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FREE COOLING AND HIGH-ENERGY TAILS OF GRANULAR GASES
WITH VARIABLE RESTITUTION COEFFICIENT

RICARDO J. ALONSO & BERTRAND LODS

ABSTRACT. We develop in this paper the first systematic treatmentehttimogeneous
Boltzmann equation for granular gases with non constatituien coefficient, general-
izing a large number of the results obtained recently forbgemeous granular gases with
constant restitution coefficient to a broader class of glajsiestitution coefficients that
depend on the collision impact velocity. Our analysis isiedralong the following paths:
first, we develop thd.'-theory which is based on the understanding of the moments of
solution and leads as byproduct to the Haff's law and theadiead L' -exponential tails
theorem. Second, we investigate thietheory forl < p < oo, proving in particular the
propagation ofL.? norms. Finally, we develop the>-theory which produces the cele-
bratedZ>°-exponential tails theorem as ultimate goal. In all the &xteps, the study of
the self-similar solutions to the Boltzmann equation playsucial role.

1. INTRODUCTION

1.1. General setting. Rapid granular flows can be successfully described by thezBol
mann equation conveniently modified to account for the gndigsipation due to the
inelasticity of collisions. For such a description, onealsuconsiders the collective dy-
namics of inelastic hard-spheres interacting throughrgicallisions [[1, 3, E4]. The
loss of mechanical energy due to collisions is charactedmethe so-called normal resti-
tution coefficient which quantifies the loss of relative natwelocity of a pair of colliding
particles after the collision with respect to the impacbedly. Namely, ifv andv, denote
the velocities of two particles before they collide, theispective velocities’ andv’, after
collisions are such that

(v -n)=—(u-n)e, (1.1)
where the restitution coefficienrtis such that) < e < 1 andn € S? determines the
impact direction, i.en stands for the unit vector that points from thgarticle center to
thev,-particle center at the instant of impact. Here above

U=V — Uy, UIZU'—U;,
denote respectively the relative velocity before and aftdlision. The major part of the
investigation, at the physical as well as the mathemateadls, has been devoted to the
particular case of a constant normal restitution. Howeaggescribed in the monograph
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2 RICARDO J. ALONSO & BERTRAND LODS

[L73], it appears that a more relevant description of granulaegahould deal with a
variable restitution coefficient(-) depending on the impact velocity, i.e.

e:=e(|lu-nl).

The most common model is the one corresponding to viscaielerd-spheres for which
the restitution coefficient has been derived byH8/AGER & POSCHEL [2]. For this
peculiar modele(-) admits the following representation as an infinite expamseries:

e(ju-7) =1+ (~Dfarfu-a*®  weR’ Aes (1.2)
k=1

whereq;, > 0 for anyk € N. We refer the reader t@]l, P4 for the physical considerations
leading to the above expression (see also the Appendix Aefaral properties of(-) in
the case of visco-elastic hard-spheres). This is the prétheixample we have in mind for
most of the results in the paper, though, as we shall see,pproach will cover more
general cases including the one of constant restitutiofficaat.

In a kinetic framework, behavior of the granular flows is ddxsad, in the spatially situ-
ation we shall consider here, by the so-called velocityithstion f (v, t) which represents
the probability density of particles with velocityc R? at timet > 0. The time-evolution
of the one-particle distribution functiofiv, t), v € R?, ¢ > 0 satisfies the following

o f = Qe(fa f)('U,t), f(t = 0,'&1) = fO(U) (1.3)

whereQ.(f, f) is the inelastic Boltzmann collision operator, expressimgeffect of bi-
nary collisions of particles. The collision operat@r shares a common structure with the
classical Boltzmann operator for elastic collisifify[Pq] but is conveniently modified in
order to take into account the inelastic character of thisstmh mechanism. In particular,
Q. depends in a very strong and explicit way on the restitutmeffeciente. Of course,
for e = 1, one recovers the classical Boltzmann operator. We postfm8ectiorf.] the
precise expression @.. Due to the dissipation of kinetic energy during collisipinshe
absence of external forces, the granular temperature

E(t) = /Rfif(t,v)|v\2dv

is continuously decreasing and is expected to go to zeronaegnes to infinity, expressing
the cooling of the granular gasedDetermining the precise rate of decay to zero for the
granular temperature is, among other things, one of thetigmesaddressed in this paper.
The asymptotic behavior for the granular temperature wsisdiplained in[[]] by HAFF

at the beginning of the 80’s for the case of constant regiitutoefficient, thus, it has
become standard to refer to this behavior simplida#’s law.

Up to now, the mathematical investigation of the inelastttBnann equation has been
almost uniquely devoted to the case of a constant restitutoefficient. As well docu-
mented in the surveyP[]], the study of Boltzmann models for granular flows has been
first restricted to the so-called inelastic Maxwell molesuivhere the collision rate is
independent on the relative velocity, [{, B, [4]. A more sophisticated model can be
found in [§, Section 6.2] which deals with inelastic Maxwell molecwidsere the resti-
tution coefficient depends on time through the temperatéitheo gas. Regarding the
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convergence towards homogeneous cooling state in the ¢adexavell molecules we
refer to the recent work by ARLEN, CARRILLO & CARVALHO [[L{]. The mathemati-
cal investigations of the more physically relevant caseastifspheres interactions have
been then initiated by MvBA, PANFEROV & V ILLANI [[I4] for diffusively heated gases.
Since then, a systematic study of the hard-spheres casebbameaddressed in a series
of papers by MsCHLER & M OUHOT, who, among other important results, provided the
first rigorous proof of the Haff’'s law for hard-spheres i@gtions and constant normal
restitution [[9, E0]. Together with the work of BBYLEV, GAMBA & PANFEROV [{],
these two papers have been the principal inspiration sdardbe present work. Let us
also mention that MsCHLER & M OUHOT also addressed the relevant problem of Homo-
geneous Cooling State, proving the existence of self-amsiblutions and their stability
with respect to the quasi-elastic limit], 7).

All the aforementioned works are dealing with the case ofrestamt normal restitution
coefficient. From the mathematical viewpoint, the literatan granular gases withari-
able restitution coefficiens rather limited. In[[J], the Cauchy problem for the homoge-
neous inelastic Boltzmann equation is studied in greaild®td full generality including
the class of restitution coefficients that we are dealingpwitthis paper. For the inhomo-
geneous inelastic Boltzmann equation the literature isn@e scarce, in this respect we
mention the work by the first authdf][that treats the Cauchy problem in the case of near-
vacuum data. It is worthwhile mentioning that the scarcityesults regarding existence
of solutions for the inhomogeneous case is explained byaitliedf entropy estimates for
the inelastic Boltzmann equation, thus, powerful theolilesthe DiPerna-Lionsenor-
malized solutionss no longer available. More complex behavior that involeehdaries,
for instance clusters and Maxwell demons, are well beyortiepresent techniques.

From the technical viewpoint we will implement a great debthe machinery de-
veloped through the years for the theory of homogeneousuagases with constant
restitution coefficient (se€d[ £1, 2, £4] and the recent contributioff]) to a broader
class of physical restitution coefficients depending ondbiésion impact velocity. Of
course, additions, improvements and new ideas will be dgutted as needed.

1.2. Description of the results. The present paper provides, to our knowledge, the first
systematic study of the Boltzmann equation for granulaegagth non constant restitu-
tion coefficient. A simple recipe to understand this workhis following scheme

L'-theory LP-theory(1 < p < o) L*°-theory

Propagation of momenis Carleman representation | Pointwise estimates|
Haff’'s law Compactness properties ¢f | Uniform boundedness

L'-tails theorem Propagation of.”-norms L°°-tails theorem
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Thus, in Sections 2, 3 and 4 we develop thietheory which has as byproducts the
Haff's law and theL!-tails theorem. Sections 4 and 5 develop all the integtslalti-
mates needed for the propagation of fifenorms forl < p < oo, which is treated in
Section 6. Finally in Section 7 thg™-theory is developed to obtain tlie°-tails theorem.
As the reader will notice, this division is natural since teehniques involved in each of
them will vary considerably. For thé!'-theory the basic tool is the so-called Povzner
lemma, which was developed in full grace [i,[as opposed to the compactness argu-
ments necessary for the’-theory. The latter has been first developed by P. loNs
in the 90’s [[g] and fully exploited then by MUHOT & V ILLANI [P4]. Meanwhile, the
L*-theory is based in several technical observations, andrgpanson principle intro-
duced recently by GmBA, PANFEROV & V ILLANI [[L]. Certainly, we will have to work
hard to adapt all these arguments to our present situatairptbved to be rewarding at
the end. One of the main tools in our analysis will be the siofdyelf-similar solutions
to the Boltzmann equatiofi(§). Precisely, we shall repeatedly look for solutionsEGjY
of the form

f(t,0) = V(£)’g(r(t), V(t)v)

wherer(-) andV/(-) are time scaling functions to be specified later. The redcsdéution
g(7,w) turns out to be a solution of an evolution problem of the type:

0-g(7, w) + £(7) Vi - (wy(T,w)) = Qe(ry (9, 9)

for someg(7) depending on the time scateandQz(-(g, ¢) is a collision operator associ-
ated to a time-dependent restitution coeffici€nt) (see Sectiof.4for details). The most

notable difference with respect to the case of a constatitutisn coefficient is that the

rescaled collision operator depends on the (rescaled)tjteading to anon-autonomous

problemfor g.

Let us explain in more details the results we obtain in thiskwdAs we mentioned,
the first part of the paper is devoted to th&theory. The main result of this setting
is the first rigorous proof of what we caleneralized Haff's law Precisely, the rate of
cooling of the temperaturé(t) of the solution to[{.3) is expected to be algebraic. From
physical considerations and a careful dimensional arglygirr [[[]] predicted that, for
constant restitution coefficietthe temperaturé(¢) of a granular gas should cool down at
a quadratic rate:

Et)=0 <tl2) ast — oo.

Similar considerations leadc8IWAGER & POSCHEL [2]] to the conclusion that, for the
restitution coefficient associated to the visco-elasticfspheres(3), the decay should
be slower than the above one, namely at an algebraic¢ ate

For the Boltzmann equation with constant restitution cofit, Haff's law have been
proved rigorously by MSCHLER & M ouHOT [2]]. Their proof relies on the propagation
of L” norms for the time dependent self-similar solutionsffd}) which implies non-
concentration in these rescaled variables, i.e. the teatyoerin the rescaled variables is
uniformly bounded from below whenever the initial datumsfags some.? bound with
p > 1. Translating such an estimate in the original variablesgsdaff’s law.
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We generalize their result by dealing with a general vaeiabstitution coefficient(-)
satisfying reasonable assumptions, all of them being ledfiby the physical model of
visco-elastic hard-sphergs.g). Actually, it turns out that the decay rate &ft) depends
heavily on the behavior of the restitution coefficietu - 72|) for small impact velocity.
For instance, if there exist some constamnts 0 and~ > 0 such that

e(lu-nl)~1—alu-n” for |u-n|~0

then we prove that

1

We recover the results of]]] for v = 0 and the decay predicted iq] for v = 1/5.
Our approach is still based upon the study of self-simil&utsms to {L.3). However, the
proof does not need a compactness argument and is thenefosparent of.? propaga-
tion (p > 1). This is a major difference wittefl] and provides in some sense a more direct
approach since it is natural to expect that the decay of teeggrshould rely only on the
L'-theory of moments. This is indeed the case and we investitjegctly the evolution
of the temperature of the self-similar solutions [io3} and it will be clear, in Section
3.2, how some pertinent scaling provides a lower bound fisrrétscaled temperature. A
crucial argument in our proof is the propagation of momehtmy order for the solution

f to {3 which can be proved following the, rather standard, apgradeveloped by
BoBYLEV, GAMBA, & PANFEROV [[] providing a sharp version of Povzner estimates.
One of the novelties of our approach relies on the simplerdatesting observation that
moments of orde2p of f (with p > 1) can all be controlled from above by theh power

of the temperaturé(t) (see CorollanZ.9). Finally, theL!-theory ends up with Section 4,
where the full power of the Povzner estimate is exploitedrave the propagation of ex-
ponentiall!-tails. The arguments here are rather standard and takémmivior changes,
from [g].

The second part of the paper begins in Section 5 which is th& teohnical of the
document. In this section we present a full discussion oféigelarity and integrability
properties of the gain part of the collision opera@)ge associated to a general collision
kernel B(u, o) = ®(|u|)b(u - o) satisfying Grad’s cut-off assumption (see Section 2 for
precise definition). All lemmas here will play an importaater for both thel? and L
theories. This Section is divided in five subsections signvith a Carleman representa-
tion of the gain operato@}; .. It is well-known that such a representation is essential fo
the study of regularizing properties of the gain oper@@r6 when smooth assumptions
are imposed on the kernél(u, o). This has been studied for the classic (elastic) case in
[[L3, B4, g, and for the constant inelastic case . Our contribution here is to extend
known results, in subsections 5.3 and 5.4, for the inel@stse with variable restitution
coefficient. One of the technical difficulties relies on thetfthat, since the estimates of
Section 5 are aimed to be applied for the self-similar véesjwe have to keep track of all
the involved constants to make sure that theyirzdlependenof the restitution coefficient.
This will allow us to overcome the technical problem of thed¢idependence of the gain
operator in the self-similar variables. In subsection 5e2d&rive several convolution-like
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estimates assuming minimal regularity of the angular Kérae The techniques involved
here are quite new (obtained from a combination of similanits of §, 24]) and produce
neat results. Finally, in subsection 5.5, we introduce tetmeates involving exponential
weights that will be essential for the proof of tiié€°-tails theorem. Notice that, in all
Section 5, the reader will find an underlying structure in ¢ésémates for the gain op-
eratorQ*ﬁe, namely, they are composed of a big “good” part associatedetdehavior
of the angular kernél in (0, 1) and a small “bad” part associated to the behavidr iof
the end point§—1, 1} (see Preliminaries section for the angular kernel definjtidt is
well established that, having non concentration of enetdyaad, the loss operat@_
dominates each one of these parts (recall that the losstoparens out to be independent
of the restitution coefficient). This can close a good edtinfiar the full collision operator.

With the machinery of Section 5 at hand, the paper ends up twétpropagation of
LP-norms(1 < p < oo) for the self-similar solution in Section 6 and the propagatf
L*°-norm in Section 7. Surprisingly, the pointwise uniform pagation is not a direct
consequence of theP-theory (I < p < o0) as the estimates for the’-theory degenerate
in the limit p — oo. Thus, some extra work is needed to reach this limit (see Lasnm
[71 and[73). For the last result of the paper, namely the study.%ftails theorem, an
additional ingredient comes into play, namely, a comparanciple for the Boltzmann
equation proved irf[d]. This result has been applied with success for the cld3altz-
mann equation and here we apply it to the inelastic theoryrdwepthe propagation of
exponential bounds. As the reader progresses in the papeill mote that the program
followed here is constructive, and the results of each 8edaepends on the previous
ones. Thus, the optimality of the last result in Sectioné’, pointwise exponential bound
propagation, is prescribed by the optimality of thieexponential propagation of Section
4.

1.3. Notations. Let us introduce the notations we shall use in the sequebugirout the
paper we shall use the notation = /1 + | - |2. We denote, for any € R, the Banach

space
:{f:]R3 /}Rg\f(v)\(wndv<—|—oo}.

More generally we define the weighted Lebesgue spg¢g?) (p € [1,+00), n € R)

by the norm
/P
Wl = [ [ 150 @ma]
The weighted Sobolev spat€?(R?) (p € [1,+00), 7 € R andk € N) is defined by
the norm

1/p

1 lwrogsy = | D NOfI

|s|<k
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whered? denotes the partial derivative associated with the motteks € NV. In the
particular case = 2 we denotell,’j = W,fv? Moreover this definition can be extended to
H, for anys > 0 by using the Fourier transfort.

2. PRELIMINARIES: L!-THEORY

2.1. The kinetic model. We assume the granular particles to be perfectly smooth hard
spheres of mass = 1 performing inelastic collisions. Recall that, as expldimeIntro-
duction, the inelasticity of the collision mechanism isi@tderized by a single parameter,
namely the coefficient of normal restitution< e < 1 which we assume to be&on con-
stant Precisely, letv, v, ) denote the velocities of two particles before they collitieeir
respective velocities after collisionsanduv, are given, in virtue off[.]) and the conser-
vation of momentum, by

U':v—l—;e(u-ﬁ)ﬁ, v, =, +
where the symbal stands for the relative velocity= v—v, andn is the impact direction.
As explained in Introduction, from the physical viewpoiatcommon approximation is
to choosee as a suitable function of the impact velocity, i€:= e(|u - n|). The main
assumptions on the functiet-) are listed in the following (se€]]):

L*e A, 2.1)

Assumptions 2.1.In all the paper, one assumes the following to hold:

(1) The mapping € R, — e(z) € (0, 1] is absolutely continuous.
(2) The mapping € Rt — 9(z) := z e(2) is strictly increasing.

Further assumptions on the functiett) shall be needed later on. With the above

assumptior(2), it is easy to check that the Jacobian of the transformafial) (s given
by:
o', vy)
1 0(v,v,)
In practical situations, the restitution coefficieft) is usually chosen among the follow-
ing three examples:

de dd

= w7l + |u-7il—(Ju-nf) =

(Ju-7l) > 0.

dz

Example 2.2(Constant restitution coefficien). The most documented example in the
literature is the one in which

e(z) = e € (0,1] foranyz > 0.

Example 2.3(Monotone decreasing. A second example of interest is the one in which
the restitution coefficient(-) is a monotone decreasing function:

1
e(z) - 1+ az"

wherea > 0, n > 0 are two given constants.

Vz >0 (2.2)

Example 2.4(Viscoelastic hard-spheres The most physically relevant variable restitu-
tion coefficient is the one corresponding to the so-callsgagélastic hard-spherdg]].
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FIGURE 1. Restitution coefficient for viscoelastic hard-spheregig by
Eq. with a = 0.12

For such a model, the properties of the restitution coefficieve been derived [fL], 23]
and it can be shown that ) is given by([[.9) or is defined implicitly by the following

e(2) +az'Pe(2)*® =1 (2.3)
wherea > 0 is a suitable positive constant depending on the matersalosity (see Figure
1).

In the sequel, it shall be more convenient to deal with a sg&ceguivalent, parametriza-
tion of the post-collisional velocities. Preciselyandv, being fixed, withv # v,, let
u = u/|u|. Performing in -J) the change of unknown

o=1-2(0 ) eS?

this provides an alternative parametrization of the unitespS? and, in this case, the
impact velocity reads

1-u-o

2

|u- 7| = [ul [u- 7] = Jul
Then, the post-collisional velocitiés’, v/ ) are given by

u— |u|o
2 Y

g (/=) = 5 e ().

This representation allows us to give a precise definitiothefBoltzmann collision op-
erator inweak form Given a collision kerneB(u, o) one defines the associated collision

u— |ulo

[ J—
v=v—p0 5

'U; =0, + 3 (2.4)

where
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operatorQ . through the weak formulation:

1

[ esta@ie)d =5 [ fge)dn o) dude @5)

for any test function) = ¢ (v) where

Anfilto.0) = [ (9064606 = 00) = 0(0) ) Blu,0) o

with v/, v/ are defined inf{.4) and the collision kerneB(u, o) is given by
B(u,0) = ®(|u])b(u - o)

whered(-) is a suitable nonnegative function knowrpeential while theangular kernel
b(+) is usually assumed to belong £3(—1, 1). For any fixed vectoii, the angular kernel
defines a measure on the sphere through the mapping? — b(u - o) € [0, oo] and we
will assume it to satisfy the renormaliz&tad’s cut-offassumption

Hb||L1(S2) =27 ||bHL1(—1,1) =L (2.6)

A particularly relevant model is the one of hard-spheresesponding tob(|u|) = |u|
andb(u - o) = 1/4w. We shall often in the sequel consider tfemeralized hard-spheres
collision kernel for which ®(|u|) = |u| and the angular kernel is non necessarily constant
and satisfies{:g). For the particular model of hard-spheres interactioresstall simply
denote the collision operat@z . by Q..

2.2. Onthe Cauchy problem. We consider the following homogeneous Boltzmann equa-
tion

_ 3

{atﬂt,v) = Qp.(f./)(t.0) t>0,veR 27

f(0,0) = fo(v), vER?
where the initial datunf, is a nonnegative velocity distribution such that

fo(v)dv =1, fo(v)vdv =0 and / fo(v)|v]?dv < oo. (2.8)
R3 R3 R3

Notice that there is no loss of generality to assume the tvgb riloments conditions in
(E-9 since it is always possible to reduce to such a case by angcafid translational
argument. We shall say that a nonnegative= f(¢,v) is a solution to[f.9) if f €
C([0, 00), LA(R3)) and

[7a [ (swmast + ot0@m o) a= [ peo.a

holds for any compactly supported e C'(]0,c0) x R3). Under the Assumptiorg.],

it is not difficult to see that the assumptioHd and H2 of [20] are fulfilled (actually,
with the terminology of [f{], we are dealing here with a non-coupled collision rate and,
more precisely, with the so-callegeneralized visco-elastic modske PQ], p. 661). In
particular, P0, Theorem 1.2] applies straightforwardly and allows us &best
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Theorem 2.5(Mischler et al.). For any nonnegative velocity distributiofy satisfying
(2.9, there is a unique solutiofi = f(¢, v) to (£.7). Moreover,

f(t,v)dv =1, f(t,v)vdv=0 vt > 0. (2.9)
RS

R3
2.3. Povzner-type inequalities. We extend in this section the results ff pnd 7] to
the case of variable restitution coefficient we are dealirip.wWe shall consider the
general case of a collision opera@y; . associated to some general collision kernel
B(u,0) = ®(Jul)b(u - o),

for some nonnegative integrable angular kefiifel satisfying the renormalized Grad’s
cut-off assumptionf{{6). Let f be a given velocity distribution function witlfi > 0
satisfying

flo)dv=1, fv)vdv = 0.
R3 R3

Lety(v) = ¥(]v|?) be a given test-function witlir convex and nondecreasing. Then, Eq.

(9 leads to

[ Qur @ dr =5 [ )0 Apfol(v.0.) du.do
with
Ap [0, 02) = (Jul) (A, [¥)(v, ) — A5, [¥](v,v.))
where

Af 9] (v,0,) = /S2 (T([v']?) + ¥ (Jv.]*) b(@- o) do

while, using alsof{.6),
Ap [W](v,0.) = / (@) + 9 () b(@- o) do = (T(ju) + U(|u.f)).

Following [H], we define the velocity of the center of mdss= v so that
v':U+%w, v;:U—%w with w=(1-p8)u+ fo

where we recall that, for any vectbr € R?, we setl’ = V/|V|. Notice that, wher (or
equivalently(3) is constant, the strategy d][consists, roughly speaking, in performing
a suitable change of unknown — & to computeA;,e[@b]. Since we are dealing with
a variables, we do not apply directly such a strategy here. Insteadcadhat, since
lw| < 1 andV¥ is increasing one has

Juf? Juf?

Wl + el < 0 (0P + B 0?0+ v (02 2 - o)

:\P<E1+§2U-w> +\D<E1—§2U~w>
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where we sef := |v|? + |v,|? = 2|UJ? + % and¢ = 2|U| |u|/E. Since¥(-) is convex,
it is known that (see e.gH] that, the mappingvo(t) = VU(x + ty) + U(x — ty) is even
and nondecreasing for> 0 andz, y € R. Therefore, sincé < 1 one gets

W(W'2) + B(|o?) < (E#) Lo (E#) . @10

Assume that/ - ¢ > 0, then
‘ﬁ-w‘ — ‘(1—5)(7-%5(7-0) <(1—p)+80-0,

therefore, using the fact that, is even and nondecreasing foe 0, we conclude from

10 that
W(|o'[?) + U (|v,?) < W <E2 - ﬁ+,6’U~o—> u (EW> |

2

WhenU - o < 0 a similar argument shows that

‘II(|U/|2) + \If(|U;|2) <v <E2 —p _ﬁij) L (EW> |

2 2

Hence, setting(s) = b(s) + b(—s) and using these last two estimates with the change of
variabless — —o we get

Age[\lf](v,v*) g/ N E2_/6+BUO- 4+ U Ew
7 {0'020} 2 2

</ v E3+U~U L El—U-a
{17-020}_ 4 4
The second inequality can be shown writing
2-6+pU-0 1 (1 f .
2 —§+<§—§(1—U‘“>) and
wzl_c_é(l_ﬁ.g))

The latter term in parenthesis is maximized whtes: 1/2, thus the monotonicity o,
implies the result.

b(@ - o)do

Next, we particularize the previous estimates wkgnr) = z*. This choice will lead
to the study of the moments of solutions:

Lemma 2.6. Letq > 1 be such thab € L4(S?). Then, for any restitution coefficieat:)
satisfying Assumptiorjs] and any realp > 1, there exists an explicit constamt > 0
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such that
O[u) T Apell - PI(0,v0) < (1 =) ([0 + o)
+ 3 [P + o) = [ = [o.?] . (2.12)
This constanty, has the following properties:

(1) m <L
(2) Forp > 1 the mapp +— 7, is strictly decreasing. In particular, < 1 forp > 1.

(3) 7, = O (1/p"/7) for large p, wherel /g + 1/¢' = 1.
(4) For ¢ = 1, one still hasy, \, 0 asp — oc.

Proof. Let ¥,,(x) = 2”. From @.17), one sees that

Ag,e[\llp] (U7 U*) < Vp Ep
where

3+(7-0 1—(7-0
vp:sup/ V| ——— |+ ¥, | ————
Ua JU-020 4 4

It is clear that the above inequality yield&.1J). Let us prove that, satisfies the afore-
mentioned conditions. First, we use Holder inequality thtam

b(d - o) do. (2.13)

1 q /4
3+s 1—s 167 ||b||Lq(g2)
T S AT Bl (/F( ) ()] ds) W

This proves thaty, is finite and also proves item (3) fgr > 1. For items (1) and (2)
observe that the integral in the right-hand-sid€L]) is continuous in the vecto@, u €
S?. This can be shown by changing the integral to polar cootdmarhus, the supremum
in these arguments is achieved. Therefore, there @xistao € S? (depending on the
angular kerneb) such that

%:/ v, 3+lo-o + U, 1-lho b(d - o) do.
(D020} 4 4

A simple computation with this estimate shows that= ||0]| ., = 1. Moreover, the
integrand is a.e. strictly decreasingiamcreases, this proves (2). Finally, jet— oo in
this expression and use Dominated convergence to concl)dier the caseg = 1. O

Remark 2.7. Notice that the above constany is independent of the variable restitution
coefficiente(-).

The above lemma is the analogousf@fCorollary 1] for variable restitution coefficient
e(-) and it proves that the subsequent resultsghfextend in a straightforward way to
variable restitution coefficient. In particulaf, Lemma 3] readk

INotice that, though stated for hard-spheres interactiomg @ Lemma 3] applies to our situation
thanks to the above Lemrfiag and fJ, Lemma 1].
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Proposition 2.8. Let f be a given velocity distribution function with> 0 with

flo)dv=1, fo)vdv=0.
R3 R3

/ F() ol do.

Assume that the collision kernBI(u o) = |ulb(u - o) is such thab(-) satisfieqP.§) with
b(-) € L(S?) for someg > 1. For any restitution coefficient(-) satisfying Assumptions
(Z-3) and any real > 1, one has

/]R3 QB,e(f7 f)(v)|v‘2p dv < —(1— 'Vp)mp+1/2 +Yp Sp, (2.14)

Foranyp > 1, we set

where,
(24]

Sp = Z < Z]z ) (mk+1/2 Mp—k + Mk mp—k+1/2) 3

k=1
[p—;rl] denoting the integer part cﬁg—l and, being the constant of Lemrfzag.

As well-documenteddq, ], sincesS, involves only moments of order1/2, the above
estimate has important consequences on the propagationroénis for the solution to
ED. We show in the following that actually the moments of suckotution can be
controlled from above by the second moment. More precisely:

Corollary 2.9. Let B(u, o) = |u|b(u - o) with b(-) satisfying(E-8) with b(-) € LI(S?) for
somey > 1. Let f; be a nonnegative velocity distribution satisfyiigd) and letf (¢, v)
be the associated solution @.7). For anyt > 0 and anyp > 1 we define

my(t) = [ f(t,v)|v]*dv (2.15)
R3

with the convention of notatiofi(t) = m;(t).
If m,,(0) < oo thensup,,m,(t) < oo and there exists a constaht, > 0 such that

my(t) < K, E(t)P vt > 0. (2.16)
Proof. The first part of the corollary, namely

mp(0) < 00 = supmy,(t) < oo
>0

is a classical consequence whose proof can be recovered frofjy Q). Let us
prove holds for any reap > 1. First, one notes that, by a classical interpolation
argument, it suffices to prove it for apysuch thatp € N. Let us then prove the result
by induction. It is clear that estimatg.[§) holds true forp = 1 with K; = 1. Let now
p > 1, with 2p € N be fixed and assume that, for any intege< j; < p — 1/2, there
existsK; > 0 such thatn;(t) < K;E(t)’ holds for anyt > 0. According to Proposition
F.8 one gets that

G0 = [ QD0 dv < (1 = alt) + 5, 5,00
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where
(23]
550 = 3 (§) (mara(0) mpes() 4 1) my-iea(8) 20
k=1

SinceS,(t) involves only moments of order less thar- 1/2, our induction hypothesis
implies that there exists a constar)t > 0 such that

S,(t) < CLERPT2 V>0
p+1
whereC), = EL;H ( g ) (Kk+1/2 Ky + Ky Kp_k+1/2) . Moreover, since

Mpsra(t) = mp2(E),  VE>0

according to Jensen’s inequality (recall that we have heyg) = my(0) = 1 for anyt),
we get that

%mp(t) < —(L =)l () + 4, CLE@PT? VE 0. (2.17)

Let us choose thef, such that

K, > max

2
my(0) ( Cp W ) Til
(€@0)" \1 = ’

then .19 holds. Indeed, we first notice that by continuity of bath(¢) and£(t) the

estimate[f.19 holds at least for short time. Assume then there exists don&, such
thatm,(t.) = K,E(t.)? then, from E.T7]

d
Emp(t*) < ('Vp Cp - (1 - %)K;H/zp) g(t*)l’ﬂ/? <0
so that still holds for subsequent times. O

2.4. Self-similar variables. As it was the case for constant restitution coefficient, @lksh
be often useful to deal with solutions of the Boltzmann equieih self-similar variables.
Precisely, for a given collision kernel

B(u,) = ®(Jul)b(i - o)

with b(-) satisfying P.6) and a given initial datuny, satisfying P.9), let f(¢,v) be the
solution to P.7). We introduce a rescaled solutign= g(7, w) such that

f(t,0) = V(£)’g(r(t), V(t)v) (2.18)

wherer(-) andV(-) are time scaling functions to be determined such tti&f = 0 and
V(0) = 1. Notice that, with this scaling one has

1= [ f(t,v)dv= / g(7(t),w) dw Vi >0
R3 R3
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andg(0,w) = fo(w). A straightforward calculation shows that the functipg- g(7, w)
satisfies the following:

V(#)?Qu(f, )(t,v) = 7OV (1) drg(1,w) + V(D)V,, - (wg(r, w)) (2.19)
i i
where, here and in the sequel, we shall use the dot symbdidatdrivative with respect
to t. Moreover, the expression of the collision operator in-seffilar variables is as
follows:
v
0n.1.) (1) = Q. 9010

where the rescaled collision kerngl is given by

B (u,0) = V(0@ (417 ) 4@+ )

V()
If the mappingt € Rt — 7(¢) € R" is one-to-one with invers¢, one can rewrite
equation in terms ofr only. Preciselyg(r, w) is a solution to the following rescaled
Boltzmann equation:

A(T1)0rg(7, w) + &E(1) Vo - (wy(7, w)) = Qp, 2. (9, 9)(T,w) 7 >0 (2.20)
with A(-) = 7(C()), () = V(C()),

B, (u,0) = V(C(r))® (%) ba-o), &) =e (%) 2> 0.

Notice that, for generalized hard-spheres interactiaps \{fheneve®(|u|) = |u|) one
hasB, = B. For true hard-spheres interactions, ix.) = ﬁ one simply denotes the
rescaled collision operator ;. It is very important to notice that the rescaled operator
now depends on time, i.e.is a solution to a non-autonomous problem. This is a major
difference with respect to the case of constant restitutaefficient.

while the rescaled restitution coefficientis defined bye.,(2) :=e <L> ,z> 0.

3. FREE COOLING OF GRANULAR GASES GENERALIZED HAFF'S LAW

We prove in this section the so-called generaligtadf’s law for granular gases with
variable restitution coefficientMore precisely, we give the exact rate of decay of the
temperature€ (¢) of the solution to Eq. {7). Notice that, in all this sectionye are
dealing only with the generalized hard-spheres collision kernel:

B(u,0) = |ulb(u - o)

whereb(-) satisfies [f.6). Let f, be a nonnegative velocity distribution satisfyifigd)
and let f(t,v) be the associated solution to the Cauchy problgmj).( We denote its
temperature (¢):

E(t) = g ft,0)|v)? do.
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Notice that the above CorollaB.9together with the last conditions df.§}) implies that
sup,;, £(t) < oo. The evolution of(¢) is actually governed by the following:

d

1
FEO = [ Qurntaian=5 [ vl

X / <|1/|2 + L2 — |v* - ‘U*|2> b(u-o)do dv,dv
S2

where we applieddd) with ¢(v) = |v|* and whergv’, v}) are given byf-4). One checks
in a direct way that

1—17- 1—17-
o2+ [0l = of? = fou? = —uP——= (1—e2 (\uu/ > "))

so that

Lew = ——/RB S0 uf v,

/821_4@‘“ (1—62 <|u|,/1_2a‘“>> b - o) do.

We compute this last integral ovBt (for fixed v andwv,) using polar coordinates to get

1—7- 1—17-
W/ ve (1—62 (\u\ Y U))b(ﬂwj)dUz
e 8 2

2r]uf? / (1= 2(July)) b(1 — 225" dy =: ¥, (Ju])

where we defined:
1

W, (r) = 27r7"3/2/ (1—e(vrz)?)b(1—22%) 2 dz, vr > 0. (3.1)
0

In other words, the evolution of the temperatéie) is given by

d

Eé'(t) = —/RSXRS ft,v) f(t,v)¥.(Ju?) dvdo,, t>0.

From now on, besides Assumptiofis], we assume that the restitution coefficiefx)
satisfies also the following:

Assumptions 3.1.Assume that the mapping— e(z) € (0, 1] satisfies Assumptiofis]
and

(1) there existv > 0 and~ > 0 such that
e(z) 1 —az? for 2z~0
whileliminf, . e(z) = ¢ < 1.
(2) b(-) € LY(S?) for someg > 1.
(3) the functionz > 0 — W (x) defined in(B-J) is strictly increasing and convex
over (0, +00).
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Remark 3.2. For hard-spheres interaction$(u - ) = -L is constant and, setting =
\/ry, itis possible to rewritel, as

W, (r) 2\/_/ 1—6 ydy, r > 0.

We prove in the Appendix that the above assumpfichare satisfied for the viscoelastic
hard-spheres of ExampE4 with v = 1/5. For constant restitution coefficieatz) = e,
Assumptiofg.] (1) is fulfilled withy = 0 anda = 1 — ¢,. Notice that, for hard-spheres
collision kernel, Assumptiorf3.] (3) hold true ife(-) is continuously decreasing (see
Lemma Afl] in Appendix A).

3.1. Upper bound for £(t). We first prove the first part of Haff's law on the algebraic
decay of€(1):

Proposition 3.3. Let f, be a nonnegative velocity distribution satisfyi@¥) and let
f(t,v) be the associated solution to the Cauchy prob{gnj) where the variable restitu-
tion coefficient satisfies Assumptighg. Then,

() < —w.(E) Ve >0
where€(t) = [gs f(t,v)|v]* dv. Moreover, there exisf' > 0 andt, > 0 such that
) <C(1+1) ™ Yt > to. (3.2)
Proof. Recall that the evolution of the temperature is given by
jtg( £ = /RR FE o) f(E o) (uf?) dod,, £ 30, (3.3)

whereu = v — v,. Since®.(] - |*) is convex according to Assumptidi] (2) and
f(t,v,) do, is a probability measure ov&?, Jensen’s inequality implies

) = T(|v*)

where we used(9). Applying again Jensen’s inequality, we see that

[ owoyao s w, ([ aopra).

%5@) <—U(E(H) V0.

v—/ v f(t, v,) do,
R3

F(t, v )@ (|uf?) dv, > P, (
RS

SinceW.(-) is strictly increasing withim, ., ¥.(z) = 0, this ensures that
lim £(t) =

t—o0

Moreover, according to Assumptiofis] (1), it is clear from B.]) that

34+

V. (r)~Cyxez  for 2~0
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whereC,, is a positive constant, namelg,, = 2ra fol y3b(1 — 29%) dy < oo. Since
£(t) — 0, there existsy > 0 such that®,(£(t)) > C,E(t)"z Vi > t, which implies

that

%8(1&) <-CEW)T Vit

This proves[§.2) O

Example 3.4.In the case of constant restitution coefficiefit) = ¢, € (0,1) for any
z = 0, for hard-spheres interactions, one has

2
W, (1) = - Vo
and one recovers frorf8.2) the decay of the temperature established from physical con-
siderations (dimension analysis) [i]] and proved ifP7], namely£(t) < C(1 + )2
for larget.

Example 3.5. As already mentioned, for the restitution coefficiefi} associated to vis-
coelastic hard-spheres (see Exampld), one hasy = 1/5 and the above estimag.2)
leads a decay of the temperature faster tfian- t)~>/ which is the one obtained {7
(see alsd[L7]) from physical considerations and dimensional analysis.

Remark 3.6. Notice that, sinc&(t) — 0 ast — oo, it is possible to resume the argu-
ments of[ g0, Prop. 5.1Jto prove that the solutiorf (¢, v) to (£.1) converges to a Dirac
mass asg goes to infinity, namely

f(t,v) — d,—9 weaklyxin M (R?)

t—oo

where M (R?) denotes the space of normalized probability measure&®on

3.2. Lower bound for £(t): non-concentration on the self-similar variables. Let us
now prove that the above decay of the temperature is optimd#uAssumptiong.]. To
do so, we argue as i?]l] introducing self-similar variables (see Secti{pr). Precisely,
for any solutionf (¢, v) to 2-]) associated to an initial datugfy satisfying P-9), we define
the rescaled functiop = ¢(7, w) such that

f(t,0) = V(£)’g(r(t), V(t)v)

wherer(-) andV(-) are time scaling functions to be determined such tf@} = 0 and
V(0) = 1. In such a casej is a solution tof.20) with ¢(0, w) = fo(w).

While the temperaturé(t) of f(¢,v) is cooling down to zero (see Prdp-3), we iden-
tifies in this section suitable rescaled variabtég andV/(-) for which the corresponding
"temperature” ofy is bounded away from zero. Precisely, for any 0, let

o) = [ gru)lufdu.
R3
One sees from the rescalirfg {9 that
Et)=V(t)?O(r(t)) Vt=0. (3.4)
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Multiplying equation .19 by |w|? and integrating oveR? leads to

) =20 000) = Vi ? [ Quf it wluf de

HOV()“

=V [ )R- ) dudue,

and using the re-scalin§f {T§) again, we get

de®

HOV()

(r(t) = 2V (H)©(7(1))

= —V(t)3/ g(r(t),0)g(7(t), v.) e ([V(#) " uf’) dvdv, (3.5)
R3xR3
with u = v — v,. According to Assumptiofi.], we already noted that
W, (z) ~ C’,Ym:HT7 forz ~0

while, for largez, sinceliminf, . e(z) = ey < 1, itis clear that there exists, > 0
such thatb, (z) ~ C,2%/? for large z, namelyCy, = 27 (1 —e2) fol b(1—22?)z3dz. Thus,
there exists a consta6t > 0 such that

P, (z) < Ca's Vo > 0.

Consequently,
[ atrt.000(ri0), . (V) dod
R3xR3

< V() G+ / g(7(t), v)g(7(t), v)[u**7 dv o,

R3 xRR3

< 23+’YCV(t)—(3+’Y) /

RS

g(7(t),v) dv / g(T(t),v) v, > dw,.

RS

Since [, g(7(t),v) dv = 1,

/RS (0,090, 0w, (V) uf?) dvd

<23+VCV(t)_(3+V)/ g(T(t), v) v, > dw,.

R3
It is easy to see, using Corollaygand, especially, EQP{IH with p = 3 + ~, that there
existsK > 0 such that

[ alr®.0grie). 0w (V0 0P) dode. < KV (0 CI0((0)
R3xR3
for anyt > 0. This, together withf{.5), yields

de
dr

34y

TV () —=(7(1)) =2V ()O(r(1)) > KV (1) "©(7(1)) = .
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At this stage, one sees that choosing ié() andr(-) such that
. 1
V(t) = ﬁV(t)"y, T(t)V(t) =1, 7(0) =0, V(0) =1 (3.6)
leads to the differential inequality
de 2 3o
—(7(t)) = ) K®© Vi) .
)= (2600 - ket ) v
In particular, a simple application of the maximum prineiphplies that

v+1

/(1+7)
O(7(t)) > min {e(o>, (%) } w0

Turning back to the original variablg we just proved the following:

Theorem 3.7. For any initial distribution velocityf, > 0 satisfying the conditions given
by (2.9), the solutionf (¢, v) to the associated Boltzmann equati@nj) satisfies the gen-
eralized Haff’s law for variable restitution coefficieat:) fulfilling Assumptiong.7:

1+t <EQKCA+t) T,  t>0 (3.7)

where&(t) = [, f(t,v)|v|*dv and¢, C are positive constants depending only <)
and&(0 ) More generally, the—momentn,,(¢) defined in[Z-19) satisfies

(1 +8) 775 <my(t) S C(L+8)7T5, 20, p>1 (3.8)
where the positive constants C,, depend o, m,,(0), £(0) ande(-).

Proof. We just proved that, fog (7, w) given by where the time scaling functions
7(-) and V() are solutions to[{.g), there exists: > 0 such that®(7(t)) > ¢ for any
t > 0. According to [B.4), this implies the following lower bound for the temperatér:
C
> —— > 0.

E(t) > V) Vit >0
SinceV/ () = LV =7(t) with V(0) = 1, we get thatl/(t) = (1 + )7 for anyt > 0
and obtain the desired lower bound, the upper bound beingded by Prop.B-2. For
generap-moments, the use of Jensen’s inequality (for the lower Hpand Corollan®.9
(for the upper bound) yield

¢ E()P < my(t) < G, E(L)
for some positive constants, C,. Then, B.7) provides the conclusion. O

Example 3.8. For constant restitution coefficient(z) = ¢, for anyz > 0, sincey = 0,
we recover, via a simpler argument, the classical Haff’s @\{L ] proved recently by
Mischler and MouhofP1]]:

c(1+H)2<ENKCA+)E  t=0.
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Example 3.9. For viscoelastic hard-spheres (see Exanfpi®, as already saidg(-) ful-
fills Assumption§.J with v = 1/5 and Theoren.] provides the first rigorous justifica-
tion of the cooling rate conjectured [f1, PT):

1+ <ER <CA+1)73,  t>0.

Remark 3.10. Theorenf3. ] shows that the decay of the temperature is governed, in some
sense, by the behavior of the restitution coefficignj for small impact. The cooling of

the gases is slower for increasing However, if Assumptioris] hold true, one sees that
the cooling is still algebraic in time even for very large

From now, when dealing with = g(7,w) defined in[2.18, we shall always assume
the time scaling functions(-) andV/(-) to satisfy B-9), i.e.

1 t ds v+ 1
V() =1+t Tt:/ -t
=0+, 1) = | 5=
wherey > 0 is the constant in Assumptiofis]. In this case, fromZ0), g(7,w) is a
solution to the following Cauchy problem:

(&g + f(T)Vw ’ (wg)) (7-7 'LU) = Qa(g,g)(ﬂ w)> g(oaw) = fO(w)v (39)

where
~ -1/~
and e, :z>0r—c¢ z(1+ T) . (3.10)
v+1

<(1+t)11_v—1>, t>0

1
(149

§(7)

As already mentioned, in contrast to what happens for cohstatitution coefficient, the
"rescaled” collision operato@;_(g, g) is now depending on.

Remark 3.11. If v = 0 in AssumptionB.], thenV'(¢) = 1 + ¢ while 7(¢) = In(1 + ¢). In
such a case&(7) = 1 is constant (sef2()).

4. HIGH-ENERGY TAILS FOR THE SELFSIMILAR SOLUTION

We are interested in this Section in the study of the tail biemaf the solutionf (¢, v)
to the Boltzmann’s equatiofL.(3). More precisely, we shall give an estimate of the high-
energy tails off (¢, v) through a time-dependent weighted integral bound of thetisol
to (L.3). Our approach is reminiscent to the work acbBYLEV [[]] recently improved in a
series of pape, 21, {l]. Here again, in all this section, we shall deal with the gahzed
hard-spheres collision kernel:

B(u,0) = |ulb(u - o)

whereb(-) satisfies[{.§). To prove our result, it shall be convenient to deal, as vadrli
the previous section, with the self-similar solutiga= g(7, w) defined in Z.1.
For anyl < p < oo and anyr > 0, we define:

my(7) = [ glr.w) udu.
R3
Notice that readily translates into
¢, <m,(7)<C, for 7>0 (4.1)
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wherec,, C,, > 0 are the constants in Theorgm]. One can prove the following Theorem,
which generalizeq1, Proposition 3.1] to the case of a variable restitution ficieht.

Theorem 4.1(L'-exponential tails Theoren). Let B(u, o) = |u|b(u - o) with b(-) satis-
fying (2.8) with b(-) € LI(S?) for someg > 1. Assume the variable restitution coefficient
e(-) satisfy Assumptiorfg]. Let f, satisfying(P.g) and assume moreover that there exists
ro > 0 such that

/' fo(v) exp (ro|v]) dv < 0.
R3

Let g(7,w) be the self-similar solution defined where f (¢, v) is the solution to
(E-D. Then, there exists some< r, such that

sup /R3 g(T,w) exp (r|w|) dw < oo. (4.2)

720

Consequently, the solutiof{t, v) satisfies

sup [ f(t,v)exp (rV (¢)|v]|) dw < oo. (4.3)
t=0 JR3
Proof. The method of proof is by now rather standard and carefulbudwented infg, ]
for a time-independent version. We sketch only the timeedépnt proof which is divided
in several steps:
Step 1.Note that formally

ok
,

/ g(T,w) exp (r|w]?®) dw = Z Emsk/g(T),
R3 Pt

for anyr > 0 and anys > 0. Hence, the summaubility of the integral is described by the
behavior of the functionsms‘“k/—f(ﬂ. This motivates the introduction of the renormalized
moments "
N A

(7)== ['(ap + b)
wherel'(-) denotes the Gamma function. We shall prove that the seriegeages for
somer < ry and withs = 1 (i.e. « = 2). To do so, it is enough to prove that, for some
b < 1and@ > 0 large enough, one has(7) < Q? for anyp > 1 and anyr > 0.

Step 2.Recall that, according to Lemnfa, the estimates proved in Povzner Lemma
(Prop. B.9 are independent of the restitution coefficiet). In particular, they hold
for the time-dependent collision operat@g._ providing boundswhich are uniform with
respecto 7. Specifically,

, with a =2/s,

/]RB Qz. (9, 9) (7, w)|w[* dw < —(1 — Vo) My i1/2(7T) + 7 Sp(7), Vr =0

where, is the constant introduced in Lemifdg) and

(2
S =3 () (ss(r) mya(r) + e (r) o).
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Step 3.An important simplification, first observed iff][ consists in noticing that the
terms, satisfies
S,(1) < AT(ap+a/2+2b) Z,(1) for a>1, b>0,
whereA = A(a, b) > 0 does not depend gnand

Z,(1) =  max {Zh11/2(7) 2p—(7), 20(T) Zptig1y2(7)} -

With such an estimate, the rather involved te$jris more tractable.
Step 4. Using the above steps and the evolution probl@m)(satisfied by the self-
similar solutiong, we check easily that
dm
7 (1) + (L= w)mya(r) < 9 D(ap +a/2 + 20) Z,(7) + 2p£(7)my(7)
where we used the fact that, |w|*V,, - (wg(7,w)) dw = —2pm, (7). Using the asymp-
totic formula

. Tlp+r) .,
lim ——~%
p—oo I'(p + s)
and the fact thag(7) < 1, one concludes that there are constapts 0 (i = 1,2) and
po > 1 large enough (recall that, ~ 1/p'/7 for largep) so that
%(7‘) +c pa/2211)+1/2p(7_) < g p¥/2HO-d Z,(T) +2p 2,(7) V>0, p=>po,
where we also used the fact that, 1/»(7) > my""/*(r) for any r > 0 thanks to
Jensen’s inequality.
Final step. We claim that if we choose = 2 and0 < b < 1/4’ it is possible to find
@ > 0 large enough so thah,(7) < Q”. Indeed, lep, and() < oo such that

=1,

Co b—1/q' 1 16

- < Z > _
1 0 X 27 andQ/ {IQZD;OEI;%ZK(T)?QW C%’l )

here @, is a constant such that(0) < Qf. This constant exists by the exponential

integrability assumption on the initial datum. Moreovénce moments of are uniformly

propagated, the existence of suatfite () is guaranteed. Arguing now by induction and

by standard comparison of ODE’s, one proves agh ], @] thaty,(7) := Q7 satisfies

forp > po
dy " W/otb /e
(1) + e p Py () 2 00 p T Z(7) 4 2 (7). 3y(0) 2 5(0)

thereforey, (1) > z,(7) ¥Yp > po. Since this is trivially true fop < p, we obtain finally
that

m,(7) <T2p+b)Q",  Vp>1,7>0.
From Step 1, this is enough to prove the Theorem. O

Example 4.2. For viscoelastic hard-spheres (see Exanfpi), as already said}/(t) =
(1 +t)5/3. Therefore,

fo(v) exp (rolv]) dv < co =>sup [ f(t,v)exp (r(1+1)”°|v|) dv < o0
R3 t>0 JR3
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for somer < rq. In particular, using the terminology 4], f(¢,v) has an (uniform in
time) exponential tail of ordet.

5. REGULARITY PROPERTIES OF THE COLLISION OPERATOR

We extend now to variable restitution coefficient the regtylgroperties of the colli-
sion operator obtained originally ifiL§, Pg], extended in[f4] and generalized to cover
the inelastic case irPfl]. Of course, we only need to investigate the regularity props
of QF since the loss operat@_ does not depend on the restitution coefficient. To do
so, we shall need some basic estimates on the gain op@@;passociated to a general
collision kernelB(u, o) (see E-9)).

5.1. Carleman representation. We establish here a technical representation of the gain
termQ}, . which is reminiscent of the classical Carleman represiemtat the elastic case
(extended to the inelastic case for a constant restitutiefficient in 27]). Precisely, let
B(u, o) be a general collision kernel of the form

B(u,0) = ®(|ul)b(u - o)

where®(-) > 0 while b(-) > 0 satisfies[{.g). For anyy) = (v), define the following
linear operators:

S:(¥)(u) = [ Y@ - o)do, Yu € R3 (5.1)
S2
where we set

1—a- _
u_:ﬁ<|u|\/ ;U> 4 2‘u‘g, and ut=u—u".

Then, one has the following technical result

Lemma 5.1. For any continuous functiong and ¢, one has

[ etis- @meduyan= [ v s

where the linear operatar s is given by

Pa(e)(o) = [ B+ alrw,alr)ela(r)s + 2) dr.
r=rw,r>0 wesS (5.2)

where dr, is the Lebesgue measure in the hyperplareerpendicular tav, a(-) is the
inverse of the mapping— s3(s) and

4 :M ( _ Q_Z)L B 3
B0 = Lpor !0 ) Tre 020 R 69

with ¢(-) defined in Assumptida] (2) and?, (-) denoting its derivative.
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Proof. Up to divideB(z, g) by ®(|z|), there is no loss of generality in assuming for sim-
plicity that®(| - |) = 1. Let

I'= /RS p(u)S-(¢)(u) du = /RS p(u) du . Y(u™)b(u - 0)do.

For a fixedu € R?, we perform the integration ov&f using the following formula

/82 g (u _2|U|U) do = [ 8(aft =) (e e

|ul Jrs

which is valid for any given functio’. Then,
I=14 / 2l 5l =y (w5 (1w))b (1 — 2o/ uf?) d du.
Setting nowu :Xz + z we get
[—4 /R pla+ o+ 6o (aB(e)b (1= 2fa o + ) dzdo.

Finally, keepingr fixed, we remove the Dirac mass thanks to the identity

/ F(z)0(x-2)dz = / z)dm,
[z
which leads to

1:4/ ¥ (zp(z \))‘ | ‘ﬁfjj)b(uzm\?/\ﬁz\?) dr..

We now perform ther integral usmg polar coordinates= ow and with the change of
variablesr = pj3(p) with inversea(r). Notice thatdr = (1 + (o)) do which yields

[ e [ et (1, ol Y
]‘8/0 5 0.(a() Js V) / 2+ ()] b<l 2|z+a<r>w|2)d”

Turning back to cartesian coordinates- rw, dz = r? dr dw, we get the desired expres-
sion] = [o, 1 (2)T s(¢)(x) dz wherel 5 is given by B.2). O

The above result leads to a Carleman-like expressio@for:

Corollary 5.2 (Carleman representatior). Lete(-) satisfy Assumptiorz]and let
B(u, ) = &([ul)b(u - o)
satisfying(gZ.4). Then, for any velocity distributions g one has

05.(f.9)(v /f (t. 0Ty ot.) g (v)dz

where[t,](z) = (v — z) for anyv, x € R? and any test-functio.

Proof. The proof is a simple consequence of the above Lemma togeitiethe follow-
ing identity

/R - Q% (f, 9) ()Y (v) dv = % /R . F0)g(v — w)®(|u)S_ (t,1)(v) dvdu (5.4)

valid for any test-functionp. 0J
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5.2. Convolution-like estimates for Q; .. For the so-called Variable Hard Spheres col-
lision kernels (i.e. ford(Ju|) = |ul®, & > 0), general convolution-like estimates are
obtained in [, Theorem 1] for non-constant restitution coefficient. Heere such esti-
mates are given i} with > 0 and, for the applications we have in mind, we need to
extend some of them top < 0. This can be done easily using the method developed in
[P (see also[[F]) and the estimates off leading to the following theoretfh

Theorem 5.3.Let B(u, o) = ®(|u|)b(u - o) whereb(-) satisfieqP.f) and®(-) € L™, for
somek € R. Assume thai(-) fulfils Assumptioff-]. Then, for anyl < p < oo and any
n € R, there exist, , »(B) > 0 such that

HQE,e(f7 g)HLg < Cppi(B) ||f||L,,+k\+\,,\ gz LY,
where the constar®, , »(B) is given by:
Chpk(B) = Crap ||(I)HL3°k ¥(n,p,b) (5.5)
with a constant;, ,,,, > 0 depending only oi, » andp while
Lr1—s _3;:’+
st = [ (F55) 7 was 5.
-1

wherel/p + 1/p’ = 1 andn, is the positive part of). In the same way, there exists
C, »x(B) > 0 such that

195(£.9)ll ;, < Copi(B) gy

where the constarfﬁnvpvk(B) is given by:

Copt(B) = |19l =, 71,0, b) (5.7)
for some constant, ,,, > 0 depending onIy o, n andp while

[l

[n+k[+|n] '1+k

3+71+

- Y1+ 1—s\ 2
st = [ (5 ra-mr i) T e 69
-1
wherel/p+1/p' =1andg, = §(0) = H%w
Proof. Let1 < p < oo andn € R be fixed and let /p’ + 1/p = 1. By duality,
959l = s { | [ @bt < Il <1}
As already mentioned (sefe.q))

[ @b tra@uwdo= [ fwlalo =0T (b)) dvdu

with
T_(Y)(u) = ©(Ju))S-(¥)(u),  tp(z) = (v — =)
Notice that the constantg(n, p,b) and¥(n, p,b) given by @) and @ are of course not finite for

any angular kernél or parametersg, p. It is implicitly assumed that the Theorem applies for thege of
parameters leading to finite constants (see also Refndrk
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whereS_ has been defined in Sectipn]. With the notations offf], one recognizes that
S_(h) = P(h,1) for anyh, so that, applyingd, Theorem 5] (with; = oo anda = —n),

IS-() e < (1., 5) ]

with (n, p, b) given by £-8) (see B, Eq. (2.15)], notice that, with respect {g[we use
the weight(v)” instead ofjv|" and this is the reason why we have to introdygen our
definition ofy(n, p,b)). As a consequence,

1Ty, <302, D)I Bl 1] (5.9)

Now,

Qf.(f,9) dv

< / sldo ([l o T ot)ul (1) du)
e [ V@IIGoTo )il dv

Using the fact that, for any € R, [|t,h]| ,» < 21°/2(v)*l[| |+ for anyv, we get

/ QBef9¢dU

< 2\17+k|/2Hg|| f,%/ |f(v) |77+k\ (7 ot, )¢H B dv
< 272 g, )@, gl / 7)) HtvaLa’n v

< 22 (. b) @] gl o, / [F@I )T |y do

which proves the first part of the result. Now, to prove theoselpart, one notices that

/ 05.(f. 9)(v)(v) dv = / | H= g T ) () dudu

with 7, (¢)(u) = ®(|u])S+(¢)(u) whereS, has been defined ifg (). Using again the
notations of ], one hasS, (k) = P(1, ) for any h, so that, applyingf], Theorem 5]
(with nowp = oo anda = —n), we get that

IS-(P)l <A, 2, D)1l e

wherey(n, p, b) given by B-8). One concludes as above, exchanging the rolesarid
g- 0]

Remark 5.4. Clearly, the constants(n, p,b) and~¥(n, p, b) are not finite for any given
1, p or b because of the possible singularitydn= 1 or s = —1. However, ifp = 1
thenp’ = oo and bothy(n, 1,b) and¥(n, 1, b) are finite for any integrable kerné(-) and
anyn € R. Moreover, if one assumes additionally (as[fil]) that the angular kernel
b(-) vanishes in the vicinity of = 1 then~(n,p,b) < oo forany1 < p < oo and any
n € R. In the same way, if for instang® = 1 andb(-) vanishes around = —1, then
¥(n,p,b) < oo foranyl < p < oo and anyn € R.
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Remark 5.5. Notice that the above consta@, ,, ,(B) given by(5.3) does not depend on

the restitution coefficient(-) while énm,k depends on the restitution coefficiefit) only
through its value for = 0. Notice in particular, that, it(0) = 1 andb(s) = b(—s), then
Y(n,p,b) = ~v(n,p,b). This is the case for the viscoelastic hard-spheres (see fbeam

ED.

For the special case, = oo, we can make the above a bit more precise, providing a
pointwise estimate of the gain part:

Corollary 5.6. Assume the variable restitution coefficiefit) satisfy Assumptiorf3.1.
Assume also that the collision kernel is givenBfu, o) = ®(|u|)b(u - o) whereb(-)
satisfieqZ.§) and ®(-) € L>, for somek > 0. Then, for any > 0, the exists a positive
constantC' := C(||b||, , €, k) such that

5e(F, @) < CUFIIZ + e £l 11l (0)°
for any nonnegativg € L. N L>(R3).

Proof. Due to the symmetry of the collision operator (recall thatlaek for an estimate
of the quadraticoperatorggve(f, f)) we may assume thatis supported if—1, 0]. Fix
e > 0 and write

b(s) = b(s)X[-1+5,0 T b(8)X[-1,-1+5) 1= b1(8) + ba2(s),
with § > 0 chosen later on. Then, we split

E,e(f’f): Ble(f f)+QBge(f?f)

where B;(u,0) = ®(|u|)bi(u - o) i = 1,2. We estimate the first term using Young’s
inequality as obtained ifg[ Theorem 1] to get

195, . (F Dl e < cxll®l C(BY) 1122

for some numerical constant > 0 and where the constant(B,) is given by (seefj,
Eq. (3.3)]:

C(By) := (/_11 (?) o bi(s) ds) " (/_11 (?)_w b1(s) ds) 1/2.

Notice thatC'(B;) < oo sinceb, is supported on—1 + 4, 0]. MoreoverC'(B,) is larger
than the constant obtained [y [Eq. (3.3)] (since we used the fact tifat-3(0))?52 > 0
for anys € (—1, 1)) but is independent of the restitution coefficiet). For the second
term we use Theorefa.3with n = —k to get

b (5, @) < [|Qh, o (f A o ()

< Cotoot(B2) 1Ny 1l (0)"
where the constar®_;, . ,(B>) is given by B.9) and §.6). In particular, since

Ahooot) = [ 6 (*3 ) b(s) ds
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andb(-) is integrable in—1, 0] due to the Grad’s cut-off assumptid®.§), one sees that
the parametes can be chosen small enough to &t . »(B>) < e. This achieves the
proof. O

5.3. Sobolev regularity for smooth collision kernel. Let & and b(-) be smooth and
compactly supported:

d € CP(R*\ {0}), beCl(—1,1) (5.10)

and let us denote b@; . the associated collision operator defined Then, one
has the technical result:

Lemma 5.7. Assume that(-) satisfies Assumptiofi5] with e(-) € C™(0, co) for some
integerm € N. Then, under assumpti@a.1() on the collision kernel, forany < s < m,
there exists” = C'(s, B, e) such that

ILs()lgerr <C(s,Be) [ fllys,  VfeH

whereT's is the operator defined in Lemnfa] and the constant(s, B, ¢) depends
only ons, on the collision kerneB and on the restitution coefficieat-). More precisely,
C(s, B, e) depends on(-) through theL> norm of the derivative®*e(-) (k = 1,...,m)
over some compact intervalbounded away from zero (that depends only®)n

We postpone the proof of this lemma and first prove the folhgwi

Theorem 5.8.Let B(u,0) = ®(|u|)b(u - o) satisfy(p.10) and lete(-) satisfy Assumption
EAwithe(-) € C™(0, c0) for some integem € N. Then, for any) < s < m, one has

HQg,e(f7 g)‘ < C<S7 B7 6) ||g’ f”L1

Hs+1 ™

where the constar'(s, B, e) is the one obtained in Lemrfia].

Proof. Let F | Belf; 9)] (€) denote the Fourier transform dj . (f, g). According to
CorollaryF.2,

Hs

Flo} /f (o T o) ] (€) o
To simplify notation, seG (v, &) = F[(t, o' ot,) g] (£). One has
95l = [ 171505 0] ©F (677 ag

2

f() (v,€)dv| d¢ (5.11)

- [ (e

<l / O P de .
SinceG(v,&) = F[(t, o' oty) gl (§),
/|Gvg €70+ dg = (0 T o) g

where we used Lemnfa] and the fact that, for any, ¢, is an operator of norm one in
any Sobolev space. Then, estimdi€l(]) yields the desired estimate. O

§{8+1 < 0(87376)2 ||g| ?{S




30 RICARDO J. ALONSO & BERTRAND LODS

We come now to the proof of Lemnf&al.

Proof of Lemm&.]. The proof of the regularity property dfz can be obtained along
the same lines as the one for elastic Boltzmann operg@r(r, for thgvinelastic case
with constant restitution coefficieng]]]). More precisely, denote by z(f)(r,w) =

Lp(f)(@™H(r),w) =Ts(f)(rB(r),w),ie.
Ts(f)(r,w) = /l B(z + rw,r)o(rw + z) dr,.

One notices that, fronB5(10), there isd > 0 such thaty(z) = 0 for |z + 1| < § while
{lz|; z € Supp(®)} C (a, M) for some positive constanfd > a« > 0. Then, by virtue
of (£.3), for any fixedr > 0, w € S* andz € w', one sees thaB(z + rw,r) = 0 if
|22 > 22r2 while, for 2| < 25212, one hagz + rw|? < 2r%/§ so thatB(z + rw, r) = 0

if r < \/0a?/2. This means that
B(z+rw,r)=0 Vr¢l= (\/5a2/2, M) , w € S*and anyz Lw. (5.12)

In particular,l:;(f)(r,w) = 0 for anyr ¢ I independently off. Let

()b (1 - 2%
1+i"(g>62(9)8(z, o) = émz B )

80(27 Q) =
and Ietfg(f) be the associated operator, i.e.

fg(f)(r, w) = / Bo(z + rw,r)p(rw + z) dr,.

wl

Then, B, does not depend on the restitution coefficiefn} andT, is exactly of the form
of the operatofl” studied in P4, Theorem 3.1]. Therefore, arguing asop. cit, for any
s > 0, there is an explicit constatt, = Cy(s, ¢, b) such that

Hﬁ)(f)HHm < Co(s, ®,b) || f]

e s Vfe H”.

Setting

B 0
Ge(Q) - (1 +192<Q))62(Q)X1<Q)

wherey; is the characteristic function df = (\/5a2/2, M) (see Eq. .I3), one sees

thatG, is aC™ function over! whose derivative®*G, are bounded overfor anyk < m
and

u(f)(r,w) = Ge(r)Lo(f)(r,w).

Therefore, for any < s < m, there is some constaGt= C(s, b, e) such that

Hf;(f)HHSH < C(s,B,e) || f]

He Vfe H?®

.....

now explain how to deduce Lemniaj] from the above estimate. Assume fisst= k is
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an integer. Itis easy to check that, using polar coordinates
Ca(l = 3 [~ Blodde [ 10Ta(fe.w) do
17I<k

where, for anylj| < k, the functionF}(p) can be written as

Fi(0) = P;(9M(0), ..., 99 (0))(1 + 9 ()™
whereP;(y1, . .., y;) is a suitable polynomiah; € N andy?) denotes the-th derivative
of J(-). It is not difficult to see that, sincé € C™(0,00) and ! is a compact interval
bounded away from zero, one has .; F;(o) = C) < oo forany|j| < k. Thus
IPs()llme < CelT5(f) e (5.13)

whereC; is an explicit constant involving the> norm of the firstc-th order derivatives
of a(-) onI. This proves that the conclusion of the Lemfmdholds true for any integer
s < m and we deduce the general case by simple interpolation. O

Arguing exactly as inff4, Corollary 3.2] we translate the gain of regularity obtaire
Theorenfs.§into the following gain of integrability:

Corollary 5.9. Let B(u, o) = ®(|u|)b(u - o) satisfy(5-1]) and lete(-) € C'(0, co) satisfy
Assumptiof.]. Then, for anyl < p < oo

195.(f. 9, < Co, B,e) (lgllza I fler + llgllzr 1f]1ze)

where the constan®'(p, B, ¢) depends or(-) and B through the constant’(1, B, ¢) of
Theorenp.§whileq < pis given by:

op .
= 379 if pe(1,6] (5.14)
p/3 if pel6,00).

5.4. Regularity and integrability for hard-spheres. We consider in this section the
case of a hard-spheres collision kernel

|ul

A’

Of course, such a collision kernel does not enjoy the regylproperties assumed in the
previous section. But, since the constaht, , »(B) in Theorenp.3depends o | =,

and some (weighted)' (S?)-norm ofb(-), we can adapt easily the method[B1] (see also
[E4]) which consists in splitting the collision kernel into a sath part and a remainder
part to get the following estimate:

B(u,0) =

Theorem 5.10. Assume that(-) € C'(0,00) and satisfies Assumptiofgs]. For any
p € [1,00) andd > 0, there exists a constadt; > 0 depending only oa > 0 and the
restitution coefficient(-) such that

CQH ) e < G NI AR + 6 11F 1y I, -
R3 1/p
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for some constartt € (0, 1) depending only op. Moreover, the constarits depends on
the restitution coefficient through the* norm of the derivative®*e(-) (k = 0, 1) over
some compact interval @, oo) bounded away from zero (that depends only®and
J).

Proof. The proof of this result follows exactly the same lines asdbeesponding one
in [ET]. We recall it for the reader convenience. It is based on &bla splitting of the
collision operatoQ. Letp > 1 be fixed. Consider a smooth collision kernel of the form

BSan( u|) bS'nL (a ' U)’
with ®5, smooth and with compact suppd#, n], andbg, smooth and supported in
[-1+ 2,1— 2]. We assume that

m

~

u|7u.0) = ®Sn(

lim |[bs,, = 1l|f12y =0 and lim ®g, (Ju]) = |ul Vu € R3.
Set then
BSRm¢7L(u|7a.o’) = ®S7L(u|)bR7rz(a.U)7
and
Bgs,,,(lul,u- o) = ®g,(|u]) bs,,(u-0),  Brg,,(|u,u-0)=Pg,(|u])bg, (u- o)

where®r (Ju|) = |u| — ®s, (|u]) while b, (u-0) = 1 — bg,, (u - o). With this in hands,
one splitsQ as
+ _ OFf + + +
Q= Bsm,n e T QBSRm,rwe T QBRSmA,we +Q

BRRm n €

with obvious notations. Let: andn be fixed. SinceBs,, ., (|ul],u - o) fulfils (E.10), one
deduces from Corollarfg.9that there is a constant(m, n) such that

|t 0| < Cmmfie Al

for someq < p given by .19 which, by a simple application of Holder’s inequality,
yields as in P1]:

/Rg Qg (f ) P do < Clmyn) | f o 1 fller 112" (5.15)
Now, applying Theorerp-3with k£ = 1
|9 £, + | Qb £ ) If

wheres(m) — 0 asm — oo since the constant ifb(d) depends continuously (through
(B-8)) on theL'(S?)-norm ofbg,, which is arbitrarily small as» grows. Using the above
estimate withy = —1/p’, we get

(@b )+ Q2 5] #7700 < ) g 151 - (6:36)

P
Lt

L, <emlfll
n

[n+1]+[n]

BRSm7n78

It remains only to estimaté := / oF (f, f) ff~'dv. Asiin [Z7], one notes that
R3

dp (v —uv]) <Cn! (|v|2 + |v*|2) , Yo, v, € R?
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whereC' > 0. Thus
I < C'n_I/ F)f(v) (Jv]* + |oef?) do dv*/ P, (U - o) do.
R3xR3 S2
Set
11::J/ F)fw)oP dvdu, [ Wb, (@ o) do
R3 xR3 s2
and
b= [ @@ dede. [ s, @ 0)do
R3xR3 S2

One sees that can be written as

I = F, ) (v)y(v)dv
/3X , Bm,e( ) (V)Y (v)
where

Fo)=[off(v), W)= f""(v) € LV(R?)

and the collision kerneB,,, (|u|, u-0) = bg,, (u-0). Applying Theorenfb.Jwithn =k =0
gives then

1< (15, (P D, 190l < Copo(Ba) I Fll 1110 46
< Copo(Bu) 1123 171

whereC, , (B,,) is defined by[.J). Now, with the same notations, we see that

b= [ 0 (P d
R3xR3

so that, applying now Theoref3 with n = 0 andk = —2 (notice thatd = 1 € L5°)
yields

Iy < Cop—2(Bm) [ f ey 1F N2z, 191l o < Cop—2(Bum) [1f 1|y 1F11Zs-

Combining the two estimates fdf and /5, there exists some constaiit= C(m) such
that

C
1< 9 1.

n
This, with and £.16), gives

/]R3 QL (f f) fr=  dv < Clmym) I fllco L e LT+
C(m)

n

+em)flle 1fIT + 1Nz 1 F 17
1/p

which, arguing as inff]], leads to the result choosing first big enough them big
enough. O
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Corollary 5.11. Assume that(-) € C'(0,00) and satisfies Assumptiofis]. For any
p € [1,00) andd > 0, there exists a constadt; > 0 depending only oa > 0 and the
restitution coefficient(-) such that

Q¥ (g,9) g" H{v)™ dv < Cs IIQH””Q Hgllp1 A

24n

g, . ¥n=0
R3 n+1/p

for some constar#t € (0, 1) depending only op.

Proof. Letanonnegatlve function be fixed. Fom > 0, setf(v) = g(v){v)". Noticing
that (v/)7 < (v)7 (v,)" for anyv, v, € R?, one checks easily using the weak formulation
of OF that

Q* (9,9) " o)™ dv = / (0)7Q* (g..9) f* dv < / QH(f, f)f* " duv
R3 R3

RS

and we conclude with TheoremIl. O

Remark 5.12. Notice that, for anyd > 0, the above constant’; is exactly the one
provided by Theorefa. 10

The (almost) explicit dependence of the above constamtith respect to the restitution
coefficient has some very important consequences in the stuthe (time-dependent)
collision operatorQ;_ in self-similar variable. In particular, we can prove that, such
an operator, the corresponding constafgt= Cjs(7) remains uniformly bounded with
respect ta- > 0. Precisely, one can state the following:

Corollary 5.13. Assume that(-) € C'(0,00) and satisfies Assumptiofis]. For any
T > 0, lete. be the restitution coefficient defined E10) and let Q;.(f, f) be the
associated collision operator. For anye [1,00) andé > 0, there exists a constari{s
that does not depend ansuch that

4 5lgll

24n

[, Qe la.0) g wymaw < Kilal iz, V>0

for some constartt € (0, 1) depending only op.

Proof. Clearly, from Corollanys.1], for anyr > 0, there exist€’s(7) for which the above
inequality holds and it suffices to prove thigf = sup, ., Cs(7) < oo. Recall that(s(r)
depends onr through the restitution coefficiemt and, more precisel\(’s(7) depends
on the L> norm of the derivativesD*e.(-) (k = 0,1) over some compact interval of
(0, 00) bounded away from zero (independentr9f Now, for anyr > 0, recall (see

1/
Sectiord) thate.(-) = e ( G ) where\(7) = (1 + +1T> 7_ ConsequentlyD*¢,(-) =

A (7)(DFe) ( e ) Since\~!(7) is continuous and goes to zeroagoes toco, one

sees that all thé > norms of D*¢,(-) remain uniformly bounded with respectto The
same holds fo€'s5(7) and the proof is achieved. O
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5.5. Pointwise exponential estimates o8}, .. We provide here some useful pointwise
estimates of the gain pa@j; . with exponential weights. Our results take benefit of
the very recentoung’s inequality with exponential weiglaistained by R. AONSO, E.
CARNEIRO AND I. M. GAMBA [[]. These results are inspired by similar estimates for
Maxwellians weights obtained for the elastic Boltzmannagmun in [[3] and apply to
general collision kernel®(u, o) = ®(|u|)b(u - o) where the angular kerné(-) and the
variable restitution coefficient(-) satisfy the following:

Assumptions 5.14.In addition to Assumptiong.], the restitution coefficient(-) is as-
sumed to be non-increasing ovRrwith e(z) < 1 for z > 0. Moreover, the collision
kernelB(u, ) = ®(|u|)b(u-o) whered(-) € L=, for somek > 0 and the angular kernel
satisfies the integral cut-off

1M 1—s]7%2

0 = / { L a-p0PtY] K ds < oo (5.17)
-1

Remark 5.15. It is clear that(G5.1]) implies in particular that)(-) satisfies Grad’s cut-off

assumptiond(-) € L*(S?). Note, however, that whe#(0) < 1, for instance in models

with constant restitution coefficient, assumpt{pri]) reduces to Grad’s cut-off.

For this kind of weights we have the following result takeonfr [3:

Theorem 5.16.Let1 < p, ¢, r < ocowithl/p+1/g =1+ 1/r. Assume thaB(u,c) =
O (|ul)b(a - o) and the restltutlon coefficien{-) satisfy Assumptiorfs.14 For any fixed
a > 0, define the exponential weight as

My(v) i=e " x>0, veR.
Then, there is some constdrit> 0 such that
9% . (f, 9) M < C | f MM res) |9 M3 Lo (5.18)

In the important casép, ¢, ) = (o0, 1, 00) the (non-sharp) constart := C(b, 5) can
be taken ag’ = x(,, for somex > 0 and/{,, defined in(5.17) with

bo(s) = [1 - (W)] o)

0(s)* = (1 = B(x))* + B%(x) + 26(2)(1 = B(z))s with = =/33.

With this result at hand we have the following Proposition.

L7 (R3)

where

Proposition 5.17.Let the collision kerneB(-, -) and the restitution coefficient-) satisfy
Assumptiong.TI4with moreovee(0) = 1. Then forany > 0, there existg'(e, ¢, ¢;,) > 0
such that

Belf:9)(0) M (v) < Cle,e, b) | f M3 | noe s lg MK 1)
+ell f My o) lg M3 ooy (0)° (5.19)
holds for anyv € R? and any nonnegativé, g.
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Proof. Let f andg be two nonnegative distribution functions. As in the proo€orollary
F.§we break the angular kernel into two pfrts

b(s) = b(s)x[—11-6 + b(s)X(1-61) = b1(5) + ba(s)

and let B; and B, denote the associated collision kernél;(u, o) = ®(|u|)b;(a - o),
1 = 1, 2. Let us first estimate the collision operator associatdehtdJsing the dissipation
of energy, one notices that

W= (W)Y < (o + o) < ol + e,
so that
M) S MY )M (v) Yo, v, € R,
Then, using the weak formulation @fj;, . we conclude that

e (F,9)(0) M3 (0) < Qf, ((FM 9 M) (0)
<HQBze fM)\ ng)\ HL‘f’k <’U>k

Therefore, according to Theordi,
Bre () (0) M3 (0) < Copoon(Bo) I M3 i) g M3y es) (o)

where the constan_j, .. »(B.) is given by 5-7). According to 5.8) and since3(0) =
andb;(-) is integrable, for any fixed > 0, we can choosé > 0 small enough such that
C k00 k(Bg) g, i.e.

Qo (f:9) (W) M (v) < ell f M3l poqes) lg M3y es) (0)"

Concerning the collision operator associatedio using Theorenp. I§with (p,q,7) =
(00, 1, 00) leads to the estimate

Bre(£,9) () M () < Cellf M3 o) llg Myl ey

for some constant’, > 0 depending only o, (-), the restitution coefficient(-) and/,.
This concludes the proof. O

Remark 5.18. Note that the integrand defining the constéaht(see Theorerfa. 1) has a

singularity only ats = 1 becaused(1)| = 1 (when3(0) = 1). This singularity is avoided
by the splitting technique used throughout this paper. @ncibntrary, the singularity at
s = —1, when occurs, can not be avoided. This problem arises intthadyf inelastic

interactions because of the lack of symmetry that they imdeig. for the bilinear form of
the inelastic collision operator, it is not correct to asseithatb can be defined in half the
domain. This is the main reason why we have to add the strdagdrundesired) integral

cut-off hypothesié.T7).

3notice however that, since we are dealing with the bilingeaaratorOp .(f, g) and not the symmetric
On..(f, f), we cannot assunig-) to be supported o1, 0] (see also Remafk.1§).
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6. PROPAGATION OFLEBESGUE NORMS LP-THEORY (1 < p < 00).

In this section we are interested in proving the propagaifakr-norms, withl < p <
oo, for the self-similar profile and for the solution to the Bwitann equatiorf((]). We
will use the main result of this section, and a couple of ole@rns to prove the propa-
gation of theL>°-norm later in Section 7. Our strategy is based in the stahiga@hnique
of energy estimates which will be carried out in the spaceetffsmilar variables for
optimality. As usual, we will assume that the restitutioefficient satisfies Assumptions
B and, given a solutiorfi(t, v) to (£.1), the rescaled solution= ¢(7, w) is a solution to
the Cauchy problenf3(9).

We adapt here the technique introduced id] [for integrability propagation in the
elastic case. Later irZ][] such techniques have been applied to prove the propagation
of L? norms for inelastic interactions in the case of constartttoti®n coefficient. We
extend their results to the case of a variable restituti@ifimbent satisfying Assumptions
B-1. One begins with the following Lemma which relies on the thett the energy of the
self-similar variabley is bounded from below:

Lemma 6.1. Assume thaff, € L}7 for somen > 2. Then, there exists some positive
constant/, > 0 such that

/ gl wolw —w.| duw, > max {uo, o]} > Dw),  Vw RS, 730

In particular,

_ _ 140 1y
[ waaw=2 [ g w) de =2 ool -
R3 R3 1/p

Proof. Since f, = g0, the propagation op-moments in the rescaled profileimplies
sup;>g ||9(7)[[ ;1 < oo. Then, for anyR > 0,

1
g(r,w)|w*dw < —— sup [g(7)]|,: -
/{w|>R} Ri=2 s b

0}

Recall that in Section 3 we proved that the ene®jy) of ¢ has a uniform lower bound
O..in > 0, therefore for sufficiently larg&

/ g(r, w)|wf? dw = / o, w)|wf? dw - / o, w)|w]* dw
{|lw|<R} R3

{lw| =R}

1
> Opin — —— S > 0O,,,/2 > 0.
s 2 190)ly > O/

We conclude that,

1 Gmin
g(T,w)|w|dw > = g(r,w)|w]* dw > =15 >0
/I‘QB R {\w|<R} 2R
Thus, using this observation and Jensen’s inequality wéhgatonclusion. O

Then, one has the following
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Theorem 6.2. Assume the variable restitution coefficief®) satisfy Assumptior{z] for

somepositivey > 0. Assume thaf, L5(1+n) ng(R?’) for somel < p < oo andn > 0.

Then the rescaled functigndefined by(P.T§ is such that
sup g(7)ll; < oo.
720

As a consequence,

sup { V(O || FD)ll b < supllg(r)ll, < o0
>0 720

=

wherel/p+1/p" = 1.

Proof. Let » > 0 be fixed. Recall that (see Eq3.8)) the self-similar functiorny(r, w)
satisfies

(aTg + g(T)vW ’ (wg>> (T7 w) = ng—(gag)(T7 w)7 9(07 U)) = fO(w)7
whereé(7) ande, are defined in{I0). Multiplying this equation by (7, w) (w)™
and integrating oveR?® yields, after a few algebra,

1 dllg(T)lI7 1
—7%3(1—]—9) Mol = [ Q& (0.0 ()™ du-

2 (9:9)g" (W) dw + ng(7) / g" (r, w)wl (w)™™ dw.

RS

D dr

Using Lemmd5.] one has clearly

_ _ 14
Q (g,9)g" " (W)™ dw > 30||9(T)||’2p -
R3 n+1/p

Moreover,C' = sup, s [|g(7 )HLl+ > oo by virtue of the propagation of moments (see
(ED). Applying Corollary@wnh d = %, one has

1 d v 3
o+ 2 lolE, < K+ (0= 5 ) oG, vr >0

P dr

(6.1)
for some constank” independent of. Sincey > 0, the mapping (7) is nonincreasing
with lim, ., £(7) = 0 and it is not difficult to prove thaf(J) leads to the result. O

Remark 6.3. Notice that, arguing as if£1, Section 3.4]the uniformZ?-norm (forp > 1)
of the rescaled solutiog(, w) provided by the above Theorem implies non-concentration
of the rescaled temperature

o) = [ gtrw)lufdu,
R3
Precisely, a simple use ofdttler’s inequality shows that
sup ||g(7(t))||.» < Cp = inf O(7(¢)) > Omin > 0.
>0 t>0

Turning back to the original variabl¢, one gets tha€ (t) > Onin/V2(1).
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Remark 6.4. If ¢(-) satisfies Assumptioffis] with v = 0 (typically, if e(-) is a constant
restitution coefficient), thef\r) = 1 for anyr > 0 and the last part of the proof does not
apply. However, one sees frdfn) that the conclusion still holds if < 3/p’. Moreover,
for constant restitution coefficient, a version of TheofeRis given in[23, Theorem 1.3]

7. POINTWISE ESTIMATES L°°-THEORY

In this last section we are interested in developing/tftetheory for solutions to Boltz-
mann equationI(.3). In early 80’s, ARKERYD proved, inspired by the work of Carleman,
that any solution to the elastic Boltzmann equation remaimbed as long as its initial
datum is bounded]. His argument is rather clever and consists in proving eesef re-
sults that imply the.>° control of the gain part of the collision operator by the caned
guantities, the entropy, and tli€° norm of the initial datum. The Carleman representa-
tion plays a crucial role in his proof. We extend here his ltego the inelastic case (with
variable restitution coefficient). Of course, no entropytcol is available here and we
proceed in a different way, dealing with the self-simikanariable (see{. 19).

7.1. L*>-norm propagation. The reader should notice that the results here are not a
direct consequence of the’-theory, since the estimates involvidg-norms forp < oo
degenerate as — oo. Unfortunately, this is an intrinsic feature of the methlogy
developed for such theory. The next two Lemmas overcomeptbislem.

Lemma 7.1. Assume that the mappinge [0, co) — X (7, w) is absolutely continuous
for almost everyw € R? with || X (7). < oo foranyr € [0, c0). If there exist positive

constants:, b > 0 such that
dX

= (rw) + aX(r,w) (w) <b+ % IX (7|, (w) fora.e. w e R, (7.1)

then,
2b
sup || X (7)|[ o < max IIXollLoo,; :

720

Proof. Let C' := max {||X (0|, , 2}. Assume thal{ X (7,)|| .. > C for somer, > 0.
There is no loss of generality in assuming that(7)||.~ < C foranyr € (0, 7,). Then,
there existsuv, such that

X (10, wp) > Cy = max{|| X (70)| ;- /2,C}, X(0,wy) < C

and the mapping — X (7, wy) is absolutely continuous. Thus, there exists [0, 1)
such thatX (7, wy) > C, foranyr € [r., ) and X (7, wo) = C;. Then, since

X (e < C < [[X(0)lle <2C1 VY7 € (7, 70)
we see from[(]) that

i—f(ﬂ w0)+gX(T, wo) (wo) < b+%<w0>(||X(T)||Lm—2X(T, w)) <b V7 € (1, 7).

In particular, X (7, wy) < b — Cya/2 < 0 for anyr € (7., 7). Therefore,
Cl < X(To,wo) < X(T*,w0> = Cl,
which is a contradiction. O
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In order to use previous result, we need first to establishnaumiform control on the
L°-norm for the self-similar profile.

Lemma 7.2. Let f, satisfying(Z-§) with moreoverf, € L>(R?). Letg(r, w) be the self-
similar solution defined byZ.T9 where f(¢, v) is the solution tqZ. 7). Then, there is a
constants > 0 such that

19Tl < [ follpoe +57 V7> 0.

Proof. Recall that the self-similar solutiogn(r, w) satisfies [.9). Split then the colli-
sion operatoQ;_(f, f) as in Corollaryb.§ (for fixed 7 > 0). Then, using the standard
estimates of Theoref3and Lemmg/ ], for anyp > 2

/Rggp_lQ;{(gvg>dw:/R: P 1QB16 (g g>dw+/ - 1QBQ€ (g,g)dw

R3

<Cullgli oI + gl || @b, (9:9)

Lfl/p’

A simple interpolation inequality shows that
=2 pp_—2

lg(rII7" < llg(r )II Hlglz™ = gl

On the other hand, arguing as in the proof of Theofefand choosing the mass bf
small enough, one obtains that, for any 0, there is some constaat > 0 (independent
of 7) such that

p—2

/Rg P1Qt (g,9) dw < Cu llg(M)I3: g +llg(r) lg(rlizs,

Note that our assumptions g imply ||g0||L§ < oo, hence by Theoreffd.2,
sup|lg(r) | 3 < oc.
720

Using now the lower bound given in Lemral and choosing

—1
c= & (swllar)ly) >0

7—/
we obtain
10 2 p—2

p,Z
/Rg "0, (9,9)(r,w) dw < Cu ()3 lg (ML < Collg(m) [

Next, multiply by g~ with p > 2 and integrate iR* the equation[{9) satisfied byg.
After few calculations one obtains

1dX p—2

p drp(T) S /RS 9" 10z (g,9)(1,w) dw < CyXF ' (1),

whereX,,(7) := ||g(7)||",. Therefore,
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1
which translates tdlg(7)||,, < (HQOHIZP + Cp’T)” . Letting nowp — oo, we get the
conclusion. m

Finally we are ready to prove the™ propagation.

Theorem 7.3. Assume the variable restitution coefficierit) satisfy Assumptiorfs_].
Let f, satisfying(Z-9) with moreoverf, € L>=(R?). Letg(r,w) be the self-similar solu-
tion defined byP.1® where f(¢,v) is the solution tal2.7). Then, there exists a positive
constantC' > 0 depending only onﬁf0||L% and|| fo|| .~ such that

sup [|9(7) || < C-
720

Whence|| f(t)]| - < C'V (t)? for anyt > 0.
Proof. Recall that the equation for the self-similar profile can b&ten as
(0rg + &(T) Ve - (wg)) (T,w) = (Org + &£(T)w - Vg + 3¢(7)g) (T, w)
= 0z (9,9)(T,w).
Defining the solution along the trajectories
¢'(7)
o(7)

g% (1, w) = g(7, ¢(r)w) with =&(7), ¢(0) =V(0) = 1,

we can rewrite this equation as

Org™ (7, w) + 3¢(7)g™ (1, w) = [Qz. (9, 9)] " (7, w). (7.2)

Using Corollaryb.§ and the lower bound fo@~ (g, g) = Q; (g, 9) given in Lemmdb.]
one sees that, for any> 0, there exists a constatt > 0 (independent of) such that

Org? (r,w) + 36(T)g* (7, w) + Fg* (r.w) (w)?

< Cllg(m)lIzz + e gy gDl (). (7.3)

1
Due to propagation of moments we can fix= < (SupT>0 ||g(T)||L%> . Notice that

8
lgoll72 < [lgoll o llgoll 1y < o0, SO that, according to Theorefd,

sup g(7) 3 < o
720

Moreover, we can disregard the second term in the left hathel ai (7.3) because is
nonnegative. Thus, we conclude that, for 0

14 14
0rg™ (1, w) + 509#(77 w) ()" < Csup lg()72 + go (M)l (W)™ (7.4)

Moreover, according to LemniaZ the norm|g(7)||, is finite for anyr > 0. Notice
that the mapping > 0 — ¢#(7,w) is absolutely continuous for any fixed as the
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solution to the rescaled Boltzmann equatiprdl. Hence, using Lemmf@.], inequality
([7-9) implies that

¢ 2
o)== a# e < e { Al Esup oy} 25)

which proves the Theorem. O

Remark 7.4. Notice that the same reasoning applies readily to the edaBtltzmann
equation in an even easier way, providing a new proof of tiselts of[f], [Ld]. In par-
ticular, our new method shows that it is possible to relaxdbeditions on the collision
kernel of[d]. Namely, whild{] applies to abounded)(-), the above result applies to any
integrableb(-) through the cutoff assumptid@@.f).

7.2. Pointwise exponential bounds.In GAMBA et. al. [[L] the authors use a compari-
son principle that holds for weak solutions of the Boltzmannation to prove that under
the conditionfy(v) < e~®/""+e the solution to the classical (elastic) Boltzmann equa-
tion remains pointwise uniformly controlled by a Maxwetiidistribution. There are four
main ingredients in the pointwise Maxwellian control préafthe elastic case:

e the L>°-propagation,

¢ the L'-Maxwellian propagation,

¢ the Young’s inequality (with Maxwellian weights),

¢ the aforementioned comparison principle.

We have seen in Theorefhd that the second point holds true for the inelastic Boltz-
mann equation with variable restitution coefficient (asltdfar the self-similar solution).
Moreover, variants of the second and third points have béésireed in Sectiong and
E.3 respectively. For such estimates, Maxwellian weights Haviee replaced by only
exponential weights (since the tail of self-similar saduis are of order only one, see The-
oremfJ). With all these results at hand, we are in position to prixeefollowing result,

inspired by [[4:

Theorem 7.5(L>°-exponential tails Theoren). Assume tha3(u,o) = ®(|u|)b(u - o)
and the restitution coefficien{-) satisfy Assumptiof.14with £ = 1. Let f, satisfying
(Z-9 and assume moreover that there are some constgnts0 andc, € R such that

fo(v) < exp (—ap|v| + co) fora. e. v € R®.

Let g(7,w) be the self-similar solution defined where f (¢, v) is the solution to
(E-D. Then, there exist > 0 andc > ¢, such that

sup g(1,w) < exp (—alw| + ¢) fora. e.w € R3.
720

Hence,f (t,v) < V(t)3exp (—a|V (t)v]| + ¢) for a. e.v € R? and anyt > 0.
Proof. Since fy(v) < exp (—ao|v| + o) , we can apply the.!-exponential propagation
Theorenfd.J which implies the existence of some< a; < a, such that

sup/ g(T,w) (w) exp (a1 |w]) dw < oo,
720 JR3
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or equivalently
sup [ f(t,v) (V(t)v)exp (a1|V(t)v]) dv < 0. (7.6)
t>0 JR3

Moreover, sincefy € L, we can apply Theorefi.3to conclude that

sup [|g(7)|| o < o0. (7.7)
720

The next step it to use the comparison principle given in AgjpeB, Theorem HI. To
this end define

M(w) := exp (—alw| + ¢)
where0 < a < min{a;, 2} is fixed @, being given in Lemmd6.]) and where the
parameter: > ¢, € R will be chosen large enough in the sequel. Define then

Mo(t,v) = V3MV(t)v)  t>0,veR?.

According to Propositiofp.17, for any fixede > 0, there is some positive constafif
such that

QF (Mo, £)(t,0) < | FOMG (1 0)]] 1 (Ce + 2 (1) Mot 0).
Now, according to[{.6) and our choice of the parameter- 0, one has
C —supr ()Mt v HLl < 00

and
QF (Mo, f)(t,v) SCM(V(t)v) (Ce+e(v))  VE=0,veR
Observe that is independent of. Then, moving to the self-similar variable one has

Qt (M, g)(7(t), V(t)v) = V(1) QF (Mo, f)(t,v),

€r(t)

and sincé/ (t) >
of m( L9)(7(1),w) S V() CM(w) (Ce + £ (V7 (t)w))
< CM(w) (Ce + € (w))

where?, has been defined in Sectih Fix nowes = 1,/4C and use Lemm§.] to
conclude that

Q. (M, 9)(7(t), w) < (CO - % <w)> Mw), V=0, weR
Recall that equatiorf3(@) implies thatl > V(¢) \, 0 ast — oo. Then, choosing any

R> ,,OC/OZE’CL we conclude that fot > 0,

V)3 — alw) > (oo - % <w)> for any|w| > R and anyt >
In other words, for anyw| > R and anyt >
O M(w) + V() Vy - (wM)(w) = V(t)(3 — alw[)M(w)

> (G0 =T () Mw) > @z (M.g)(r(0).w) (7.8)
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Then moving back to the original variabl@sv), inequality reads
0 Mo(t,v) = V)V (£)(3 — alV (t) o) M(V (t)v)
> V2(1)Qz, ., (M, g)(7(1), V(t)v) = Qc(Mo, f)(t,v) forany(t,v) € Ug,

whereUy = {(t,v) € (0,00) x R3; |[V(t) v| > R}. Moreover, using Theorefi.3 and
(71 we have for sufficiently large

My(t,v) = V() exp (—a|V(t)v| +¢) = V(t)® exp(—aR + c)
> 3

(8)"sup [lg(7)ll . = f(t,v) I Uk,
By choosing: large enough to satisfy alsa(v) < M, (0, v), we can conclude the proof
using the comparison principle in Theorem{IBn the Appendix B. O

Vv
v

APPENDIX A: VISCOELASTIC HARD-SPHERES

In this Appendix, we prove that our general AssumptiBrisare met by the restitution
coefficiente(-) associated to the so-called viscoelastic hard-spheresiaedin P4 (see
also [[1, Chapter 4]). Before this, we state a more general resuljdoeral restitution
coefficient and for hard-spheres collision kernel

B(u,a):% VueR? o €§?

for which we recall thatP, as defined inf.J) is given by:

Jz
v () = %/0 (1—e(2)?) 2% dz, x> 0.

Lemma A. 1. Assume that(-) satisfies Assumptida] and that the mapping > 0 —
e(z) is decreasing. Then, the associated funciigndefined in(B.J) is strictly increasing
and convex.

Proof. Let us assume that (z) < 0 for anyz > 0 wheree,(-) denotes the derivative of
e(). Let®(x) = 2¥ (z?) for anyz > 0, i.e.

1 xX
O(z) = —/ (1—€%(2)) 2% dz, x> 0.
T Jo
It is easy to see thab.(-) is convex if and only itz ®,,.(z) — ®,(z) > 0 for anyx > 0
where®,, and®, denote the respectively the second and first derivative. ok simple
calculation shows that

1®,,(2) — ®,(2) = —22%¢.(v)e(z) + %/ (1 —e*(2))2% dz, Ve >0
= Jo
and, sincez,(z) > 0 while e(-) € (0, 1], one gets that®,,(x) — ®,(z) > 0 for any
x> 0.
In the same way, since () < 0, the mapping: > 0 — (1 —e€?(2))z* is nondecreasing
and one deduces easily thiat(z) > 0 for anyz > 0. This obviously implies tha¥. ()
is strictly increasing ovef0, +oc0). O
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Now, for the visco-elastic hard-spheres as derivedZj, [the restitution coefficient
e = e(z) is the solution of the equation

e(2) + az'Pe(2)*® =1 (A1)

wherea > 0 is a constant depending on the material viscosity (seegeigcfL], Eq.
(3.38), p. 40]). Notice there is also an alternative expoessf the restitution coefficient
e(z) for viscoelastic hard-spheres as an infinite expansioeseripower of:'/>:

e(z) =1+ Z(—l)kakzk/5, 220
k=1

wherea;, > 0 for anyk € N. It has already proven, on the basis[@f])) that Assumptions
B.1are met (sed, p. 1006]). Now, from Eq.£.1), one sees thaim,_y+ ¢(z) = 1 and

1/5

e(z) ~1—az for 2~0

which means that Assumpti§h] (1) is met. Moreover, it is easy to prove frof.{l) that
the restitution coefficient is continuously decreasingug;taccording to Lemma A, the
restitution coefficient(-) associated to the visco-elastic hard-spheres satisfyrssons
B-1. Notice that our result covers more general models thanrleebviscoelastic hard-
spheres as illustrated by the following example:

Example A. 1. For monotone decreasing restitution coefficient introdlioe Example
P.3, Assumptiong8.] are also met by virtue of the above Lemma. In such a case, @diogpr
to (£.2), the cooling of the temperatu&) is as follows

5(t)=0((1+t)—%~) as t— oo.

APPENDIX B: COMPARISON PRINCIPLE

We write here, for comfort, the 81BA, PANFEROV & V ILLANI comparison principle
for the Boltzmann equatiorflf]. The proof of this result can be found ifi] for the
elastic caseSameproof applies in the inelastic case. The result is statedarcontext of
the, very weakgissipativesolutions. In particular, spatially homogeneous soligithrat
we found in this work are dissipative solutions.

Theorem B. 1. Let f € C([0,T]; L'(R?)) be a dissipative solution of the Boltzmann
equation and ley be a sufficiently regular function, such that< g, and

09— Qpelg, f) =0 o0nU

and f < g onU¢, whereU is a measurable subset {tf, 7] x R3. Thenf < g almost
everywhere o0, 7] x R3.
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