the Clayton copula whose generator is defined by
ϕ(t) = t−θ − 1. We take θ = 3. In this figure the model tends rapidely to independence
since the density of the copula tends to 1 as z increases. Figure 3.2 illustrates the transi-
tion formula (3.19). The baseline copula is the Gumbel copula with θ = 3. The Pickands

function of the Gumbel copula is A(t) =
[
tθ + (1− t)θ

] 1
θ . The dependence functions are

ordered wrt z. As z increases, the model tends to independent marginals.
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Figure 3.1. Illustration of (3.17) with the Clayton copula density for the
baseline (z = 0)
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Figure 3.2. Illustration of formula (3.19)

4. Asymmetric logistic models of dependence

This section deals with specific parametric models for dependence which are stable under
(M). We consider model (M) specialized in the case when the copula of H

0
is a Gumbel

copula. The margins of H
0
can be any. It is a simple parametrized model of copulas,

which is an evc on one hand, and which models frailty bivariate dependence, being hence
an archimedean copula. Indeed it is the only copula satisfying jointly these two properties
(see Nelsen (2006), Theorem 4.5.2; Genest and Rivest (1989), statement A).
The Gumbel copula writes

C(u, v):=exp

[
−
{
(− log u)θ + (− log v)θ

}1/θ
]

with θ ≥ 1. The dependence function of this copula is

(4.21) A(s) =
[
sθ + (1− s)θ

]1/θ
.

Assume that H
0
has an evc with dependence function A. When the covariate z acts, the

dependence function Bz defined through Proposition 5 determines the asymmetric logistic
copula. This copula has three parameters α(z), β(z) and θ. Recall from (3.12), (3.13) and
proposition 5 that

α(z) = min

(
Ψ(z)

Φ(z)
, 1

)
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and

β(z) = min

(
Φ(z)

Ψ(z)
, 1

)
.

It holds

(4.22) Bz(s) = 1− α(z) + [α(z)− β(z)] s+
[
α(z)θ (1− s)θ + β(z)θsθ

]1/θ
.

When α(z) = β(z) (which implies that they equal 1), i.e. when z acts equally on X and
Y, Bz(s) = A(s) for all s. The copula of H

z
is

(4.23) CH
z(u, v) = Π(u1−α(z), v1−β(z))C(uα(z), vβ(z)).

where Π(u, v) := uv is the product copula (see Nelsen, 2006, p.11). The dependence
function Bz is an asymmetric form of the Gumbel dependence function A defined in
(4.21). This is the asymmetric logistic model in Tawn (1988) when the margins are
standard exponential. As developped by Khoudraji (see Khoudraji, 1995, chap 4) and
Genest et al. in Frees and Valdez (2007), Proposition 3, given two dependence functions
A1 and A2 , two constants κ and η with 0 < κ, η < 1 the function defined through

B(s) := (κs+ ηs̄)A1

(
κs

κs+ ηs̄

)
+ (κ̄s+ η̄s̄)A2

(
κ̄s

κ̄s+ η̄s̄

)

where s̄ denotes 1− s, is the dependence function of the extreme value copula defined by
CA1(u

1−κ, v1−η)CA2(u
κ, vη). Genest et al. define this procedure as a technique to generate

asymmetric copulas. The class of copulas defined in (4.23) has been introduced by Genest
et al (see their Proposition 2 in Frees and Valdez (2007)).

We now analyze this class of copulas in terms of frailty models. The Gumbel copula
is associated with a frailty model of order 1, namely

C(u, v) = Λ−1 (Λ(u) + Λ(v))

where Λ−1(s) =
∫∞
0
e−swdM1/θ(w) = e−s

1/θ
, θ > 1, is the Laplace transform of the positive

stable lawM1/θ on R+ with tail heaviness index 1/θ, location parameter 0, scale parameter
1 and skewness parameter 0 (see Ravishanker and Dey (2000) and the example 5 in Oakes

(1989)). Denote W a positive random variable with cdf M1/θ. A bivariate sdf H
0
with

Gumbel copula C writes

H
0
(x, y) =

∫ ∞

0

{
F (x)G(y)

}w
dM1/θ(w),

for some sdf F and G. Therefore H
0
is a frailty bivariate sdf, with stable frailty measure

and margins
∫∞
0
F (x)

w
dM1/θ(w) and

∫∞
0
G(y)

w
dM1/θ(w).

Let U1 and U2 be two independent r.v’s, both independent of W . We assume that U1

and U2 have a positive stable law M1 and M2 with tail heaviness index 1/θ. The r.v
U1 (resp. U2) has shape parameter 1

α(z)
− 1 (resp. 1

β(z)
− 1). Both have location and

skewness parameters 0. Define Si := Ui +W, i = 1, 2 (see Drouet and Monbet, 2004).
Denote ϕ−1i (s) the Laplace transforms of the distribution of Si. Denote further ψ−1i (s)
the Laplace transform of the distribution of Ui. Let M denote the probability measure of
(S1 , S2). For arbitrary sdf H1 and H2 define the bivariate sdf

H(x, y) :=

∫ ∫ {
H1(x)

}s1 {
H2(y)

}s2
dM(s1, s2)

which we call a frailty model of order 2 since it implies a bivariate latent variable.
Frailty models of order two have been considered in Marshall and Olkin (1988) (see
their formula (2.2)). The marginals of H are F (x) =

∫∞
0

{
H1(x)

}s1
dMS1(s1) and G(y) =
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∫∞
0

{
H2(y)

}s2
dMS2(s2).

We prove that the copula of H is (4.23). Indeed

H(x, y) =

∫ {
H1(x)

}u1
dM1(u1)

∫ {
H2(y)

}u2
dM2(u2)

∫ {
H1(x)H2(y)

}w
dM1/θ(w).

Introducing the Laplace transforms defined above and rewriting the marginals F (x) =
ϕ−11

(
− logH1(x)

)
and G(y) = ϕ−12

(
− logH2(y)

)
we obtain the following expression for

the copula of H

(4.24) C(u, v) = ψ−11 (ϕ1(u))ψ
−1
2 (ϕ2(v)) Λ

−1 (ϕ1(u) + ϕ2(v)) ,

since H(x, y) = C(F (x), G(y)). Substituting ψi and ϕi, i = 1, 2 by their expressions in
the above expression, noting that ϕ−1i = ψ−1i Λ−1, (4.24) coincides with (4.23). We now
prove that for an adequate choice of H1 and H2 the bivariate sdf H has same marginals
as H

z
. Indeed let

H1(x) : = exp

[
−
(
−min (Φ(z),Ψ(z)) logF

0
(x)
)θ]

H2(y) : = exp

[
−
(
−min (Φ(z),Ψ(z)) logG

0
(y)
)θ]

which yields F (t) = F
z
(t) and G(t) = G

z
(t) for all t. Therefore H and H

z
coincide. We

have proved

Proposition 7. When H
0
is a frailty bivariate sdf with Gumbel copula, then for all z,

H
z
is a frailty sdf of order 2 with asymmetric logistic copula given in (4.23).

More generally we have

Proposition 8. The class of second order frailty models with asymmetric logistic copula
is stable under (M).

Proof. Let A denote the dependence function of an asymmetric logistic copula.

A(s) := 1− κ+ (κ− η) s+
[
κθ (1− s)θ + ηθsθ

]1/θ
.

By (3.19) it holds

Bz(s) = 1− κ′ + (κ′ − η′) s+
[
κ′θ (1− s)θ + η′θsθ

]1/θ

with

κ′ = α(z)κ

η′ = β(z)η.

These new parameters are in (0, 1) , as are κ and η. We have proved that the class of
sdf with asymmetric logistic copula is stable under (M). Any sdf with such a copula is
necessarily a frailty sdf of order 2. Indeed this follows from (4.24) which enables identifying
the frailty measureM of H

z
as the joint distribution of (S1, S2) as defined here above. �

Remark 3. It can be seen that the only sdf which are frailty of order 2 with evc are pre-
cisely the frailty models with asymmetric logistic copula C(u, v) = Π(u1−κ, v1−η)Cθ(u

κ, vη)
with 0 < η, κ < 1, and where Cθ is the standard Gumbel copula with parameter θ ≥ 1.
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5. Approximation of PQD copulas by EV copulas

Assume that H
0
is PQD. H

0
needs not define the model for all z, since (H) only implies

PQD. In this section we propose to approximate any baseline PQD copula (hence sdf) by
some related evc for which the model is properly defined; see also Gudendorf and Segers
(2009). As seen hereabove in Section 3.2.2 this approximation scheme is stable through
(M).

Denote I := [0, 1] × [0, 1]. Let us parameterize the points in I in the following way.
An evc is characterized through its dependence function A which takes equal values A(s)
when evaluated at s = log v

log uv
. For fixed s in (0, 1] defined the arc s through

s :={(u, v) = (v
1
s
−1, v) : v ∈ [0, 1]}.

This arc is the set of points (u, v) on which any dependence function A is constant and
equals A(s). The family of the arcs s covers I. For any copula C define on s the function

u

v
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Figure 5.3. Parametrization of I2

(5.25) A(s, v) ≡
s

log v
logC(v

1
s
−1, v).

The function A mimics a dependence function A; indeed, when C is an evc, then A(s, v) ≡
A(s) as seen by direct substitution. Using A, the copula C, analogously to (2.7), write

C(u, v) = exp
[
log(uv)A

(
log v
log uv

, v
)]

. In order to construct a dependence function close to

A, average the values of A on s through

(5.26) A(s) ≡

∫ 1

0

A(s, v)dv.
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Obviously other choices are possible which do not change in any way the results in the
Proposition hereafter. Define now:

(5.27) C̃(v
1
s
−1, v) = exp

[
log v

s
A(s)

]

which by a change of variables is also C̃(u, v) = exp
[
log(uv)A

(
log v
log uv

)]
. For completeness

define A(0, v) = 1 and A(1, v) = 1.

Proposition 9. When C is PQD, then the copula C̃ is an evc, and for all s in [0, 1],

(5.28) sup
(u,v)∈s

∣∣∣C(u, v)− C̃(u, v)
∣∣∣ ≤ 2e−1Osc

s

(A)

where Oscs (A) denotes the oscillation of the function A on the arc s, namely

Osc
s

(A) := sup
s,v

∣∣A(s, v)− A(s)
∣∣ .

The upper bound in (5.28) is indeed 0 when C is an evc. Figure 5.4 illustrates the error
between a PQD copula and its approximation (dotted line) and the upper bound of the
former proposition (black line). The abscissa is s, which parametrizes the arcs in I, as
describes above. The graphs show that the bound can be large with respect to the true
distance between the copulas as measured on the arcs. The first example is

(5.29) C(u, v) =
(
1 +

[
(1/u− 1)θ + (1/v − 1)θ

]1/θ)−1
with θ = 6,

and the second one is

(5.30) C(u, v) = exp
(
1−

[
(1− log u)θ + (1− log v)θ − 1

]1/θ)
with θ = 2.

A PQD copula may sometimes be approximated by an evc with good relative accuracy, as
follows: let Av(s) := A(s, v) as defined in (5.26). For all v, Av(s) is a dependence function,

hence generating an evc C̃. Select v⋆ such that sup(s,v)∈s

∣∣∣∣
C(v

1
s−1,v)−C̃(v

1
s−1,v)

C(v
1
s−1,v)

∣∣∣∣ is minimal

among all such evc’s approximations. Figure 5.5 illustrates this construction with the
Clayton copula with θ = 3. The minimal relative error is obtain when Av(s) = A0.2(s).
The propagation of this approximation through (M) can be illustrated in figure 5.6.
Start at z = 0 with the Clayton copula (θ = 3). The accuracy of the evc approximation
is of order 13%. For z 6= 0, we calculate Cz(u, v) by the result in section 3.2. We also

compute C̃z(u, v) through formula (3.18). The relative error between Cz and C̃z is seen
to stay bounded by 20% for reasonable values of z; indeed for example z = 0.1 induces
Ψ(z) = e2z = 1.2, which is meaningful in applications.
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6. Application: measure of dependence

We recall the expression of Spearman’s rho: ρC = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3.
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Figure 6.7. Spearman’s rho for Clayton copula as a function of z
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Figure 6.8. Spearman’s rho for the evc’s approximation of Clayton copula
as a function of z
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A small relative error on the copulas results as a small relative error on the corresponding
Spearman’s rho’s. This is evidenced in the following figures. In Figure 6.7 the baseline
copula C

H
0 is Clayton’s (θ = 3). In ordinates are the values of ρ for various z.

Figure 6.8 is analogous as the preceding one, with baseline C̃
H

0(u, v) = exp
[
log(uv)A

(
v⋆, log v

log uv

)]

following the minimization of the maximal relative error wrt C
H

0 defined above (Clay-
ton).
Define Bz through (3.19) where A(.) = A(v⋆, .). Figure 6.9 presents the relative error

caused on ρ by the substitution of CH
z by C̃H

z = exp
[
log(uv)Bz

(
log v
log uv

)]
.
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Figure 6.9. Relative error pertaining to ρ as a function of z
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7. Simulation results

7.1. Stability of the estimate under the model. For a given copula Cθ in a paramet-
ric family we simulated N independent couples (Xi, Yi), i = 1, ..., N , with joint distribu-

tion function Cθ. Estimation of θ was performed using plug-in technique, leading θ̂. We
repeated the procedure 1000 times. We compared Cz

θ with Cz
θ̂
for various z, given known

functions Φ and Ψ. Here Φ(z) = eαz with α = 1.5 and Ψ(z) = eβz with β = 2. The figures

hereunder show the uniform relative error supu,v

∣∣∣
Cz

θ (u,v)−C
z
θ̂
(u,v)

Cz
θ (u,v)

∣∣∣ with respect to z. We give

the average of the uniform relative error over the 1000 simulations and its 95-percent con-
fidence interval. Figure 7.10 pertains to the Clayton copula Cθ(u, v) = (u−θ + v−θ − 1)−

1
θ

with θ = 3. The estimate θ̂ is defined through θ̂ = 2τ̂
1−τ̂

where

(7.31) τ̂ =
number of concordant pairs− number of disconcordant pairs(

N
2

)

is the empirical estimate of the Kendall’s tau (see Nelsen, 2006, p.158). Figure 7.11

pertains to the Gumbel copula Cθ(u, v) = exp[−{(− log u)θ + (− log v)θ}
1
θ ] with θ = 3.

The estimate θ̂ is defined through θ̂ = 1
1−τ̂

. It appears from those curves that a good

estimate in the reference zone (z = 0) propagates accordingly to other zones (indexed by
z), without deteriorating the estimation accuracy. These facts also hold for very small
values of N ; obviously the larger N , the better the accuracy, for all z.
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Figure 7.10. Relative error pertaining to Clayton copula
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7.2. A simulation based on a study of the model. In this section, the variate z is
bivariate, z = (z1, z2) with zi ∈ {0; 1}, i = 1, 2. We consider model (M) with Weibull
marginals. In the reference zone, z′ = (0, 0), the marginals are W (2, 12000) for X and
W (1.5, 8000) for Y . The copula in the reference zone is Clayton (archimedean) or Gumbel
(which is both archimedean and e.v.c) or Marshall-Olkin (e.v.c). The function Φ (resp Ψ)
is exp(α′z) (resp exp(β′z)) where α′ = (0.1, 0.06) (resp β′ = (0.07, 0.25)). We simulated
N = 200 couples with Gumbel copula or with Clayton copula or with Marshall-Olkin
copula under z′ = (0, 0), 100 values under z′ = (1, 0) and 100 values under z′ = (0, 1).
We estimated α and β using the whole sample (400 couples) through a standard partial
likelihood technique (implemented in R via the coxph procedure). The copula under
z′ = (0, 0) was estimated through the plug-in of the empirical Kendall’s tau. We used

formula (3.14) or formula (3.18) in order to obtain an estimated copula Ĉz under z′ 6= (0, 0)
(with 3 parameters instead of 1). On the other hand, these same formulas provide the
theoretical copula Cz under z. We performed the relative accuracy of the estimation

scheme through supu,v

∣∣∣C
z(u,v)−Ĉz(u,v)

Cz(u,v)

∣∣∣. The procedure is repeated 1000 times. The results

are given in Table 1. We give the average of the uniform relative error over the 1000
simulations (bold character) and its 95-percent confidence interval.

z′ = (0, 0) z′ = (1, 0) z′ = (0, 1)

Clayton (θ = 3)
2.61% 8.81% 12.37%

[2.48%,2.73%] [8.46%,9.17%] [11.84%,12.91%]

Gumbel (θ = 3)
4.38% 6.88% 8.99%

[4.18%,4.58%] [6.61%,7.15%] [8.59%,9.39%]

Marshall-Olkin (θ = 1
3
)

0.74% 1.14% 0.93%
[0.71%,0.78%] [1.09%,1.19%] [0.88%,0.98%]

Table 1. Relative error for different copulas

We note that the relative error is always small. The estimators of Φ and Ψ however are
of mean accuracy, which nevertheless does not deteriorated the quality of the estimators
of the copula, in all cases which we considered.

7.3. Propagation of misspecification errors.

7.3.1. Assuming Φ and Ψ known. We simulated N = 200 couples of r.v’s with Clayton
distribution function Cθ with parameter θ = 3. Here Φ and Ψ are as in Section 7.1. We
estimated the Kendall’s tau through the classical non parametric estimate (7.31). We used
a misspecified model assuming that the data have been generated under a Gumbel copula
Gθ̂ with parameter θ̂ = 1

1−τ̂
. For various z we used formulas (3.14) and (3.18) to define

both the true copula Cz
θ and the misspecified estimated copula Gz

θ̂
. The misspecification

error is defined through Err(z) = supu,v

∣∣∣
Cz

θ (u,v)−G
z
θ̂
(u,v)

Cz
θ (u,v)

∣∣∣.

7.3.2. Assuming Φ and Ψ unknown. We simulated N = 200 couples of r.v’s with Clayton
distribution function Cθ with parameter θ = 3. z is bivariate and the functions Φ and Ψ
are as in Section 7.2. We estimated Φ and Ψ through partial likelihood and we used a
misspecified model assuming that the data have been generated under a Gumbel copula
Gθ̂. The results in Table 2 show that the misspecification error is of order 40% and keeps
stable through the propagation. At the contrary Table 1 shows that the error under the
true model is much smaller and propagates with great accuracy. This enlights the need
for a good specification in this model.
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Figure 7.12. Relative error pertaining to the misspecification when Φ and
Ψ are known

z′ = (0, 0) z′ = (1, 0) z′ = (0, 1)

Clayton - Gumbel
39.41% 39.69% 28.84%

[39.14%,39.67%] [39.39%,40.00%] [28.46%,29.22%]

Table 2. Relative error pertaining to the misspecification when Φ and Ψ
are unknown
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Appendix A. Proof of Proposition 2

Trivially we show that lim
xj→+∞

H
z
(x1, x2) = 0, j = 1, 2; and lim

x1→0
x2→0

H
z
(x1, x2) = 1

Now we will prove that H
z
satisfies the rectangle inequality (Joe (1997), p.11) which we

recall here: for all (a1, a2), (b1, b2) with a1 < b1, a2 < b2,

∆H := H
z
(a1, a2)−H

z
(a1, b2)−H

z
(b1, a2) +H

z
(b1, b2) ≥ 0.

∆H =
(
F

0
(a1)

)Φ(z)−Ψ(z)
[(
H

0
(a1, a2)

)Ψ(z)

−
(
H

0
(a1, b2)

)Ψ(z)
]

−
(
F

0
(b1)
)Φ(z)−Ψ(z)

[(
H

0
(b1, a2)

)Ψ(z)

−
(
H

0
(b1, b2)

)Ψ(z)
]

We denote r(t) =
(
H

0
(t, b2)

)Ψ(z)

−
(
H

0
(t, a2)

)Ψ(z)

. If
(
H

0
)Ψ(z)

is a sdf (which implies

that
(
H

0
)Ψ(z)

is a 2-increasing function), then by Lemma 2.1.3 in Nelsen (2006), the

function r is nondecreasing. Therefore

∆H =
(
F

0
(b1)
)Φ(z)−Ψ(z)

r(b1)−
(
F

0
(a1)

)Φ(z)−Ψ(z)

r(a1)

= r(b1)

[(
F

0
(b1)
)Φ(z)−Ψ(z)

−
r(a1)

r(b1)

(
F

0
(a1)

)Φ(z)−Ψ(z)
]
.

Under (H) and if Φ(z) ≥ Ψ(z) > 0, both
(
H

0
)Ψ(z)

and
(
F

0
)Φ(z)−Ψ(z)

are sdf’s. Use

the fact that r(b1) is negative (which holds since
(
H

0
)Ψ(z)

is a decreasing function of its

second argument) to obtain

r(b1)

[(
F

0
(b1)
)Φ(z)−Ψ(z)

−
r(a1)

r(b1)

(
F

0
(a1)

)Φ(z)−Ψ(z)
]
≥ 0.

Note that if (H) does not hold, H
z
is still a sdf when Φ(z) ≥ Ψ(z) ≥ 1. �

Appendix B. Proof of Proposition 3 and 4

B.1. Proof of Proposition 3. Write C
H

0(u, v) = ϕ−1
0
(ϕ0(u)+ϕ0(v)). Using (3.11) some

calculus yields (3.14). We prove that ϕz(t) = ϕ0

(
t

1
min(Φ(z),Ψ(z))

)
is also a generator for all

values of t in [0, 1].

(1) ϕz(1) = ϕ0(1) = 0

(2) ϕz(t) is strictly decreasing in t, since t
1

min(Φ(z),Ψ(z)) is increasing in t and ϕ0(t) is
strictly decreasing.

(3) It holds ϕ′
0
(t) + tϕ′′

0
(t) ≥ 0 since since C

H
0 is TP2. Let us prove that ϕ′′z(t) ≥ 0.

We have,

ϕ′′z(t) = m(m− 1)tm−2ϕ′
0
(tm) + (mtm−1)2ϕ′′

0
(tm)

≥ m2tm−2 [ϕ′0(t
m) + tmϕ′′0 (t

m)] ≥ 0

where m = 1
min(Φ(z),Ψ(z))

, which proves that ϕz is convex.



24 MOHAMED ACHIBI AND MICHEL BRONIATOWSKI

We now prove that CH
z in (3.14) is TP2. It is readily checked that the product of two TP2

functions is TP2. Now (u, v) 7→ uavb is TP2 for all 0 ≤ a, b ≤ 1 and (u, v) 7→ Cϕz(u
a, vb)

is TP2 for all 0 ≤ a, b ≤ 1, since ϕz satisfies ϕ′
z
(t) + tϕ′′

z
(t) ≥ 0. We conclude that CH

z is
TP2 as a product of two TP2 functions. �

B.2. Proof of Proposition 4. CH
z is (3.17) through simple calculations. That (u, v) 7→

CH
z(u, v) is TP2 is proved as in Proposition 3. �

Appendix C. Proof of Proposition 5

If K(z) < 1 then

ĈHz(u, v) = exp

[
Φ(z)−Ψ(z)

Φ(z)
ln u

]
exp

[(
ln u

Φ(z)
+

ln v

Ψ(z)

)
A

(
ln v
Ψ(z)

lnu
Φ(z)

+ ln v
Ψ(z)

)]Ψ(z)

= exp

[
Φ(z)−Ψ(z)

Φ(z)
ln u+

(
Ψ(z)

Φ(z)
ln u+ ln v

)
A

(
ln v

Ψ(z)
Φ(z)

lnu+ ln v

)]

=
(u=v

1
s−1

)

exp

[(
1

s
− 1

)
Φ(z)−Ψ(z)

Φ(z)
ln v +

[
Ψ(z)

Φ(z)

(
1

s
− 1

)
+ 1

]
A

(
1

(
1
s
− 1
) Ψ(z)

Φ(z)
+ 1

)
ln v

]

= exp

[
ln v

s

{[
(1− s)

Φ(z)−Ψ(z)

Φ(z)

]
+

[
(1− s)

Ψ(z)

Φ(z)
+ s

]
A

(
s

(1− s)Ψ(z)
Φ(z)

+ s

)}]

= exp

[
ln(uv)Bz

1

(
ln v

ln uv

)]

with

(C.32) Bz
1(s) = (1− s)

Φ(z)−Ψ(z)

Φ(z)
+

[
(1− s)

Ψ(z)

Φ(z)
+ s

]
A

(
s

(1− s)Ψ(z)
Φ(z)

+ s

)

Hence

Bz
1(s) = (1− s)[1−K(z)] + [(1− s)K(z) + s]A

(
s

(1− s)K(z) + s

)

= 1−K(z)− s[1−K(z)] + [(1− s)K(z) + s]A

(
s

(1− s)K(z) + s

)

If K(z) > 1

ĈHz(u, v) = exp

[
Ψ(z)− Φ(z)

Ψ(z)
ln v

]
exp

[(
ln u

Φ(z)
+

ln v

Ψ(z)

)
A

(
ln v
Ψ(z)

lnu
Φ(z)

+ ln v
Ψ(z)

)]Φ(z)

= exp

[
Ψ(z)− Φ(z)

Ψ(z)
ln v +

(
ln u+

Φ(z)

Ψ(z)
ln v

)
A

(
ln v

Ψ(z)
Φ(z)

ln u+ ln v

)]

=
(u=v

1
s−1

)

exp

[
Ψ(z)− Φ(z)

Ψ(z)
ln v +

[(
1

s
− 1

)
+

Φ(z)

Ψ(z)

]
A

(
1

(
1
s
− 1
) Ψ(z)

Φ(z)
+ 1

)
ln v

]

= exp

[
ln v

s

{(
s
Ψ(z)− Φ(z)

Ψ(z)

)
+

[
(1− s) + s

Φ(z)

Ψ(z)

]
A

(
s

(1− s)Ψ(z)
Φ(z)

+ s

)}]

= exp

[
ln(uv)Bz

2

(
ln v

ln uv

)]
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with

(C.33) Bz
2(s) = s

Ψ(z)− Φ(z)

Ψ(z)
+

[
(1− s) + s

Φ(z)

Ψ(z)

]
A

(
s

(1− s)Ψ(z)
Φ(z)

+ s

)

Hence

Bz
2(s) = s

(
1−

1

K(z)

)
+

[
s

K(z)
+ 1− s

]
A

(
s

(1− s)K(z) + s

)

= −
s

K(z)
[1−K(z)] +

1

K(z)
[(1− s)K(z) + s]A

(
s

(1− s)K(z) + s

)

If K(z) = 1

ĈHz(u, v) = exp

[
ln(uv)Bz

3

(
ln v

ln uv

)]

with

(C.34) Bz
3(s) = A(s)

We have proved that whatever K(z)

Bz(s) = 1−min(K(z), 1)− smin

(
1

K(z)
, 1

)
[1−K(z)]

+ min

(
1

K(z)
, 1

)
[(1− s)K(z) + s]A

(
s

(1− s)K(z) + s

)

= 1−W (z)K(z)− sW (z)[1 −K(z)] +W (z) [(1− s)K(z) + s]A

(
s

(1− s)K(z) + s

)

We prove that Bz is a dependence function. It holds

Bz(0) = 1−W (z)K(z) +W (z)K(z)A(0)

= 1, since A(0) = 1

and

Bz(1) = 1−W (z)K(z) −W (z)[1 −K(z)] +W (z)A(1)

= 1−W (z) +W (z)A(1)

= 1, since A(1) = 1.

We prove the upper and lower bounds for Bz.

Upper bound. Using A(s) ≤ 1 for all s in[0, 1]

Bz(s) ≤ 1−W (z)K(z)− sW (z)[1 −K(z)] +W (z)[(1 − s)K(z) + s] = 1.

Lower bound. Using A(s) ≥ max(s, 1− s)

Bz(s) ≥ 1−W (z)K(z)− sW (z)[1−K(z)] +W (z)max [s, (1− s)K(z)] .

We prove that the RHS in the above display is larger than both s and 1− s.
Since max [s, (1− s)K(z)] ≥ s,

RHS ≥ 1−W (z)K(z)− sW (z)[1−K(z)] + sW (z)

= 1− (1− s)min(K(z), 1) ≥ s.

Since max [s, (1− s)K(z)] ≥ (1− s)K(z),

RHS ≥ 1−W (z)K(z)− sW (z)[1−K(z)] + (1− s)W (z)K(z)

= 1− sW (z) ≥ 1− s



26 MOHAMED ACHIBI AND MICHEL BRONIATOWSKI

as sought. It remains to prove that Bz(s) is a convex function. Some calculus yields

∂2Bz

∂s2
(s) =

W (z)K2(z)

[(1− s)K(z) + s]3
∂2

∂t2
A(t)

∣∣∣
t= s

(1−s)K(z)+s

≥ 0

as sought. �

Appendix D. Proof of Proposition 6

Write

Bz′(s) = 1−W (z′)K(z′)−sW (z′)[1−K(z′)]+W (z′)[(1−s)K(z′)+s]A

(
s

K(z′)(1− s) + s

)
.

In the above display it holds

A

(
s

K(z′)(1− s) + s

)
= A




s

(1−s)K(z′)
K(z)

+s

K(z)

(
1− s

(1−s)
K(z′)
K(z)

+s

)
+ s

(1−s)
K(z′)
K(z)

+s


 .

The RHS in this latter expression can be written as a function of Bz

(
s

(1−s)K(z′)
K(z)

+s

)
. Some

calculus yields
(D.35)

Bz′(s) = 1−W (z′)K(z′)− sW (z′)[K(z)−K(z′)]− [1 −W (z)K(z)]
W (z′)

W (z)

[
(1− s)

K(z′)

K(z)
+ s

]

+
W (z′)

W (z)

[
(1− s)

K(z′)

K(z)
+ s

]
Bz

(
s

(1− s)K(z′)
K(z)

+ s

)

which is (3.20). �

Appendix E. Proof of Proposition 9

We first prove that C̃ is an evc. For this, we state that for all v in [0, 1],

(1) max(s, 1− s) ≤ A(s, v) ≤ 1
(2) lim

s→0
A(s, v) = lim

s→1
A(s, v) = 1

(3) the function s 7→ A(s, v) is convex.

This will entail that A defined in (5.26) is a dependence function. By Pickands Theorem

(Proposition 1) it will follow that C̃ is an evc.

(1) Proof of the upper bound. Since C is PQD, it holds

C(u, v) ≥ Π(u, v) = uv.

Hence C(v
1
s
−1, v) ≥ v

1
s which is to say that

A(s, v) =
s

log v
logC(v

1
s
−1, v) ≤ 1.

The lower bound. Use the upper Frechet bound for copulas C(u, v) ≤ min(u, v)
to get

logC(v
1
s
−1, v) ≤ log

[
min(v

1
s
−1, v)

]
= min

[(1
s
− 1
)
log v, log v

]

which yields

s

log v
log Ĉ(v

1
s
−1, v) ≥

1

log v
min[(1− s) log v, s log v] = max[s, 1− s].
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(2) This holds true by the definition of A.
(3) Let s1, s2 in [0, 1] and 0 ≤ λ ≤ 1.

A(λs1 + (1− λ)s2, v) =
λs1 + (1− λ)s2

log v
logC

(
v

1
λs1+(1−λ)s2

−1
, v
)

=
λs1
log v

logC

(
exp

[(
1

λs1 + (1− λ)s2
− 1

)
log v

]
, v

)

+
(1− λ)s2
log v

logC

(
exp

[(
1

λs1 + (1− λ)s2
− 1

)
log v

]
, v

)

=:
λs1
log v

A +
(1− λ)s2
log v

B.

It holds

λs1
log v

A ≤
λs1
log v

logC

(
exp

[(
1

λs1
− 1

)
log v

]
, v

)

= λA(s1, v)
logC

(
v

1
λs1
−1
, v
)

logC
(
v

1
s1
−1
, v
)

≤ λA(s1, v).

Use the same argument for (1−λ)s2
log v

B in order to conclude.

We now prove that s 7→ A(s) is also a dependence function, which proves that C̃ is an
evc.
Indeed,

max(s, 1− s) ≤ A(s) =

∫ 1

0

A(s, v)dv ≤ 1.

Furthermore A(0) = A(1) = 1 and A is convex, using the convexity of s 7→ A(s, v) for all
v; this proves the claim.

Let α := sup
(u,v)∈s

∣∣∣ exp
[
log(uv)A

(
log v
log uv

, v
)]

− exp
[
log(uv)A

(
log v
log uv

)] ∣∣∣. It holds

α = sup
(u,v)∈s

∣∣∣∣exp
[
log(uv)A

(
log v

log uv
, v

)]
− exp

[
log(uv)A

(
log v

log uv

)]∣∣∣∣

= sup
s,v

∣∣∣∣exp
[
log v

s
A(s, v)

]
− exp

[
log v

s
A(s)

]∣∣∣∣

Use the fact that for all a, b,
∣∣ea − eb

∣∣ ≤ max
(
ea, eb

)
|a− b| to obtain

α ≤ sup
s,v

[∣∣∣
log v

s

[
A(s, v)− A(s)

]∣∣∣max
(
exp

[ log v
s

A(s, v)
]
, exp

[ log v
s

A(s)
])]

≤ sup
s,v

[∣∣∣
log v

s

[
A(s, v)− A(s)

]∣∣∣ exp
[ log v

s
min

(
A(s, v),A(s)

)]]

≤ sup
s,v

∣∣∣A(s, v)− A(s)
∣∣∣ sup

s,v

(∣∣∣
log v

s

∣∣∣ exp
[ log v

s
min

(
A(s, v),A(s)

)])
.
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Note that sup
s,v

∣∣∣A(s, v) − A(s)
∣∣∣ = Osc

s

(A). Since A(s, v) ≥ max(s, 1 − s) and A(s) ≥

max(s, 1− s)

min[A(s, v),A(s)] ≥ max(s, 1− s) ≥
1

2
.

Hence
log v

s
min

(
A(s, v),A(s)

)
≤

log v

2s
which in turn yields

sup
s,v

(∣∣∣
log v

s

∣∣∣ exp
[ log v

s
min

(
A(s, v),A(s)

)])
≤ sup

s,v

∣∣∣
log v

s

∣∣∣e
log v
2s = sup

x≥0
xe−

x
2 = 2e−1.

�
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