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FREE COOLING AND HIGH-ENERGY TAILS OF GRANULAR GASES WITH VARIABLE RESTITUTION COEFFICIENT

We prove the so-called generalized Haff's law yielding the optimal algebraic cooling rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for inelastic interactions with non constant restitution coefficient. Our analysis is carried through a careful study of the infinite system of moments of the solution to the Boltzmann equation for granular gases and precise L p estimates in the selfsimilar variables. In the process, we generalize several results on the Boltzmann collision operator obtained recently for homogeneous granular gases with constant restitution coefficient to a broader class of physical restitution coefficients that depend on the collision impact velocity. This generalization leads to the so-called L 1 -exponential tails theorem for this model.

INTRODUCTION

1.1. General setting. Rapid granular flows can be successfully described by the Boltzmann equation conveniently modified to account for the energy dissipation due to the inelasticity of collisions. For such a description, one usually considers the collective dynamics of inelastic hard-spheres interacting through binary collisions [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF][START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF][START_REF] Villani | Mathematics of granular materials[END_REF]. The loss of mechanical energy due to collisions is characterized by the so-called normal restitution coefficient which quantifies the loss of relative normal velocity of a pair of colliding particles after the collision with respect to the impact velocity. Namely, if v and v ⋆ denote the velocities of two particles before they collide, their respective velocities v ′ and v ′ ⋆ after collisions are such that

(u ′ • n) = -(u • n) e, (1.1) 
where the restitution coefficient e is such that 0 e 1 and n ∈ S 2 determines the impact direction, i.e. n stands for the unit vector that points from the v-particle center to the v ⋆ -particle center at the instant of impact. Here above

u = v -v ⋆ , u ′ = v ′ -v ′
⋆ , denote respectively the relative velocity before and after collision. The major part of the investigation, at the physical as well as the mathematical levels, has been devoted to the particular case of a constant normal restitution. However, as described in the monograph [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF], it appears that a more relevant description of granular gases should deal with a variable restitution coefficient e(•) depending on the impact velocity, i.e. e := e(|u • n|).

The most common model is the one corresponding to visco-elastic hard-spheres for which the restitution coefficient has been derived by Schwager and Pöschel in [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF]. For this peculiar model, e(•) admits the following representation as an infinite expansion series:

e(|u • n|) = 1 + ∞ k=1 (-1) k a k |u • n| k/5 , u ∈ R 3 , n ∈ S 2 (1.2)
where a k 0 for any k ∈ N. We refer the reader to [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF][START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF] for the physical considerations leading to the above expression (see also the Appendix A for several properties of e(•) in the case of visco-elastic hard-spheres). This is the principal example we have in mind for most of the results in the paper, though, as we shall see, our approach will cover more general cases including the one of constant restitution coefficient.

In a kinetic framework, behavior of the granular flows is described, in the spatially situation we shall consider here, by the so-called velocity distribution f (v, t) which represents the probability density of particles with velocity v ∈ R 3 at time t 0. The time-evolution of the one-particle distribution function f (t, v), v ∈ R 3 , t > 0 satisfies the following

∂ t f (t, v) = Q e (f, f )(t, v), f (t = 0, v) = f 0 (v) (1.3) 
where Q e (f, f ) is the inelastic Boltzmann collision operator, expressing the effect of binary collisions of particles. The collision operator Q e shares a common structure with the classical Boltzmann operator for elastic collision [START_REF] Cercignani | The Boltzmann equation and its applications[END_REF][START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] but is conveniently modified in order to take into account the inelastic character of the collision mechanism. In particular, Q e depends in a very strong and explicit way on the restitution coefficient e. Of course, for e ≡ 1, one recovers the classical Boltzmann operator. We postpone to Section 2.1 the precise expression of Q e . Due to the dissipation of kinetic energy during collisions, in the absence of external forces, the granular temperature

E(t) = R 3 f (t, v)|v| 2 dv
is continuously decreasing and is expected to go to zero as time goes to infinity, expressing the cooling of the granular gases.

Determining the precise rate of decay to zero for the granular temperature is the main goal of the present work. The asymptotic behavior for the granular temperature was first explained in [START_REF] Haff | Grain flow as a fluid-mechanical phenomenon[END_REF] by P. K. Haff at the beginning of the 80's for the case of constant restitution coefficient, thus, it has become standard to refer to this behavior simply as Haff's law.

The mathematical study of Boltzmann models for granular flows was first restricted to the so-called inelastic Maxwell molecules where the collision rate is independent of the relative velocity [START_REF] Bisi | Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria[END_REF][START_REF] Bisi | Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model[END_REF][START_REF] Bobylev | On some properties of kinetic and hydrodynamic equations for inelastic interactions[END_REF][START_REF] Carlen | Strong convergence towards homogeneous cooling states for dissipative Maxwell models[END_REF][START_REF] Carrillo | Contractive probability metrics and asymptotic behavior of dissipative kinetic equations[END_REF]. Later, the mathematical investigation of hard-spheres interactions was initiated in [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] for diffusively heated gases and continued in a series of papers [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part I: The Cauchy problem[END_REF][START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF] where the first rigorous proof of the Haff's law was presented in the case of constant restitution coefficient. Additional relevant work in the existence and stability of the homogeneous cooling state can be found in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF][START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF]. We refer to [START_REF] Villani | Mathematics of granular materials[END_REF] for a mathematical overview of the relevant questions addressed by the kinetic theory of granular gases and complete bibliography on the topic.

From the mathematical viewpoint the literature on granular gases with variable restitution coefficient is rather limited. However, the Cauchy problem for the homogeneous inelastic Boltzmann equation has been studied in great detail and full generality in [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part I: The Cauchy problem[END_REF], including the class of restitution coefficients that we are dealing with in this paper. For the inhomogeneous inelastic Boltzmann equation the literature is yet more scarce, in this respect we mention the work by one of the authors [START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF] that treats the Cauchy problem in the case of near-vacuum data. It is worthwhile mentioning that the scarcity of results regarding existence of solutions for the inhomogeneous case is explained by the lack of entropy estimates for the inelastic Boltzmann equation, thus, well known theories like the DiPerna-Lions renormalized solutions are no longer available. More complex behavior that involve boundaries, for instance clusters and Maxwell demons, a re well beyond of the present techniques.

1.2. Main results and methodology. Physical considerations and careful dimensional analysis led P. K. Haff [START_REF] Haff | Grain flow as a fluid-mechanical phenomenon[END_REF] to predict that, for constant restitution coefficient, the temperature E(t) of a granular gas should cool down at a quadratic rate:

E(t) = O t -2 as t → ∞.
Similar considerations led Schwager and Pöschel [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF] to conclude that, for the restitution coefficient associated to the visco-elastic hard-spheres (1.2), the decay should be slower than the one predicted by Haff, namely at an algebraic rate proportional to t -5/3 . These considerations are precisely described in the main result of this paper where the key intuitive fact is that the decay rate of E(t) is completely determined by the behavior of the restitution coefficient e(|u • n|) for small impact velocity (Assumption (1) in 3.1). Precisely, our result is valid for restitution coefficient such that there exist some constants α > 0 and γ 0 such that

e(|u • n|) ≃ 1 -α|u • n| γ for |u • n| ≃ 0
and reads as follows:

Theorem 1.1. For any initial distribution velocity f 0 0 satisfying the conditions given by (2.8) with f 0 ∈ L p 0 (R 3 ) for some 1 < p 0 < ∞, the solution f (t, v) to the associated Boltzmann equation (2.7) satisfies the generalized Haff's law for variable restitution coefficient e(•) fulfilling Assumptions 3.1 and 4.9:

c(1 + t) -2 1+γ E(t) C(1 + t) -2 1+γ , t 0 (1.4)
where We recover with Theorem 1.1 the optimal decay for constant restitution coefficient (γ = 0) given in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] and the one predicted for viscoelastic hard-spheres (γ = 1/5) in [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF]. The method of the proof has similarities to that of the constant restitution coefficient [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] but technically more challenging.

E(t) = R 3 f (t, v)|v|
The main tools to prove Theorem 1.1 are the following:

• The study of the moments of solutions to the Boltzmann equation using a generalization of the Povzner's lemma developed in [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]. • Precise L p estimates, in the same spirit of [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], of the solution to the Boltzmann equation for p > 1.

• For the previous item, the analysis is understood in an easiest way using rescaled solutions to (1.3) of the form

f (t, v) = V (t) 3 g(τ (t), V (t)v)
where τ (•) and V (•) are fixed time-scaling functions to be crafted depending upon the restitution coefficient. In the self-similar variables (τ, w) the function g(τ, w) is a solution of an evolution problem of the type

∂ τ g(τ, w) + ξ(τ )∇ w • (wg(τ, w)) = Q e(τ ) (g, g) (1.5)
for some ξ(τ ) depending on the time scale τ . The collision operator Q e(τ ) (g, g) is associated to a time-dependent restitution coefficient e(τ ) (see Section 2.3 for details). In this respect we notice that one notable difference with respect to the case of a constant restitution coefficient treated in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] is that the rescaled collision operator depends on the (rescaled) time τ , leading to a non-autonomous problem for g. This is the main reason why the construction of self-similar profile g independent of τ obtained in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] (Homogeneous Cooling State) is not valid for non constant restitution coefficient. Let us explain in more details our method of proof: 1. We start proving in Sections 2 and 3 an upper bound for the decay of the energy. This shows that, for restitution coefficients satisfying 3.1, the cooling of the temperature is at least algebraic. More precisely, under suitable assumptions on the restitution coefficient e(•), we exhibit a convex and increasing mapping Ψ e such that

d dt E(t) -Ψ e (E(t)) ∀t 0,
which leads to an upper bound for E(t) of the type

E(t) C(1 + t) -2 1+γ ∀t 0
for some positive constant C > 0. 2. The lower bound for the free cooling is much more intricate to establish and consists in proving that the cooling rate found above is optimal, i.e., there exists c > 0 such that

E(t) c(1 + t) -2 1+γ ∀t 0. (1.6)
A careful study of the moments of the solution to (1.3) shows that it suffices to prove a similar algebraic lower bound with some arbitrary rate, i.e. (1.6) will hold if there exists λ > 0 and c > 0 such that

E(t) c(1 + t) -λ ∀t 0.
These two points are proved in the last part of Section 3.

3.

To prove that the lower bound with some unprescribed rate λ holds we use, as in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], precise L p estimates (p > 1) for solutions to (1.3) in self-similar variables. We craft a correct time scaling functions τ (t) and V (t) such that (1.6) is equivalent to Θ(τ (t)) c (here Θ(•) denotes the second moment of g). Once this scale is fixed, the function g(τ, w) satisfies the rescaled Boltzmann equation (1.5) with ξ(τ ) → 0 as τ → ∞. This is a major difference with the constant restitution coefficient case where ξ(τ ) ≡ 1. This technical difficulty is overcome proving that the L p -norms of g(τ ) behaves at most polynomially with respect to τ . For technical reasons which are peculiar to the inelastic interactions, noticed in [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF], we will restrict ourself to study L p -norms in the range p ∈ [START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF][START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF]. The details can b e found in Section 5.

The derivation of precise L p estimates for the solution g(τ, w) to (1.5) requires a careful study of the collision operator Q e and its regularity properties. We present in Section 4 a full discussion of the regularity and integrability properties of the gain part of the collision operator Q + B,e associated to a general collision kernel B(u, σ) = Φ(|u|)b( u • σ) satisfying Grad's cut-off assumption (see Section 2 for definition). This Section is divided in five subsections starting with the Carleman representation of the gain operator Q + B,e . It is well-known [START_REF] Lions | Compactness in Boltzmann's equation via Fourier integral operators and applications I, II, III[END_REF][START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF][START_REF] Wennberg | Regularity in the Boltzmann equation and the Radon transform[END_REF][START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF] that such a representation is essential for the study of regularizing properties of the gain operator Q + B,e when smooth assumptions are imposed on the kernel B(u, σ). Our contribution in Sections 4.3 and 4.4 is to extend the existent theory to the inelastic case with variable restitution coefficient. Since the estimates of Section 4 will be applied for solutions written in self-similar variables, we make sure that such estimates are independent of the restitution coefficient. This allows us to overcome the technical problem of the time dependence of the gain operator in the self-similar variables. Additional convolution-like inequalities [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF][START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] are derived in subsection 4.2 assuming minimal regularity of the angular kernel b(•).

The final part of this work is devoted to the proof of propagation of exponential L 1 -tails where the full power of the Povzner's lemma is exploited. Much of the argument with a minor adaptation is taken from [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]. This important result is presented in the final Section for convenience and not because the machinery of Sections 4 and 5 is needed to prove it. Theorem 1.2 (L 1 -exponential tails Theorem). Let B(u, σ) = |u|b( u • σ) be the collision kernel with b(•) satisfying (2.6) and b(•) ∈ L q (S 2 ) for some q 1. Assume that the variable restitution coefficient e(•) satisfies Assumptions 3.1. Furthermore, assume that f 0 satisfies (2.8), and that there exists r 0 > 0 such that

R 3 f 0 (v) exp (r 0 |v|) dv < ∞.
Then, there exists some r r 0 such that

sup t 0 R 3 f (t, v) exp (rV (t)|v|) dw < ∞.
(1.7)

The function V (t) is the appropriate scaling, depending solely on the restitution coefficient, given in (3.16).

1.3. Notations. Let us introduce the notations we shall use in the sequel. Throughout the paper we shall use the notation

• = 1 + | • | 2 .
We denote, for any η ∈ R, the Banach space

L 1 η = f : R 3 → R measurable ; f L 1 η := R 3 |f (v)| v η dv < +∞ .
More generally we define the weighted Lebesgue space

L p η (R 3 ) (p ∈ [1, +∞), η ∈ R) by the norm f L p η (R 3 ) = R 3 |f (v)| p v pη dv 1/p 1 p < ∞ while f L ∞ η (R 3 ) = ess -sup v∈R 3 |f (v)| v η for p = ∞.
For any k ∈ N, we denote by H k = H k (R 3 ) the usual Sobolev space defined by the norm

f H k =   |j| k ∂ j v f p L 2   1/p
where ∂ j v denotes the partial derivative associated with the multi-index j ∈ N N . Moreover this definition can be extended to H s for any s 0 by using the Fourier transform F . The binomial coefficients for non-integer p 0 and k ∈ N are defined as

p k = p(p -1) . . . (p -k + 1) k! k 1, p 0 = 1.

PRELIMINARIES

2.1. The kinetic model. We assume the granular particles to be perfectly smooth hardspheres of mass m = 1 performing inelastic collisions. Recall that, as explained in the Introduction, the inelasticity of the collision mechanism is characterized by a single parameter, namely the coefficient of normal restitution 0 e 1 which we assume to be non constant. More precisely, let (v, v ⋆ ) denote the velocities of two particles before they collide. Their respective velocities after collisions v ′ and v ′ ⋆ are given, in virtue of (1.1) and the conservation of momentum, by

v ′ = v - 1 + e 2 (u • n) n, v ′ ⋆ = v ⋆ + 1 + e 2 (u • n) n, (2.1) 
where the symbol u stands for the relative velocity u = v -v ⋆ and n is the impact direction. From the physical viewpoint, a common approximation consists in choosing e as a suitable function of the impact velocity, i.e. e := e(|u • n|). The main assumptions on the function e(•) are listed in the following (see [START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF]):

Assumptions 2.1. Assume the following hold:

(1) The mapping r ∈ R + → e(r) ∈ (0, 1] is absolutely continuous.

(2) The mapping r ∈ R + → ϑ(r) := r e(r) is strictly increasing. 3) with a = 0.12.

Further assumptions on the function e(•) shall be needed later on. Given assumption (2), the Jacobian of the transformation (2.1) can be computed as

J := ∂(v ′ , v ′ ⋆ ) ∂(v, v ⋆ ) = |u • n| + |u • n| de dr (|u • n|) = dϑ dr (|u • n|) > 0.
In practical situations, the restitution coefficient e(•) is usually chosen among the following three examples:

Example 2.2 (Constant restitution coefficient). The most documented example in the literature is the one in which e(r) = e 0 ∈ (0, 1] for any r 0.

Example 2.3 (Monotone decreasing).

A second example of interest is the one in which the restitution coefficient e(•) is a monotone decreasing function:

e(r) = 1 1 + ar η ∀r 0 (2.2)
where a > 0, η > 0 are two given constants.

Example 2.4 (Viscoelastic hard-spheres). This is the most physically relevant model treated in this work. For such a model, the properties of the restitution coefficient have been derived in [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF][START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF] where representation (1.2) is given. It also accepts the implicit representation e(r) + ar 1/5 e(r) 3/5 = 1 (2.3) where a > 0 is a suitable positive constant depending on the material viscosity (see Figure 1).

In the sequel, it shall be more convenient to use the following equivalent parametrization of the post-collisional velocities. For distinct velocities v and v ⋆ , let u = u |u| be the relative velocity unit vector. The change of variables

σ = u -2 ( u • n) n ∈ S 2
provides an alternative parametrization of the unit sphere S 2 for which the impact velocity reads

|u • n| = |u| | u • n| = |u| 1 -u • σ 2 .
Then, the post-collisional velocities (v ′ , v ′ ⋆ ) given in (2.1) are transformed to

v ′ = v -β u -|u|σ 2 , v ′ ⋆ = v ⋆ + β u -|u|σ 2 (2.4)
where

β = β |u| 1-u•σ 2 = 1 + e 2 ∈ 1 2 , 1 .
In this representation, the weak formulation of the Boltzmann collision operator Q B,e given a collision kernel B(u, σ) reads

R 3 Q B,e (f, g)(v)ψ(v) dv = 1 2 R 3 ×R 3 f (v)g(v ⋆ )A B,e [ψ](v, v ⋆ ) dv ⋆ dv (2.5)
for any suitable test function ψ = ψ(v). Here (2.4). We assume that the collision kernel B(u, σ) takes the form

A B,e [ψ](v, v ⋆ ) = S 2 ψ(v ′ ) + ψ(v ′ ⋆ ) -ψ(v) -ψ(v ⋆ ) B(u, σ) dσ with v ′ , v ′ ⋆ defined in
B(u, σ) = Φ(|u|)b( u • σ)
where Φ(•) is a suitable nonnegative function known as potential, while the angular kernel b(•) is usually assumed belonging to L 1 (-1, 1). For any fixed vector u, the angular kernel defines a measure on the sphere through the mapping

σ ∈ S 2 → b( u • σ) ∈ [0, ∞] that we assume to satisfy the renormalized Grad's cut-off hypothesis b L 1 (S 2 ) = 2π b L 1 (-1,1) = 1. (2.6)
The most relevant model in our case is hard-spheres which correspond to Φ(|u|) = |u| and b( u • σ) = 1 4π . We shall consider the generalized hard-spheres collision kernel for which Φ(|u|) = |u| and the angular kernel is non necessarily constant but satisfying (2.6). For the particular model of hard-spheres interactions, we simply denote the collision operator Q B,e by Q e . 2.2. On the Cauchy problem. We consider the following homogeneous Boltzmann equation

∂ t f (t, v) = Q B,e (f, f )(t, v) t > 0, v ∈ R 3 f (0, v) = f 0 (v), v ∈ R 3 (2.7)
where the initial datum f 0 is a nonnegative velocity function such that

R 3 f 0 (v) dv = 1, R 3 f 0 (v)v dv = 0 and R 3 f 0 (v)|v| 3 dv < ∞. (2.8)
There is no loss of generality in assuming the two first moments conditions in (2.8) due to scaling and translational arguments. We say that a nonnegative

f = f (t, v) is a solution to (2.8) if f ∈ C([0, ∞), L 1 2 (R 3 )) and ∞ 0 dt R 3 f (t, v)∂ t ψ(t, v) + Q B,e (f, f )(t, v)ψ(t, v) dv = R 3 f 0 (v)ψ(0, v) dv holds for any compactly supported ψ ∈ C 1 ([0, ∞) × R 3
). Under the Assumptions 2.1, the assumptions H1 and H2 of [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF] are fulfilled (with the terminology of [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF], we are dealing with a non-coupled collision rate and, more precisely, with the so-called generalized visco-elastic model, see [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF], p. 661). In particular, [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF] 

R 3 f (t, v) dv = 1, R 3 f (t, v)v dv = 0 ∀t 0.
(2.9) 2.3. Self-similar variables. Let us discuss precisely the rescaling using self-similar variables. Let f (t, v) be the solution to (2.7) associated to some initial datum f 0 satisfying (2.8) and collision kernel

B(u, σ) = Φ(|u|)b( u • σ) with b(•) satisfying (2.6). The rescaled solution g = g(τ, w) is defined such that f (t, v) = V (t) 3 g(τ (t), V (t)v) (2.10)
where τ (•) and V (•) are time-scaling functions to be determined solely on the behavior of the restitution coefficient in the low impact velocity region. Since these are scaling functions they are increasing and satisfy τ (0) = 0 and V (0) = 1. One has

1 = R 3 f (t, v) dv = R 3 g(τ (t), w) dw ∀t 0
and g(0, w) = f 0 (w). Furthermore, some elementary calculations show that the function g(τ, w) satisfies

V (t) -2 Q e (f, f )(t, v) = τ (t)V (t)∂ τ g(τ, w) + V (t)∇ w • (wg(τ, w)) w=V (t)v τ =τ (t) (2.11)
where the dot symbol denotes the derivative with respect to t. Moreover, the expression of the collision operator in the self-similar variables is

V (t) -2 Q B,e (f, f ) t, v V (t) = Q Bτ , eτ (g, g)(τ (t), v)
where the rescaled collision kernel B τ is given by

B τ (t) (u, σ) := V (t)Φ |u| V (t) b( u • σ).
The rescaled restitution coefficient e τ has been defined by

e τ : (r, t) -→ e τ (t) (r) := e r V (t)
for r 0, t 0.

Since the mapping t ∈ R + -→ τ (t) ∈ R + is injective with inverse ζ, one can rewrite equation (2.11) in terms of τ only. Thus, g(τ, w) is a solution to the following rescaled Boltzmann equation:

λ(τ )∂ τ g(τ, w) + ξ(τ )∇ w • (wg(τ, w)) = Q Bτ , eτ (g, g)(τ, w) ∀τ > 0 (2.12) with λ(•) = τ (ζ(•))V (ζ(•)) and ξ(•) = V (ζ(•)),
and model parameters

B τ (u, σ) = V (ζ(τ ))Φ |u| V (ζ(τ )) b( u • σ) and e τ (r) = e r V (ζ(τ ))
.

(2.13)

Notice that, for generalized hard-spheres interactions (i.e. whenever Φ(|u|) = |u|) one has B τ = B. For true hard-spheres interactions, i.e. b(•) = 1 4π , one simply denotes the rescaled collision operator by Q eτ . In addition, observe that the rescaled operator depends on time, and therefore, g is a solution to a non-autonomous problem.

2.4. Povzner-type inequalities. We extend in this section the results of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] and [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] to the case of variable restitution coefficient satisfying 2.1. We consider a collision kernel of the form

B(u, σ) = Φ(|u|)b( u • σ),
with angular kernel b(•) satisfying the renormalized Grad's cut-off assumption (2.6). Let f be a nonnegative function satisfying (2.9) and ψ(v) = Ψ(|v| 2 ) be a given test-function with Ψ nondecreasing and convex. Then, Eq. (2.5) leads to

R 3 Q B,e (f, f )(v)ψ(v) dv = 1 2 R 3 ×R 3 f (v)f (v ⋆ )A B,e [ψ](v, v ⋆ ) dv ⋆ dv with A B,e [ψ](v, v ⋆ ) = Φ(|u|) A + B,e [Ψ](v, v ⋆ ) -A - B,e [Ψ](v, v ⋆ ) where A + B,e [Ψ](v, v ⋆ ) = S 2 Ψ(|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) b( u • σ) dσ.
Using (2.6) we also have,

A - B,e [Ψ](v, v ⋆ ) = S 2 (ψ(v) + ψ(v ⋆ )) b( u • σ) dσ = Ψ(|v| 2 ) + Ψ(|v ⋆ | 2 ) .
Following [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF], we define the velocity of the center of mass

U = v + v ⋆ 2 so that v ′ = U + |u| 2 ω, v ′ ⋆ = U - |u| 2 ω with ω = (1 -β) u + βσ.
Recall that for any vector x ∈ R 3 , we set x = x |x| . When e, or equivalently β, is constant, the strategy of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] consists, roughly speaking, in performing a suitable change of unknown σ → ω to carefully estimate A + B,e [ψ]. For variable β, such strategy does not apply directly. Instead, observe that |ω| 1 and, since Ψ is increasing, one has

Ψ(|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) Ψ |U| 2 + |u| 2 4 + |u||U| U • ω + Ψ |U| 2 + |u| 2 4 -|u||U| U • ω = Ψ E 1 + ξ U • ω 2 + Ψ E 1 -ξ U • ω 2
where we have set

E := |v| 2 + |v ⋆ | 2 = 2|U| 2 + |u| 2 2 and ξ = 2 |U | |u| E . Since Ψ(•) is convex the mapping Ψ 0 (t) = Ψ(x + ty) + Ψ(x -ty)
is even and nondecreasing for t 0 and x, y ∈ R (see [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]). Therefore, using that ξ 1 one gets

Ψ(|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) Ψ E 1 + U • ω 2 + Ψ E 1 -U • ω 2 . (2.14)
In the case that U • σ 0 it follows that

U • ω = (1 -β) U • u + β U • σ (1 -β) + β U • σ,
thus, using the fact that Ψ 0 (t) is even and nondecreasing for t 0, we conclude from (2.14) that

Ψ(|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) Ψ E 2 -β + β U • σ 2 + Ψ E β -β U • σ 2 .
When U • σ 0 a similar argument shows that

Ψ(|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) Ψ E 2 -β -β U • σ 2 + Ψ E β + β U • σ 2 .
Hence, setting b(s) = b(s) + b(-s) and using these last two estimates with the change of variables σ → -σ we get

A + B,e [Ψ](v, v ⋆ ) { U •σ 0} Ψ E 2 -β + β U • σ 2 + Ψ E β -β U • σ 2 b( u • σ) dσ { U •σ 0} Ψ E 3 + U • σ 4 + Ψ E 1 -U • σ 4 b( u • σ) dσ, (2.15) 
where the second inequality can be shown writing

2 -β + β U • σ 2 = 1 2 + 1 2 - β 2 1 -U • σ and, β -β U • σ 2 = 1 2 - 1 2 - β 2 1 -U • σ .
The term in parenthesis is maximized when β = 1/2, thus the monotonicity of Ψ 0 implies the result.

Next, we particularize the previous estimates to the important case Ψ(x) = x p . This choice will lead to the study of the moments of solutions. Lemma 2.6. Let q 1 be such that b ∈ L q (S 2 ). Then, for any restitution coefficient e(•) satisfying Assumptions 2.1 and any real p 1, there exists an explicit constant κ p > 0 such that

Φ(|u|) -1 A B,e [| • | p ](v, v ⋆ ) -(1 -κ p ) |v| 2p + |v ⋆ | 2p + κ p |v| 2 + |v ⋆ | 2 p -|v| 2p -|v ⋆ | 2p . (2.

16)

This constant κ p has the following properties:

(1) κ 1 1.

(2) For p 1 the map p → κ p is strictly decreasing. In particular, κ p < 1 for p > 1.

(3) κ p = O 1/p 1/q ′ for large p, where 1/q + 1/q ′ = 1.

(4) For q = 1, one still has κ p ց 0 as p → ∞.

Proof. Let Ψ p (x) = x p . From (2.15), one sees that

A + B,e [Ψ p ](v, v ⋆ ) κ p E p where we recall that E = |v| 2 + |v ⋆ | 2 and we set κ p = sup U, u U•σ 0 Ψ p 3 + U • σ 4 + Ψ p 1 -U • σ 4 b( u • σ) dσ. (2.17)
It is clear that the above inequality yields (2.16). Let us prove that κ p satisfies the aforementioned conditions. First, we use Hölder inequality to obtain

κ p 4π b L q (S 2 ) 1 -1 Ψ p 3 + s 4 + Ψ p 1 -s 4 q ′ ds 1/q ′ < 16π b L q (S 2 ) (q ′ p + 1) 1/q ′ .
This proves that κ p is finite and also yields item (3) for q > 1. For items ( 1) and ( 2) observe that the integral in the right-hand-side (2.15) is continuous in the vectors U , u ∈ S 2 . This can be shown by changing the integral to polar coordinates. Thus, the supremum in these arguments is achieved. Therefore, there exist U 0 , u 0 ∈ S 2 (depending on the angular kernel b) such that

κ p = { U 0 •σ 0} Ψ p 3 + U 0 • σ 4 + Ψ p 1 -U 0 • σ 4 b( u 0 • σ) dσ.
A simple computation with this estimate shows that

κ 1 = b L 1 (S 2 ) = 1.
Moreover, the integrand is a.e. strictly decreasing as p increases and this proves (2). Finally, let p → ∞ in this expression and use Dominated convergence to conclude (4) for the case q = 1.

The above lemma is the analogous of [9, Corollary 1] for variable restitution coefficient e(•) and it proves that the subsequent results of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] extend readily to variable restitution coefficient. In particular, [9, Lemma 3] reads 1 : Proposition 2.7. Let f be a nonnegative function satisfying (2.9). For any p 1, we set

m p = R 3 f (v)|v| 2p dv. Assume that the collision kernel B(u, σ) = |u|b( u • σ) is such that b(•) satisfies (2.6) with b(•) ∈ L q (S 2
) for some q 1. For any restitution coefficient e(•) satisfying Assumptions 2.1 and any real p 1, one has

R 3 Q B,e (f, f )(v)|v| 2p dv -(1 -κ p )m p+1/2 + κ p S p , (2.18) 
where,

S p = [ p+1 2 ] k=1 p k m k+1/2 m p-k + m k m p-k+1/2 , [ p+1 2 ]
denoting the integer part of p+1 2 and κ p being the constant of Lemma 2.6. Inequality (2.18) was introduced in [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] because the term S p involves only moments of order p -1/2. Thus, the above estimate has important consequences on the propagation of moments for the solution to (2.7) (see Section 3 for more discussion).

FREE COOLING OF GRANULAR GASES: GENERALIZED HAFF'S LAW

We investigate in this section the so-called generalized Haff's law for granular gases with variable restitution coefficient. More precisely, we aim to derive the exact rate of decay of the temperature E(t) of the solution to Eq. (2.7). In this section, we exclusively study the generalized hard-spheres collision kernel.

B(u, σ) = |u|b( u • σ) 1
Notice that, though stated for hard-spheres interactions only, [9, Lemma 3] applies to our situation thanks to the above Lemma 2.6 and [9, Lemma 1].

where b(•) satisfies (2.6) but generalization to the so-called variable hard-spheres interactions (i.e. Φ(|u|) = |u| s for s 0) is easy to handle. Let f 0 be a nonnegative velocity distribution satisfying (2.8) and let f (t, v) be the associated solution to the Cauchy problem (2.7). We denote its temperature by E(t),

E(t) = R 3 f (t, v)|v| 2 dv.
The conditions (2.8) implies that sup t 0 E(t) < ∞. Indeed, the evolution of E(t) is governed by

d dt E(t) = R 3 Q B,e (f, f )(t, v)|v| 2 dv = 1 2 R 3 ×R 3 f (t, v)f (t, v ⋆ )|u|× × S 2 |v ′ | 2 + |v ′ ⋆ | 2 -|v| 2 -|v ⋆ | 2 b( u • σ) dσ dv ⋆ dv
where we applied (2.5) with ψ(v) = |v| 2 . One checks readily that

|v ′ | 2 + |v ′ ⋆ | 2 -|v| 2 -|v ⋆ | 2 = -|u| 2 1 -u • σ 4 1 -e 2 |u| 1 -u • σ 2 , so that d dt E(t) = - 1 2 R 3 ×R 3 f (t, v)f (t, v ⋆ )|u| 3 dv dv ⋆ × S 2 1 -u • σ 4 1 -e 2 |u| 1 -u • σ 2 b( u • σ) dσ.
We compute this last integral over S 2 (for fixed v and v ⋆ ) using polar coordinates to get

|u| 3 S 2 1 -u • σ 8 1 -e 2 |u| 1 -u • σ 2 b( u • σ) dσ = 2π|u| 3 1 0 1 -e 2 (|u|y) b(1 -2y 2 )y 3 dy = Ψ e (|u| 2 )
where we have defined

Ψ e (r) := 2πr 3/2 1 0 1 -e( √ rz) 2 b 1 -2z 2 z 3 dz, ∀r 0. (3.1)
In other words, the evolution of the temperature E(t) is given by

d dt E(t) = - R 3 ×R 3 f (t, v)f (t, v ⋆ )Ψ e (|u| 2 ) dv dv ⋆ 0, t 0.
In addition to Assumptions 2.1, we assume in the rest of the paper that the restitution coefficient e(•) satisfies the following: Assumptions 3.1. Assume that the mapping r → e(r) ∈ (0, 1] satisfies Assumptions 2.1 and

(1) there exist α > 0 and γ 0 such that e(r) ≃ 1 -α r γ for r ≃ 0,

(2) lim inf r→∞ e(r) = e 0 < 1, (3) b(•) ∈ L q (S 2 ) for some q 1, and (4) the function r > 0 -→ Ψ e (r) defined in (3.1) is strictly increasing and convex over (0, +∞).

Remark 3.2. For hard-spheres interactions, b( u • σ) = 1 4π , thus, Ψ e reduces to Ψ e (r) = 1 2 √ r √ r 0 1 -e(y) 2 y 3 dy, r > 0.
We prove in the Appendix that Assumptions 3. Moreover, there exists C > 0 such that

E(t) C (1 + t) -2 1+γ ∀t 0. (3.2)
Proof. Recall that the evolution of the temperature is given by

d dt E(t) = - R 3 ×R 3 f (t, v)f (t, v ⋆ )Ψ e (|u| 2 ) dv dv ⋆ , t 0, (3.3) 
where

u = v -v ⋆ . Since Ψ e (| • | 2 ) is convex according to Assumption 3.1 (2) and f (t, v ⋆ ) dv ⋆ is a probability measure over R 3 , Jensen's inequality implies R 3 f (t, v ⋆ )Ψ e (|u| 2 ) dv ⋆ Ψ e v - R 3 v ⋆ f (t, v ⋆ ) dv ⋆ 2 = Ψ e (|v| 2 )
where we used (2.9). Applying Jensen's inequality again we obtain

R 3 f (t, v)Ψ e (|v| 2 ) dv Ψ e R 3 f (t, v)|v| 2 dv ,
and therefore,

d dt E(t) -Ψ e (E(t)) ∀t 0.
Note that Ψ e (•) is strictly increasing with lim x→0 Ψ e (x) = 0, this ensures that

lim t→∞ E(t) = 0.
Moreover, according to Assumptions 3.1 (1), it is clear from (3.1) that

Ψ e (x) ≃ C γ x 3+γ 2 for x ≃ 0,
where the constant can be taken as

C γ = 2πα 1 0 y 3+γ b(1-2y 2 ) dy < ∞. Since E(t) → 0, there exists t 0 > 0 such that Ψ e (E(t)) 1 2 C γ E(t) 3+γ 2
for all t t 0 which implies that

d dt E(t) - C γ 2 E(t) 3+γ 2 ∀t t 0 .
This proves (3.2)

Example 3.4. In the case of constant restitution coefficient e(r) = e 0 ∈ (0, 1) for any r 0, for hard-spheres interactions, one has

Ψ e (x) = 1 -e 2 0 8 x 3/2 .
Thus, one recovers from (3.2) the decay of the temperature established from physical considerations (dimension analysis) in [START_REF] Haff | Grain flow as a fluid-mechanical phenomenon[END_REF] and proved in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], namely, E(t) C(1+t) -2 for large t.

Example 3.5. For the restitution coefficient e(•) associated to viscoelastic hard-spheres (see Example 2.4), one has γ = 1/5, thus, the above estimate (3.2) leads to a decay of the temperature faster than (1 + t) -5/3 which is the one obtained in [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF] (see also [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF]) from physical considerations and dimensional analysis.

Notice that, since E(t) → 0 as t → ∞, it is possible to resume the arguments of [18, Prop. 5.1] to prove that the solution f (t, v) to (2.7) converges to a Dirac mass as t goes to infinity, namely

f (t, v) -→ t→∞ δ v=0 weakly * in M 1 (R 3 )
where M 1 (R 3 ) denotes the space of normalized probability measures on R 3 . We shall not investigate further on the question of long time asymptotic behavior of the distribution f (t, v) but rather try to capture the very precise rate of convergence of the temperature to zero.

Using the Povzner-like estimate of Section 2.4 it is possible, from the decay in E(t), to deduce the decay of any moments of f . Indeed, for any t 0 and any p 1 we define the p-moment of f as Proof. Set u(t) = (1+t) -2 1+γ . We prove that, for any p 1, there exists K p > 0 such that m p (t) K p u p (t) for any t 0. Observe that using classical interpolation, it suffices to prove this for any p such that 2p ∈ N. We argue by induction. It is clear from Proposition 3.3 that estimate (3.5) holds for p = 1. Let p > 1, with 2p ∈ N, be fixed and assume that for any integer 1 j p -1/2 there exists K j > 0 such that m j (t) K j u j (t) holds. According to Proposition 2.7

m p (t) := R 3 f (t, v)|v| 2p dv. ( 3 
d dt m p (t) = R 3 Q B,e (f, f )(t, v)|v| 2p dv -(1 -κ p )m p+1/2 (t) + κ p S p (t), (3.6) 
where

S p (t) = [ p+1 2 ] k=1 p k m k+1/2 (t) m p-k (t) + m k (t) m p-k+1/2 (t) , ∀t 0.
For p 2, the above expression S p (t) involves moments of order less than p -1/2. The case p = 3/2 is treated independently.

• Step 1 (p = 3/2). In this case (3.6) reads

d dt m 3/2 (t) -(1 -κ 3/2 )m 2 (t) + m 3/2 (t)m 1/2 (t) + E 2 (t) ∀t 0. (3.7) 
Let K be a positive number to be chosen later and define

U 3/2 (t) := m 3/2 (t) -Ku(t) 3/2 .
Using (3.7) one has

dU 3/2 dt (t) -(1 -κ 3/2 )m 2 (t) + m 3/2 (t)m 1/2 (t) + E 2 (t) + 3K 1 + γ (1 + t) -4+γ 1+γ .
From Holder's inequality,

m 3/2 (t) E(t) m 2 (t) and m 1/2 (t) E(t) ∀t 0 (3.8)
hence,

dU 3/2 dt (t) -(1 -κ 3/2 ) m 2 3/2 (t) E(t) + E(t)m 3/2 (t) + E 2 (t) + 3K 1 + γ (1 + t) -4+γ 1+γ . Since E(t) C(1 + t) -2 1+γ
, there exist a, b, c > 0 such that

dU 3/2 dt (t) -a m 2 3/2 (t)(1 + t) 2 1+γ + b (1 + t) -4 1+γ + c (1 + t) -1 1+γ m 3/2 (t) + 3 1 + γ K(1 + t) -4+γ 1+γ ∀t > 0. (3.9)
Inequality (3.9) implies the result for the case p = 3/2 provided K is large enough. Indeed, choose K so that m 3/2 (0) < Ku 3/2 (0) = K. Then, by time-continuity of the moments, the result follows at least for some finite time. Assume that there exists a time

t ⋆ > 0 such that m 3/2 (t ⋆ ) = Ku 3/2 (t ⋆ ) = K(1 + t ⋆ ) -3 1+γ , then (3.9) implies dU 3/2 dt (t ⋆ ) -aK 2 + b + cK + 3 1 + γ K (1 + t ⋆ ) -4 1+γ < 0
whenever K is large enough. Thus, (3.5) holds for p = 3/2 choosing K 3/2 := K.

• Step 2 (p 2). The induction hypothesis implies that there exists a constant

C p > 0 such that S p (t) C p u(t) p+1/2 , ∀t 0 
where C p can be taken as

C p = [ p+1 2 ] k=1 p k K k+1/2 K p-k + K k K p-k+1/2 .
Furthermore, according to Jensen's inequality m p+1/2 (t) m 1+1/2p p (t), for any t 0. Thus, from (3.6), we conclude that

d dt m p (t) -(1 -κ p )m 1+1/2p p (t) + κ p C p u(t) p+1/2 ∀t 0.

Arguing as in

Step 1, for some K > 0 to be chosen later, we define

U p (t) := m p (t) -Ku(t) p .
In this way,

d dt U p (t) -(1 -κ p )m 1+1/2p p (t) + κ p C p u(t) p+1/2 + 2pK 1 + γ (1 + t) -2p+1 1+γ ∀t 0.
Then, if K is such that U p (0) < 0, the result holds at least for some finite time. For any t ⋆ > 0 such that U p (t ⋆ ) = 0, one notices then that

d dt U p (t ⋆ ) -(1 -κ p )K 1+ 1 2p + κ p C p + 2pK 1 + γ (1 + t ⋆ ) -2p+1 1+γ < 0
provided K is large enough. This proves (3.5) for any p 1.

3.2.

Lower bound for E(t): preliminary considerations. The next goal is to complete the proof of Haff's law by showing that the cooling rate (3.2) is optimal under Assumptions 3.1. Thus, we have to show that there exists C > 0 such that

E(t) C(1 + t) -2 1+γ ∀t 0.
First, we prove the following result that simplifies our endeavor. 

E(t) C 0 (1 + t) -λ ∀t 0, (3.10) 
then there exists C p > 0 such that

m p (t) C p E p (t)
for any t 0 and p 1.

(3.11)

As a consequence, there exists C > 0 such that

E(t) C (1 + t) -2 1+γ ∀t 0. (3.12)
Proof. According to Assumption 3.1 (1)

Ψ e (x) ≃ C γ x 3+γ 2
for x ≃ 0.

In addition, Assumption 3.1 (2) implies that there exists C b > 0 such that

Ψ e (x) ≃ C b x 3/2 for large x,
where the constant can be taken as

C b = 2π(1 -e 2 0 ) 1 0 b(1 - 2z 
2 )z 3 dz. Thus, there exists another constant C > 0 such that

Ψ e (x) Cx 3+γ 2 ∀x > 0. (3.13)
Then, from (3.3) one deduces that for any ε > 0 and p > 3+γ 2

- d dt E(t) C ε γ 2 m 3/2 (t) + 1 ε p-3+γ 2 m p (t) C ε γ 2 m 3/2 (t) + C p ε p-3+γ 2 (1 + t) -2p 1+γ ∀t 0.
where we have used Corollary 3.6 for the second inequality. In particular, using (3.10) and the fact that E(t) is a non increasing function, one can choose p sufficiently large so that

- d dt E(t) C ε γ 2 m 3/2 (t) + Cp ε p-3+γ 2 E(t) 3 2
for some positive constant Cp . In other words, for any δ > 0 there exists C δ > 0 such that

- d dt E(t) δm 3/2 (t) + C δ E(t) 3/2 ∀t 0. (3.14)
With this preliminary observation, the proof of (3.11) is a direct adaptation of that of Corollary 3.6. Here again, by simple interpolation, it is enough to prove the result for any p such that 2p ∈ N and argue using induction. The result is clearly true for p = 1 with C 1 = 1. For p = 3/2, let K > 0 be a constant chosen later and define

u 3/2 (t) = m 3/2 (t) -KE(t) 3/2 .
Thus, from (3.7)

d dt u 3/2 (t) -(1 -κ 3/2 )m 2 (t) + m 3/2 (t)m 1/2 (t) + E 2 (t) - 3 2 K E(t) d dt E(t).
Using (3.8) one deduces from (3.14) that, for any δ > 0 there exists C δ > 0 such that

d dt u 3/2 (t) -(1-κ 3/2 ) m 2 3/2 (t) E(t) + 1 + 3 2 Kδ m 3/2 (t) E(t)+ 1 + 3 2 KC δ E 2 (t). Fix δ = 1-κ 3/2 3
and choose K > 0 such that u 3/2 (0) < 0. If t ⋆ > 0 is such that u 3/2 (t ⋆ ) = 0, then the following holds

d dt u 3/2 (t ⋆ ) - 1 -κ 3/2 2 K 2 + K + 1 + 3 2 KC δ E(t ⋆ ) 2 < 0,
provided K is sufficiently large. This proves (3.11) for p = 3/2 with C 3/2 := K. The case p 2 follows in the same lines of the proof of Corollary 3.6 interchanging the roles of E(t) and u(t).

To conclude the proof, observe that according to (3.13) and (3.3), there exists

C > 0 such that - d dt E(t) Cm3+γ 2 (t) ∀t 0.
Then, applying (3.11) with p = 3+γ 2 , one deduces that there is

C γ > 0 such that - d dt E(t) C γ E(t) 3+γ 2 ∀t 0.
A simple integration of this inequality yields (3.12).

Remark 3.8. For constant restitution coefficient, e = e 0 , since γ = 0, (3.14) does not hold anymore. However, for some C e > 0 we have

- d dt E(t) C e m 3/2 (t) ∀t 0.
Assuming that e 0 ≃ 1 (quasi-elastic regime) the constant C e is small, thus, the argument above can be reproduced to prove that the conclusion of Proposition 3.7 still holds. Recall that for γ = 0 the second part of Haff's law (3.12) has been proved in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]Theorem 1.2].

In order to prove that (3.10) is satisfied for some λ > 0, we will need precise L p estimates, following the spirit of [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], for the rescaled function g given in Section 2.3. The idea to craft the correct time-scaling functions τ (•) and V (•) is to choose them such that the corresponding temperature of g is bounded away from zero. Indeed, for any τ > 0, define

Θ(τ ) := R 3 g(τ, w)|w| 2 dw.
Since,

E(t) = V (t) -2 Θ(τ (t)) ∀t 0, (3.15) we choose V (t) = (1 + t) 1 γ+1 ∀t 0.
(3.16) In this way, (3.12) is equivalent to Θ(τ (t)) C for any t 0. Notice that (3.2) immediately translates into

sup t>0 Θ(τ (t)) < ∞. (3.17)
Moreover, for simplicity we pick τ (t) such that τ (t)V (t) = 1, therefore for γ > 0,

τ (t) = t 0 ds V (s) = γ + 1 γ (1 + t) γ 1+γ -1 (3.18)
which is an acceptable time-scaling function. Thus, the rescaled solution g(τ, w) satisfies (2.12) with λ(τ ) = 1,

ξ(τ ) = 1 γτ + (1 + γ)
and e τ (r) = e r 1 + γ γ + 1 τ

-1/γ . (3.19) 
If γ = 0 the restitution coefficient is constant [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], in particular e τ = e, and the rescale reads V (t) = 1 + t and τ (t) = ln(1 + t). In such a case, ξ(τ ) ≡ 1.

To complete the proof of Haff's law, one has to perform a careful study of the properties of the collision operator Q e in Sobolev or L p spaces 1 < p ∞.

REGULARITY PROPERTIES OF THE COLLISION OPERATOR

In this section the regularity properties studied originally for the elastic case in [START_REF] Lions | Compactness in Boltzmann's equation via Fourier integral operators and applications I, II, III[END_REF][START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF][START_REF] Wennberg | Regularity in the Boltzmann equation and the Radon transform[END_REF] and later for the constant restitution coefficient in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] are generalized to cover variable restitution coefficients depending on the impact velocity. The path that we follow closely follows [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF].

4.1. Carleman representation. We establish here a technical representation of the gain term Q + B,e which is reminiscent of the classical Carleman representation in the elastic case. More precisely, let B(u, σ) be a collision kernel of the form

B(u, σ) = Φ(|u|)b( u • σ)
where Φ(•) 0 and b(•) 0 satisfies (2.6). For any ψ = ψ(v), define the following linear operators

S ± (ψ)(u) = S 2 ψ(u ± )b( u • σ) dσ, ∀u ∈ R 3 , (4.1) 
the symbolos u -and u + are defined by

u -:= β |u | 1 -u • σ 2 u -|u| σ 2
, and u + := u -u -.

Lemma 4.1. For any continuous functions ψ and ϕ,

R 3 ϕ(u)S -(ψ)(u)Φ(|u|) du = R 3 ψ(x)Γ B (ϕ)(x) dx
where the linear operator Γ B is given by

Γ B (ϕ)(x) = ω ⊥ B(z + α(r)ω, α(r))ϕ(α(r)ω + z) dπ z , x = rω, r 0, ω ∈ S 2 . (4.2)
Here dπ z is the Lebesgue measure in the hyperplane ω ⊥ perpendicular to ω and α(•) is the inverse of the mapping s → sβ(s). Moreover,

B(z, ̺) = 8Φ(|z|) |z|(̺β(̺)) 2 b 1 -2 ̺ 2 |z| 2 ̺ 1 + ϑ ′ (̺) , ̺ 0, z ∈ R 3 (4.3)
with ϑ(•) defined in Assumption 2.1 (2) and ϑ ′ (•) denoting its derivative.

Proof. For simplicity assume that Φ ≡ 1. Define

I := R 3 ϕ(u)S -(ψ)(u) du = R 3 ϕ(u) du S 2 ψ(u -)b( u • σ) dσ.
For fixed u ∈ R 3 , we perform the integration over S 2 using the formula

S 2 F u -|u|σ 2 dσ = 4 |u| R 3 δ(|x| 2 -x • u)F (x) dx
valid for any given function F . Then,

I = 4 R 3 ×R 3 ϕ(u)|u| -1 δ(|x| 2 -x • u)ψ xβ(|x|) b 1 -2 |x| 2 |u| 2 dx du.
Setting now u = z + x we get

I = 4 R 3 ×R 3 ϕ(x + z)|x + z| -1 δ(x • z)ψ xβ(|x|) b 1 -2 |x| 2 |x + z| 2 dz dx.
Keeping x fixed, we remove the Dirac mass using to the identity

R 3 F (z)δ(x • z) dz = 1 |x| x ⊥ F (z) dπ z ,
which leads to

I = 4 R 3 ψ xβ(|x|) dx |x| x ⊥ ϕ(x + z) |x + z| b 1 -2 |x| 2 |x + z| 2 dπ z .
Perform the x-integral using polar coordinates x = ̺ ω and the change of variables r = ̺ β(̺). Recall that α(r) is the inverse of such mapping, furthermore, notice that dr = 1 2 (1 + ϑ ′ (̺)) d̺. This yields

I = 8 ∞ 0 α(r) dr 1 + ϑ ′ (α(r)) S 2 ψ(rω) dω ω ⊥ ϕ(z + α(r)ω) |z + α(r)ω| b 1 -2 α(r) 2 |z + α(r)ω| 2 dπ z .
Turning back to cartesian coordinates x = rω we obtain the desired expression

I = R 3 ψ(x)Γ B (ϕ)(x) dx,
with Γ B given by (4.2).

The above result leads to a Carleman-like expression for Q + B,e : Corollary 4.2 (Carleman representation). Let e(•) be a restitution coefficient satisfying Assumptions 2.1 and let B(u, σ) = Φ(|u|)b( u • σ) be a collision kernel satisfying (2.6). Then, for any velocity distribution functions f, g one has

Q + B,e (f, g)(v) = R 3 f (z) [(t z • Γ B • t z ) g] (v) dz where [t v ψ](x) = ψ(v -x) for any v, x ∈ R 3 and test-function ψ.
Proof. The proof readily follows from the Lemma 4.1 and the identity

R 3 ×R 3 Q + B,e (f, g)(v)ψ(v) dv = 1 2 R 3 ×R 3 f (v)g(v -u)Φ(|u|)S -(t v ψ)(u) dv du (4.4)
valid for any test-function ψ.

Convolution-like estimates for Q +

B,e . General convolution-like estimates are obtained in [3, Theorem 1] for non-constant restitution coefficient. Such estimates are given in L p η with η 0 and, for the applications we have in mind, we need to extend some of them to η 0. This can be done using the method developed in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] (see also [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]) together with the estimates of [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF] 

Q + B,e (f, g) L p η C η,p,k (B) f L 1 |η+k|+|η| g L p η+k
where the constant C η,p,k (B) is given by:

C η,p,k (B) = c k,η,p γ(η, p, b) Φ L ∞ -k (4.5)
with a constant c k,η,p > 0 depending only on k, η and p. Furthermore, the dependence on the angular kernel is given by

γ(η, p, b) = 1 -1 1 -s 2 - 3+η + 2p ′ b(s) ds, (4.6) 
where 1/p+1/p ′ = 1 and η + is the positive part of η. Similarly, there exists

C η,p,k (B) > 0 such that Q + B,e (f, g) L p η C η,p,k (B) g L 1 |η+k|+|η| f L p η+k
where the constant C η,p,k (B) is given by

C η,p,k (B) = c k,η,p γ(η, p, b) Φ L ∞ -k (4.7)
for some constant c k,η,p > 0 depending only on k, η and p. The dependence on the angular kernel is given by

γ(η, p, b) = 1 -1 1 + s 2 + (1 -β 0 ) 2 1 -s 2 - 3+η + 2p ′ b(s) ds (4.8)
where 1/p + 1/p ′ = 1 and β 0 = β(0) = 1+e(0) 2 . Proof. Fix 1 p ∞ and η ∈ R and use the convention 1/p ′ + 1/p = 1. By duality,

Q + B,e (f, g) L p η = sup R 3 Q + B,e (f, g)(v)ψ(v) dv ; ψ L p ′ -η 1 .
Using (4.4),

R 3 Q + B,e (f, g)(v)ψ(v) dv = R 3 ×R 3 f (v)g(v -u)T -(t v ψ)(u) dv du with T -(ψ)(u) = Φ(|u|)S -(ψ)(u), and t v ψ(x) = ψ(v -x),
with S -defined in equation (4.1). With the notation of [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF], one recognizes that S -(h) = P(h, 1), thus, applying [3, Theorem 5] with q = ∞ and α = -η,

S -(h) L p ′ -η γ(η, p, b) h L p ′ -η
with γ(η, p, b) given by (4.6). Notice that, with respect to [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF], we used the weight v η instead of |v| η , this is the reason to introduce η + in our definition of γ(η, p, b). As a consequence,

T -(h) L p ′ -η-k γ(η, p, b) Φ L ∞ -k h L p ′ -η . (4.9)
Now,

R 3 Q + B,e (f, g)ψ dv R 3 |f (v)| dv R 3 |g(u)| [(t v • T -• t v )ψ] (u) du g L p η+k R 3 |f (v)| (t v • T -• t v )ψ L p ′ -k-η dv.
Using the inequality

t v h L p ′ s 2 |s|/2 v |s| h L p ′ s for any s ∈ R and v, R 3 Q + B,e (f, g)ψ dv 2 |η+k|/2 g L p η+k R 3 |f (v)| v |η+k| (T -• t v )ψ L p ′ -k-η dv 2 |η+k|/2 γ(η, p, b) Φ L ∞ -k g L p η+k R 3 |f (v)| v |η+k| t v ψ L p ′ -η dv 2 |η+k|+|η|/2 γ(η, p, b) Φ L ∞ -k g L p η+k R 3 |f (v)| v |η+k|+|η| ψ L p ′ -η
dv which proves the first part of the Theorem. To prove the second part, observe that

R 3 Q + B,e (f, g)(v)ψ(v) dv = R 3 ×R 3 f (v -u)g(v)T + (t v ψ)(u) dv du,
where T + (ψ)(u) = Φ(|u|)S + (ψ)(u) and S + defined in (4.1). Using the notation of [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF] we identify S + (h) = P(1, h). Thus, applying [3, Theorem 5] with p = ∞ and α = -η,

S -(h) L p ′ -η γ(η, p, b) h L p ′ -η
where γ(η, p, b) given by (4.8). One concludes as above, interchanging the roles of f and g.

Remark 4.4. The constants γ(η, p, b) and γ(η, p, b) are not finite for arbitrary b(•) because of the possible singularity at s = ±1. However, if one assumes, as in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF], that the angular kernel b(•) vanishes in the vicinity of s = 1 then γ(η, p, b) < ∞ for any 1 p ∞ and η ∈ R. This is an additional difficulty of the inelastic regime that is overcome in the elastic case using symmetry, i.e., defining b in half the domain. The careful reader will also notice that the constants given in the theorem are independent of e(•) except for γ(η, p, b) which depends only on the value e(0). Finally, we mention that, for hard-sphere interactions, i.e. b ≡ 1 4π , one has γ(η, p, b) < ∞ ⇐⇒ γ(η, p, b) < ∞ ⇐⇒ 1 p < 3+η + 1+η + .

Sobolev regularity for smooth collision kernel.

For this section we assume Φ(•) and b(•) smooth and compactly supported We postpone the proof of Lemma 4.5 and first prove its important consequence. 

Φ ∈ C ∞ 0 (R 3 \ {0}), b ∈ C ∞ 0 (-1, 1
Q + B,e (f, g) H s+1 C(s, B, e) g H s f L 1
with constant C(s, B, e) given in Lemma 4.5.

Proof. Let F Q + B,e (f, g) (ξ) denote the Fourier transform of Q + B,e (f, g). According to Corollary 4.2,

F Q + B,e (f, g) (ξ) = R 3 f (v)F [(t v • Γ B • t v ) g] (ξ) dv.
To simplify notation set

G(v, ξ) = F [(t v • Γ B • t v ) g] (ξ). Thus, Q + B,e (f, g) 2 H s+1 = R 3 F Q + B,e (f, g) (ξ) 2 ξ 2(s+1) dξ = R 3 ξ 2(s+1) R 3 f (v)G(v, ξ) dv 2 dξ f L 1 R 3 ×R 3 |f (v)| |G(v, ξ)| 2 ξ 2(s+1) dξ dv. (4.11) Since G(v, ξ) = F [(t v • Γ B • t v ) g] (ξ), R 3 |G(v, ξ)| 2 ξ 2(s+1) dξ = (t v • Γ B • t v ) g 2 H s+1 C(s, B, e) 2 g 2 H s .
For this inequality we used Lemma 4.5 and the fact that the translation operator t v has norm one in any Sobolev space. Hence, estimate (4.11) yields the desired estimate.

Proof of Lemma 4.5. The proof of the regularity property of Γ B can be obtained following the lines of the one for the elastic Boltzmann operator [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]. Indeed, note that

Γ B (f )(r, ω) : = Γ B (f )(α -1 (r), ω) = Γ B (f )(rβ(r), ω) = ω ⊥ B(z + rω, r)ϕ(rω + z) dπ z .
Assumption (4.10) implies that there exists δ > 0 such that b(x) = 0 for |x ± 1| δ and {|z| ; z ∈ Supp(Φ)} ⊂ (a, M) for some positive constants 0 < a < M. Then, by virtue of (4.3), B(z + rω, r) = 0 for any r > 0, ω ∈ S 2 and z ∈ ω ⊥ provided that

|z| 2 > 2-δ δ r 2 . For |z| 2 2-δ δ r 2 , one has |z + rω| 2 2r 2 /δ, thus, B(z + rω, r) = 0 if r < δa 2 /2.
Putting these together we conclude that B(z + rω, r) = 0 ∀r / ∈ I := δa 2 /2, M , ω ∈ S 2 and any z⊥ω. (4.12)

In particular, Γ B (f )(r, ω) = 0 for any r / ∈ I independently of f . Define

B 0 (z, ̺) := 1 + ϑ ′ (̺) ̺ β 2 (̺)B(z, ̺) = Φ(|z|)b 1 -2 ̺ 2 |z| 2 |z|̺ 2
and denote Γ 0 (f ) the associated operator,

Γ 0 (f )(r, ω) := ω ⊥ B 0 (z + rω, r)ϕ(rω + z) dπ z .
Then, B 0 does not depend on the restitution coefficient e(•) and Γ 0 is exactly of the form of the operator T studied in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]Theorem 3.1]. Therefore, arguing as in op. cit., for any s 0, there is an explicit constant

C 0 = C 0 (s, Φ, b) such that Γ 0 (f ) H s+1 C 0 (s, Φ, b) f H s , ∀f ∈ H s . (4.13)
Setting

G e (̺) = ̺ (1 + ϑ ′ (̺)) β 2 (̺) ∀̺ 0, (4.14) 
one observes that G e is a C m function over I whose derivatives D k G e are bounded over I for any k m and

Γ B (f )(r, ω) = G e (r)χ I (r) Γ 0 (f )(r, ω).
Here χ I is the characteristic function of I = δa 2 /2, M (see Eq. (4.12)). Therefore, for any 0 s m, there exists some constant C = C 0 (s, b, e) such that

Γ B (f ) H s+1 C 0 (s, B, e) f H s , ∀f ∈ H s (4.15)
where the constant C 0 (s, B, e) can be chosen as

C 0 (s, B, e) = C 0 (s, Φ, b) max k=0,...,s D k G e L ∞ (I) . (4.16) 
From estimate (4.15) we deduce Lemma 4.5 with the following argument. Assume first s = k 1 is an integer. Using polar coordinates

Γ B (f ) 2 H k = |j| k ∞ 0 F j (̺)̺ 2 d̺ S 2 |∂ j v Γ B (f )(̺, ω)| 2 dω
where, for any |j| k, the function F j (̺) can be written as

F j (̺) = P j (ϑ (1) (̺), . . . , ϑ (j) (̺))(1 + ϑ (1) (̺)) -n j . (4.17) 
Here P j (y 1 , . . . , y j ) is a suitable polynomial, n j ∈ N and ϑ (p) denotes the p-th derivative of ϑ(•). Since ϑ ∈ C m (0, ∞) and I is a compact interval away from zero, one has

sup ̺∈I F j (̺) = C k < ∞ for any |j| k. Thus Γ B (f ) H k C k Γ B (f ) H k (4.18)
where C k is an explicit constant involving the L ∞ norm of the first k-th order derivatives of α(•) on I. This proves that the conclusion of the Lemma 4.5 holds true for any integer s m and we deduce the general case using interpolation.

Remark 4.7. It is important, for our subsequent analysis, to obtain a precise expression for the constant C(s, B, e). For instance, in the case in which e(•)

∈ C 1 (0, ∞), one obtains that C(1, B, e) C 0 (1, B, e) sup ̺∈I F 1 (̺)
where F 1 is of the form (4.17 

< p < ∞ Q + B,e (f, g) L p C(p, B, e) ( g L q f L 1 + g L 1 f L q )
where the constant C(p, B, e) depends on B and e through the constant C(1, B, e) of Theorem 4.6. The exponent q < p is given by

q =    5p 3 + 2p if p ∈ (1, 6] p/3 if p ∈ [6, ∞). (4.19) 
4.4. Regularity and integrability for hard-spheres. We consider in this section the case of hard-spheres collision kernel

B(u, σ) = |u| 4π .
Such a collision kernel does not enjoy the regularity properties assumed in the previous section. This does not present a problem since the dependence of the constant on the collision kernel B permits to adapt the method developed in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] for the elastic case. We need some supplementary assumptions on the restitution coefficient e(•).

Assumptions 4.9. In addition to the Assumptions 2.1, suppose that e(•) ∈ C 1 (0, ∞) and that there exists k ∈ R such that

e ′ (r) = O(r k ) when r → ∞,
where e ′ (•) denotes the derivative of e(•).

The above assumptions imply that ϑ ′ (̺) = O(̺ k+1 ) for large ̺ and ϑ ′ (̺) ≃ 1 when ̺ ≃ 0. Recall that ϑ ′ (•) is the derivative of ϑ(r) = re(r). Theorem 4.10. Assume that e(•) satisfies Assumptions 4.9. For any p ∈ [1, 3) there exist κ > 0, θ ∈ (0, 1) and a constant C e > 0 depending only on p and the restitution coefficient e(•) such that, for any δ > 0 Proof. We follow the same lines presented in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] and subsequently used in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]. We present the argument for convenience. Fix p ∈ [1, 3) and let Θ : R → R + be an even C ∞ function with compact support in (-1, 1) and 1 -1 Θ(s) ds = 1. In the same way, consider a radial C ∞ function Ξ : R 3 → R with support in the ball B(0, 1) and R 3 Ξ(v) dv = 1. Define the mollifications Ξ n (v) := n 3 Ξ(nv) and Θ m (s) := mΘ(ms) for m, n 1. Thus,

R 3 Q + e (f, f ) f p-1 dv C e δ -κ f 1+pθ L 1 f p(1-θ) L p + δ f L 1 2 f p L p 1 
Φ Sn = Ξ n * (| • |χ An ) and b Sm = Θ m * ( 1 4π χ [-1+ 2 m ,1-2 m ]
) are smooth mollifications of the collision kernel. Here we have defined the set

A n = v ∈ R 3 ; |v| ∈ 2 n , n n 1. 
Consider the smooth collision kernel

B Sm,n (|u|, u • σ) = Φ Sn (|u|) b Sm ( u • σ),
and observe that supp

(Φ Sn ) ⊆ 1 n |v| n + 1 and supp (b Sm ) ⊆ -1 + 1 m , 1 - 1 m .
Define naturally

B SRm,n (|u|, u • σ) : = Φ Sn (|u|) b Rm ( u • σ), B RSm,n (|u|, u • σ) : = Φ Rn (|u|) b Sm ( u • σ) and B RRm,n (|u|, u • σ) : = Φ Rn (|u|) b Rm ( u • σ).
Here

Φ Rn (|u|) = |u| -Φ Sn (|u|) and b Rm ( u • σ) = 1 4π -b Sm ( u • σ)
are the remainder parts. Thus, one splits Q + e in four parts using obvious notation,

Q + e = Q + B Sm,n ,e + Q + B SRm,n ,e + Q + B RSm,n ,e + Q + B RRm,n ,e .
Since B Sm,n (|u|, u•σ) fulfills (4.10) one deduces from Corollary 4.8 that there is a constant C(m, n) such that

Q + B Sm,n ,e (f, f ) L p C(m, n) f L q f L 1
for q < p given by (4.19). A simple application of Hölder's inequality yields

R 3 Q + B Sm,n ,e (f, f ) f p-1 dv C(m, n) f L q f L 1 f p-1 L p . (4.20) 
Recall from Corollary 4.8 that C(m, n) depends on m and n through the constant C(1, B Sm,n , e) in Theorem 4.6. Moreover, according to Remark 4.7, one sees that

C(1, B Sm,n , e) C 0 (1, Φ Sn , b Sm ) max k=0,1 D k G e L ∞ (I) sup ̺∈I F 1 (̺)
where C 0 (s, Φ, b) is the constant appearing in (4.13), G e (•) is given by (4.14), and F 1 is of the form (4.17). The interval I = I m,n is defined in (4.12) with δ = 1/m, M = n + 1 and a = 1/n

I = 1 2mn 2 , n + 1 .
That C 0 (1, Φ Sn , b Sm ) depends on m and n in a polynomial way follows as in [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]. Moreover, from the properties of G e given in Remark 4.7 and the fact that F 1 (̺) is a rational function in ϑ ′ (̺), one deduces from Assumption 4.9 and the above expression of I that there exist a, b > 0 such that

C(m, n) = O(m a n b ) as m, n → ∞. (4.21) 
Now, applying Theorem 4.3 with k = 1 and η = -1/p ′ , we get

Q + B SRm,n ,e (f, f ) L p η + Q + B RRm,n ,e (f, f ) L p η ε 0 (m, n) f L 1 1 f L p 1/p where ε 0 (m, n) = C -1/p ′ ,p,1 (B SRm,n ) + C -1/p ′ ,p,1 (B RRm,n
) for any m, n 1. In particular, using the expression of the above constants in (4.5), there exists a constant c > 0 such that ε 0 (m, n) c γ(-1/p ′ , p, b Rm ) =: ε(m) for any m, n 1. Then there exists some r > 0 such that ε(m) = O(m -r ) as m → ∞. (4.22) Indeed, since 1 p < 3, one sees from (4.5) that γ(-1/p ′ , p, b Rm ) C b Rm L q (S 2 ) for any q such that 1 < q ′ < 2p ′ /3. Thus, one can choose a regularizing function Θ so that the L q (S 2 )-norm of b Rm decays algebraically to zero as m grows. Using the above estimate with η = -1/p ′ , we get

R 3 Q + B SRm,n ,e (f, f ) + Q + B RRm,n ,e (f, f ) f p-1 dv ε(m) f L 1 1 f p L p 1/p . (4.23)
It remains only to estimate

I := R 3 Q + B RSm,n ,e (f, f ) f p-1 dv.
One notes that

Φ Rn (|v -v ⋆ |) Cn -1 |v| 2 + |v ⋆ | 2 , ∀v, v ⋆ ∈ R 3
for some C > 0. Thus, I Cn -1

R 3 ×R 3 f (v)f (v ⋆ ) |v| 2 + |v ⋆ | 2 dv dv ⋆ S 2 f p-1 (v ′ )b Sm ( u • σ) dσ.
Define

I 1 : = R 3 ×R 3 f (v)f (v ⋆ )|v| 2 dv dv ⋆ S 2 f p-1 (v ′ )b Sm ( u • σ) dσ, and 
I 2 : = R 3 ×R 3 f (v)f (v ⋆ )|v ⋆ | 2 dv dv ⋆ S 2 f p-1 (v ′ )b Sm ( u • σ) dσ.
Observe that I 1 can be written as

I 1 = R 3 ×R 3 Q + Bm,e (F, f )(v)ψ(v) dv
where

F (v) = |v| 2 f (v), ψ(v) = f p-1 (v) ∈ L p ′ (R 3 ) with the collision kernel B m (|u|, u • σ) = b Sm ( u • σ). Applying Theorem 4.3 with η = k = 0 gives I 1 Q + Bm,e (F, f ) L p ψ L p ′ C 0,p,0 (B m ) F L 1 f L p ψ L p ′ C 0,p,0 (B m ) f L 1 2 f p L p
where C 0,p,0 (B m ) is defined by (4.5). Now, with the same notation,

I 2 = R 3 ×R 3 Q + Bm,e (f, F )(v)ψ(v) dv,
therefore, applying Theorem 4.3 with η = 0 and k = -2 yields 

I 2 C 0,p,-2 (B m ) f L 1 2 F L p -2 ψ L p ′ C 0,p,-2 (B m ) f L 1 2 f p L p .
R 3 Q + e (f, f ) f p-1 dv C(m, n) f L q f L 1 f p-1 L p + + ε(m) f L 1 1 f p L p 1/p + C(m) n f L 1 2 f p L p .
Using the polynomial bounds (4.21), (4.22) and (4.24) this leads to the result as in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF].

Remark 4.12. Assumption 4.9 allows to present the explicit dependence of the constants with respect to δ > 0. This dependence will be crucial in the proof of Haff's law in Section 5. Note that the constant C e in Theorem 4.10 depends on the regularity of the restitution coefficient away from zero.

Corollary 4.13. Assume that e(•) satisfies Assumption 4.9. For any p ∈ [1, 3) there exist κ > 0, θ ∈ (0, 1) and a constant C e > 0 depending only on p and the restitution coefficient e(•) such that, for any δ > 0

R 3 Q + e (g, g) g p-1 v ηp dv C e δ -κ g 1+pθ L 1 η g p(1-θ) L p η +δ g L 1 2+η g p L p η+1/p , ∀η 0.
The constant C e is provided by Theorem 4.10.

Proof. Fix g 0, η 0 and set

f (v) = g(v) v η . Note that v ′ η v η v ⋆ η for any v, v ⋆ ∈ R 3 , then, using the weak formulation of Q + e R 3 Q + e (g, g) g p-1 v ηp dv = R 3 v η Q + e (g, g) f p-1 dv R 3 Q + e (f, f )f p-1 dv.
Conclude with Theorem 4.10.

The following result applies to the rescaled solutions g(τ, w). Its importance lies in that the estimate is uniform in the rescaled time τ . Corollary 4.14. Assume that e(•) satisfies Assumption 4.9. For any τ 0, let e τ be the restitution coefficient defined by (2.13) and let Q eτ (f, f ) be the associated collision operator. Assume that V (ζ(τ )) is continuous and goes to infinity as τ → ∞. For any p ∈ [1, 3) there exist κ > 0, θ ∈ (0, 1) and K > 0 all independent of τ such that, for any δ > 0

R 3 Q + eτ (g, g) g p-1 w ηp dw Kδ -κ g 1+pθ L 1 η g p(1-θ) L p η +δ g L 1 2+η g p L p η+1/p , ∀η 0.
Proof. From Corollary 4.13, for any τ 0 there exists K(τ ) = C eτ for which the above inequality holds. It suffices to prove that K = sup τ 0 K(τ ) < ∞. Recall that K(τ ) depends on τ through the restitution coefficient e τ , more precisely, C eτ depends on the L ∞ norm of the derivatives D k e τ (•), k = 0, 1, over some compact interval of (0, ∞) bounded away from zero (independent of τ ). Now, for any τ 0,

D k e τ (•) = µ -k (τ )(D k e) • µ(τ )
with µ(τ ) = V (ζ(τ )). Since µ -1 (τ ) is continuous and goes to zero as τ goes to ∞, one concludes that all the L ∞ norms of D k e τ (•) remain uniformly bounded with respect to τ . The same holds for K(τ ).

GENERALIZED HAFF'S LAW CONTINUED

5.1. Proof of Haff's law. In this section we prove the second part of Haff's law establishing the lower bound of the temperature (3.12). Recall that, from Theorem 3.7 it suffices to prove (3.10). As explained in Section 3 this is done using suitable L p estimates in the self-similar variables. In this section, the restitution coefficient fulfills Assumptions 3.1 and 4.9 and the collision kernel is that of hard-spheres interactions. Recall that the rescaled function g(τ, w) is solution to the Boltzmann equation in rescaled variables (2.12) ∂ τ g(τ, w) + ξ(τ )∇ w • (wg(τ, w)) = Q eτ (g, g)(τ, w) τ > 0.

(5.1) The restitution coefficient e τ and the time-depending mapping ξ(τ ) are given by (3.19).

Proposition 5.1. Assume that e(•) fulfills Assumptions 3.1 with γ > 0 and 4.9. Let f 0 satisfying (2.8) with f 0 ∈ L 1 2 ∩ L p (R 3 ) for some 1 < p < 3. Let g(τ, •) be the solution to the rescaled equation (5.1) with initial datum g(0, w) = f 0 (w). Then, there exist C 0 > 0 and κ 0 > 0 such that

g(τ ) L p C 0 (1 + τ ) κ 0 ∀τ 0. (5.2)
Consequently, there exist C 1 > 0 and κ 1 > 0 such that

Θ(τ ) := R 3 g(τ, w)|w| 2 dw C 1 (1 + τ ) -κ 1 ∀τ 0. (5.3)
Proof. The proof relies on Corollary 4.14. Multiply (5.1) by g p-1 and integrate over R 3 to obtain

1 p d g(τ ) p L p dτ + 3 1 - 1 p ξ(τ ) g(τ ) p L p = R 3 Q + eτ (g, g)g p-1 dw - R 3
Q -(g, g)g p-1 dw. (5.4) From Jensen's equality, one has

R 3 Q -(g, g)g p-1 dw R 3
g p (τ, w)|w| dw ∀τ 0.

(5.5)

According to Corollary 4.14 there exist κ > 0, θ ∈ (0, 1) and a constant K > 0 that does not depend on τ such that

R 3 Q eτ (g, g) g p-1 dw Kδ -κ g(τ ) 1+pθ L 1 g(τ ) p(1-θ) L p +δ g(τ ) L 1 2 g(τ ) p L p 1/p , ∀δ > 0.
From conservation of mass g(τ ) ≡ 1, furthermore, M 2 := sup τ 0 g(τ ) L 1 2 < ∞ from (3.17). Thus, using (5.4) and (5.5),

d g(τ ) p L p dτ p Kδ -κ g(τ ) p(1-θ) L p + p M 2 δ g(τ ) p L p 1/p -µ(τ ) g(τ ) p L p 1/p (5.6)
where µ(τ ) = min (1, 3(p -1)ξ(τ )). Since ξ(τ ) → 0 as τ → ∞ for γ > 0, there exists τ 0 > 0 such that µ(τ ) = 3(p -1)ξ(τ ) = 3(p -1) γτ + 1 + γ for any τ τ 0 .

Choosing δ = µ(τ )/(pM 2 ) in (5.6) we get

d g(τ ) p L p dτ p K (pM 2 ) κ µ(τ ) -κ g(τ ) p(1-θ) L p C(γτ + 1 + γ) κ g(τ ) p(1-θ) L p ∀τ τ 0
for some positive constant C > 0. Integrating the above estimate, we conclude the existence of some constant C 0 > 0 such that

g(τ ) p L p C 0 (γτ + 1 + γ) κ+1 θ
∀τ τ 0 , and (5.2) readily follows.

Regarding estimate (5.3) note that for any R > 0,

Θ(τ ) = |w| R g(τ, w)|w| 2 dw + |w|>R g(τ, w)|w| 2 dw R 2 |w|>R g(τ, w) dw R 2 1 - |w| R g(τ, w)|w| dw ∀τ 0, From Holder's inequality, |w| R g(τ, w)|w| dw 4 3 πR 3 1/p ′ g(τ ) L p with the convention 1 p + 1 p ′ = 1.
Therefore, using (5.2), there exists a positive constant C > 0 independent of R such that

Θ(τ ) R 2 1 -C R 3/p ′ (1 + τ ) κ 0 ∀R > 0, ∀τ 0. Pick R = R(τ ) > 0 such that C R 3/p ′ (1 + τ ) κ 0 = 1/2, then Θ(τ ) 1 2 R 2 (τ ) = 1 2 1 2C(1 + τ ) κ 0 p ′ /3
∀τ 0, which gives (5.3) with κ 1 = p ′ κ 0 /3.

The generalized Haff's law is a consequence Theorem 3.7 and Proposition 5.1. Theorem 5.2. Let f 0 0 satisfy the conditions given by (2.8) with f 0 ∈ L p 0 (R 3 ) for some 1 < p 0 < ∞. In addition, assume that e(•) fulfills Assumptions 3.1 and 4.9. Then, the solution f (t, v) to the associated Boltzmann equation (2.7) satisfies the generalized Haff's law c(1

+ t) -2 1+γ E(t) C(1 + t) -2 1+γ , t 0 (5.7)
where c, C are positive constants depending only on e(•) and E(0).

Proof. The upper bound in (5.7) has already been obtained in Theorem 3.3. The proof of the lower bound is a straightforward consequence of Theorem 3.7 and Proposition 5.1. Indeed, notice that if f 0 ∈ L 1 (R 3 ) ∩ L p 0 (R 3 ) for some 1 < p 0 < ∞, using interpolation, we may assume without loss of generally that p 0 ∈ (1, 3). Recall that for γ > 0,

E(t) = V -2 (t)Θ(τ (t))
where V (t) = (1 + t) 1+γ and τ (t) is given by (3.18). Since Θ(•) decays at least algebraically (5.3), one recognizes that there exists some constant a > 0 such that E(t) a (1 + t) -µ with µ = 2+γκ 1 1+γ with κ 1 being the rate in (5.3). The result follows from Theorem 3.7. The proof for γ = 0 is identical.

Example 5.3. For constant restitution coefficient γ = 0, we recover the classical Haff's law of [START_REF] Haff | Grain flow as a fluid-mechanical phenomenon[END_REF] proved recently in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]:

c(1 + t) -2 E(t) C(1 + t) -2 , t 0.
Example 5.4. For viscoelastic hard-spheres given in Example 2.4 one has γ = 1/5. Thus, Theorem 5.2 provides the first rigorous justification of the cooling rate conjectured in [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF][START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF]:

c(1 + t) -5/3 E(t) C(1 + t) -5/3 , t 0.
Remark 5.5. Theorem 5.2 shows that the decay of the temperature is governed by the behavior of the restitution coefficient e(r) for small impact. The cooling of the gases is slower for larger γ.

From the explicit rate of cooling of the temperature, one deduces the algebraic decay of any moments of the solution to (2.7). Under the assumptions of the above Theorem 5.2 the p-moment m p (t) defined in (3.4) satisfies

c p (1 + t) -2p 1+γ E(t) p m p (t) Cp E(t) p C p (1 + t) -2p 1+γ , t 0. (5.8) 
The positive constants c p , C p , Cp depend on p, m p (0), E(0) and e(•). The lower bound is a direct consequence of Jensen's inequality and (5.7) while the upper bound has been established in Theorem 3.7.

5.2. Application: Propagation of Lebesgue norms. We complement Proposition 5.1 by proving the propagation of L p -norms in the range 1 p < 3 for the solution g(τ, w) satisfying the rescaled equation (5.1). Thus, the method introduced in the elastic case [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] and later used in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] for constant restitution coefficient is extended to the case of a variable restitution coefficient satisfying Assumptions 3.1 and 4.9.

Lemma 5.6. Assume that the initial f 0 0 satisfies the conditions given by (2.8) with f 0 ∈ L p (R 3 ) for some 1 < p < ∞ and let g(τ, •) be the solution to the rescaled equation (5.1) with initial datum g(0, w) = f 0 (w). Then, there exists a constant ν 0 > 0 such that

R 3 g(τ, w ⋆ )|w -w ⋆ | dw ⋆ max {ν 0 , |w|} ν 0 2 w , ∀w ∈ R 3 , τ > 0.
In particular,

R 3 g p-1 Q - e (g, g) dw ν 0 2 R 3 g p (τ, w)(1 + |w| 2 ) 1/2 dw = ν 0 2 g(τ ) p L p 1/p .
Proof. The proof is a simple consequence of

Θ min := inf τ >0 R 3 g(τ, w)|w| 2 dw > 0.
Indeed, since f 0 ∈ L 1 3 the propagation of p-moments in the rescaled variables implies sup t 0 g(τ

) L 1 3 < ∞. Then, for R > 0 large enough {|w| R} g(τ, w)|w| 2 dw = R 3 g(τ, w)|w| 2 dw - {|w| R} g(τ, w)|w| 2 dw Θ min - 1 R sup {τ 0} g(τ ) L 1 3 Θ min /2 > 0.
We conclude that,

R 3 g(τ, w)|w| dw 1 R {|w| R} g(τ, w)|w| 2 dw Θ min 2R =: ν 0 > 0.
Using this observation and Jensen's inequality we obtain the result.

Theorem 5.7. Assume the variable restitution coefficient e(•) satisfy Assumptions 3.1 and 4.9 for some positive γ > 0. Assume that f 0 0 satisfies (2.8) with f 0 ∈ L 1 2(1+η) ∩L p η (R 3 ) for some 1 p < 3 and η 0. Then, the rescaled solution g(τ, •) to (5.1) with initial datum g(0, w) = f 0 (w) satisfies

sup τ 0 g(τ ) L p η < ∞.
In particular,

sup t 0 V (t) -3/p ′ f (t) L p = sup τ 0 g(τ ) L p < ∞. Recall that V (t) = (1 + t) 1 1+γ . 
Proof. Multiplying equation 5.1 by g p-1 (τ, w) w ηp and integrating over R 3 yields

1 p d g(τ ) p L p η dτ + 3 1 - 1 p ξ(τ ) g p L p η = R 3 Q + eτ (g, g)g p-1 w ηp dw- R 3 Q -(g, g)g p-1 w ηp dw + ηξ(τ ) R 3 g p (τ, w)|w| 2 w ηp-2 dw.
Using Lemma 5.6 one has

R 3 Q -(g, g)g p-1 w ηp dw ν 0 2 g(τ ) p L p η+1/p . Moreover, C η = sup τ 0 g(τ ) L 1 2+η
< ∞ by virtue of the propagation of moments in self-similar variables (5.8). Applying Corollary 4.14 with δ

= ν 0 4C , 1 p d dτ g(τ ) p L p η + ν 0 4 g(τ ) p L p η+1/p K g(τ ) p(1-θ) L p η + ξ(τ ) η - 3 p ′ g(τ ) p L p η ∀τ > 0 (5.9)
for some uniform constant K. Since γ > 0, the mapping ξ(τ ) decreases toward zero, thus (5.9) leads to the result.

Remark 5.8. We refer to [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]Theorem 1.3] for a proof of the case γ = 0. Furthermore, additional pointwise estimates allow to extend the above result to p 3 assuming higher moments for f 0 . We refer the reader to [START_REF] Alonso | Work in preparation[END_REF] for further similar estimates.

HIGH-ENERGY TAILS FOR THE SELF-SIMILAR SOLUTION

We finalize this work studying the high-energy tails of f (t, v) of the solution to (1.3). For models with variable restitution coefficient the high energy tail is dynamic since gas changes its behavior during the cooling process. This is noted with a dynamic rate in the tail. Here again, we shall deal with the generalized hard-spheres collision kernel

B(u, σ) = |u|b( u • σ)
where b(•) satisfies (2.6). We argue in the self-similar variables, thus it is convenient to define the rescaled p-moments m p (τ ) = The following Theorem generalizes [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]Proposition 3.1] to the case of a variable restitution coefficient.

Theorem 6.1 (L 1 -exponential tails Theorem). Let B(u, σ) = |u|b( u • σ) satisfy (2.6) with b ∈ L q (S 2 ) for some q > 1. Assume that e(•) and f 0 fulfill Assumptions 3.1 and (2.8) respectively. Furthermore, assume that there exists r 0 > 0 such that R 3 f 0 (v) exp (r 0 |v|) dv < ∞.

Let g(τ, w) be the rescaled solution defined by (2.10). Then, there exists some r r 0 such that sup τ 0 R 3 g(τ, w) exp (r|w|) dw < ∞. (6.2)

Consequently,

sup t 0 R 3 f (t, v) exp (rV (t)|v|) dw < ∞. (6.3)
Proof. The method of proof is carefully documented in [START_REF] Alonso | Propagation of L 1 and L ∞ Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann equation[END_REF][START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]. We sketch the proof dividing the argument in 5 steps.

Step 1. Note that formally , with a = 2/s, where Γ(•) denotes the Gamma function. We shall prove that the series converges for some r < r 0 and with s = 1 (i.e. a = 2). To do so, it is enough to prove that, for some b < 1 and Q > 0 large enough, one has z p (τ ) Q p for any p 1 and any τ 0.

Step 2. Recall that, according to Lemma 2.6, the estimates of Proposition 2.7 are independent of the restitution coefficient e(•). In particular, they hold for the time-dependent collision operator Q eτ providing bounds which are uniform with respect to τ . Specifically, Step 3. An important simplification, first observed in [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF], consists in noticing that the term S p satisfies With such an estimate, the rather involved term S p is more tractable. where we used the fact that the fact that ξ(τ ) 1 and κ p ∼ 1/p 1/q ′ for large p, one concludes that there are constants c i > 0 (i = 1, 2) and p 0 > 1 sufficiently large so that dz p dτ (τ ) + c 1 p a/2 z 1+1/2p p (τ ) c 2 p a/2+b-1/q ′ Z p (τ ) + 2p z p (τ ) ∀τ 0, p p 0 .

We also used that m p+1/2 (τ ) m 1+1/2p p (τ ) for any τ 0 thanks to Jensen's inequality.

Final step. We claim that if we choose a = 2 and 0 < b < 1/q ′ it is possible to find Q > 0 large enough so that m p (τ ) Q p . Indeed, let p 0 and Q < ∞ such that where Q 0 is a constant such that z p (0) Q p 0 . This constant exists by the exponential integrability assumption on the initial datum. Moreover, since moments of g are uniformly propagated, the existence of such finite Q is guaranteed. Arguing by induction and standard comparison of ODE's, one proves that y p (τ ) := Q p satisfies for p p 0 dy p dτ (τ ) + c 1 p a/2 y 1+1/2p p (τ ) c 2 p a/2+b-1/q ′ Z p (τ ) + 2p y p (τ ), y p (0) z p (0) therefore, y p (τ ) z p (τ ) for any p p 0 . Since this is trivially true for p < p 0 we obtain that m p (τ ) Γ(2p + b)Q p , ∀p 1, τ 0. From Step 1, this is enough to prove the Theorem. Example 6.2. For viscoelastic hard-spheres V (t) = (1 + t) 5/3 . Therefore,

R 3 f 0 (v) exp (r 0 |v|) dv < ∞ =⇒ sup t 0 R 3 f (t, v) exp r(1 + t) 5/3 |v| dv < ∞
for some r < r 0 . In particular, using the terminology of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF], f (t, v) has a (dynamic) exponential tail of order 1.

APPENDIX A: VISCOELASTIC HARD-SPHERES

In this Appendix we prove that Assumptions 3.1 are met by the restitution coefficient e(•) associated to the so-called viscoelastic hard-spheres as derived in [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF] (see also [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF]Chapter 4]). In fact, we prove a more general result for the hard-spheres collision kernel

B(u, σ) = |u| 4π ∀u ∈ R 3 , σ ∈ S 2 .
Recall that Ψ e was defined in (3.1) as

Ψ e (x) = 1 2 √ x √ x 0 
1 -e(z) 2 z 3 dz, x > 0. Since e ′ (x) 0 and e(•) ∈ (0, 1] one concludes that xΦ xx (x) -Φ x (x) 0 for any x > 0.

Similarly, since e ′ (•) 0 the mapping z 0 → (1 -e 2 (z))z 3 is nondecreasing, thus, Φ x (x) > 0 for any x > 0. This implies that Ψ e (•) is strictly increasing over (0, +∞).

For the visco-elastic hard-spheres, as derived in [START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF], the restitution coefficient e is solution of the equation e(r) + α r 1/5 e(r) 3/5 = 1 ∀r 0 (A.1)

where α > 0 is a constant depending on the material viscosity. It was proved in [1, p. 1006] that, on the basis of (A.1), Assumptions 2.1 are met. From equation (A.1), one deduces that lim r→0 + e(r) = 1, and e(r) ≃ 1 -αr 1/5 for r ≃ 0 which means that Assumption 3.1 (1) is met. Furthermore, equation (A.1) also implies that e is continuously decreasing. According to Lemma A.1, e(•) satisfy Assumptions 3.1. Moreover, it is easy to deduce from (A.1) that Assumption 4.9 is satisfied.

Example A. 1. For monotone decreasing restitution coefficient introduced in Example 2.3, Assumptions 3.1 are also met by virtue of the above Lemma. In such a case, according to (2.2), the cooling of the temperature E(t) is

E(t) = O (1 + t) -2 1+η
as t → ∞.
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 2 dv and c, C are positive constants depending only on e(•) and E(0).

FIGURE 1 .

 1 FIGURE 1. Restitution coefficient for viscoelastic hard-spheres given by Eq. (2.3) with a = 0.12.
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 37 Assume a non constant (γ > 0) restitution coefficient e(•) satisfying Assumptions 3.1. If there exist C 0 > 0 and λ > 0 such that
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 43 Assume that the collision kernelB(u, σ) = Φ(|u|)b( u • σ) satisfies (2.6) and Φ(•) ∈ L ∞ -k for some k ∈ R.In addition, assume that e(•) fulfills Assumption 2.1. Then, for any 1 p ∞ and η ∈ R, there exists C η,p,k (B) > 0 such that
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 46 Let B(u, σ) = Φ(|u|)b( u • σ) be a collision kernel satisfying (4.10) and e(•) satisfying Assumption 2.1. In addition, assume that e(•) ∈ C m (0, ∞) for some integer m ∈ N. Then, for any 0 s m,

Corollary 4 . 8 .

 48 ) with I defined in(4.12). Note that C 0 (1, B, e) and G e (̺) are given by (4.16) and (4.14) respectively. In particular, under Assumption 2.1, G e (̺) 4̺ for large ̺ and G e (̺) ≃ ̺/2 for ̺ ≃ 0. Arguing as in [21, Corollary 3.2] we translate the gain of regularity obtained in Theorem 4.6 in gain of integrability. Let B(u, σ) = Φ(|u|)b( u • σ) be a collision kernel satisfying (4.10) and e(•) ∈ C 1 (0, ∞) satisfying Assumption 2.1. Then, for any 1
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 411 The restriction p ∈[START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF][START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF] is the major difference with respect to the classical case[START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] Theorem 3.1]. The reason is that in the inelastic regime the lack of symmetry does not permit to switch the roles of v ′ and v ′ ⋆ , therefore, general b has to be defined in the full interval [-1, 1].

  Combining the two estimates for I 1 and I 2 , m) = C 0,p,0 (B m ) + C 0,p,-2 (B m ). The support of b Sm (s) lies to a positive distance, of order 1/m, from s = 1. Then, we use the expression (4.5) to conclude that
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R 3 g

 3 (τ, w) |w| 2p dw, p 0. Notice that (5.8) readily translates into c p m p (τ ) C p for τ 0. (6.1)

R 3 g

 3 (τ, w) exp (r|w| s ) dw = ∞ k=0 r k k! m sk/2 (τ ),for any r > 0 and any s > 0. Hence, the summability of the integral is described by the behavior of the functionsm sk/2 (τ ) k!. This motivates the introduction of the renormalized moments z p (τ ) := m p (τ ) Γ(ap + b)

R 3 Q

 3 eτ (g, g)(τ, w)|w| 2p dw -(1 -κ p )m p+1/2 (τ ) + κ p S p (τ ), ∀τ 0where κ p is the constant introduced in Lemma 2.6 andS p (τ ) = 2 (τ ) m p-k (τ ) + m k (τ ) m p-k+1/2 (τ ) .

S

  p (τ ) A Γ(ap + a/2 + 2b) Z p (τ ) for a 1, b > 0,where A = A(a, b) > 0 does not depend on p andZ p (τ ) = max 1 k kp z k+1/2 (τ ) z p-k (τ ), z k (τ ) z p-k+1/2 (τ ) .

Step 4 .

 4 Using the above steps and the evolution problem (5.1) satisfied by the rescaled solution g, we check that dm p dτ (τ ) + (1 -κ p )m p+1/2 (τ ) κ p Γ(ap + a/2 + 2b)Z p (τ ) + 2p ξ(τ )m p (τ )

R 3 |w|

 3 2p ∇ w • (wg(τ, w)) dw = -2p m p (τ ).Using the asymptotic formulalim p→∞ Γ(p + r) Γ(p + s) p s-r = 1,
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Lemma A. 1 . 1 -x 2 x 0 ( 1 -

 1101 Assume that e(•) satisfies Assumption 2.1 and that the mapping r 0 → e(r) is decreasing. Then, the associated function Ψ e defined in (3.1) is strictly increasing and convex.Proof. Since e is decreasing, e ′ (r) 0 for any r 0. Here e ′ (•) denotes the derivative of ee 2 (z) z 3 dz,x > 0.Note that Ψ e (•) is convex if and only if xΦ xx (x) -Φ x (x) 0 for any x > 0 where Φ x and Φ xx denote the first and second derivatives of Φ respectively. A simple calculation shows that xΦ xx (x) -Φ x (x) = -2x 3 e ′ (x)e(x) + 3 e 2 (z))z 3 dz, ∀x > 0.

Theorem 2.5 (Mischler et al.). For

  

	, Theorem 1.2] applies direclty
	and allows us to state:
	any nonnegative velocity function f 0 satisfying (2.8),
	there is a unique solution f = f (t, v) to (2.7). Moreover,

Notice that the constants γ(η, p, b) and γ(η, p, b) given by (4.6) and (4.8) are not finite for arbitrary angular kernel b. It is implicitly assumed that the Theorem applies for the range of parameters leading to finite constants (see alsoRemark 4.4).
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