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FREE COOLING AND HIGH-ENERGY TAILS OF GRANULAR GASES
WITH VARIABLE RESTITUTION COEFFICIENT

RICARDO J. ALONSO & BERTRAND LODS

ABSTRACT. We develop in this paper the first systematic treatment of the homogeneous
Boltzmann equation for granular gases with non constant restitution coefficient, general-
izing a large number of the results obtained recently for homogeneous granular gases with
constant restitution coefficient to a broader class of physical restitution coefficients that
depend on the collision impact velocity. Our analysis is carried along the following paths:
first, we develop theL1-theory which is based on the understanding of the moments of
solution and leads as byproduct to the Haff’s law and the so-calledL1-exponential tails
theorem. Second, we investigate theLp-theory for1 < p < ∞, proving in particular the
propagation ofLp norms. Finally, we develop theL∞-theory which produces the cele-
bratedL∞-exponential tails theorem as ultimate goal. In all the above steps, the study of
the self-similar solutions to the Boltzmann equation playsa crucial role.

1. INTRODUCTION

1.1. General setting. Rapid granular flows can be successfully described by the Boltz-
mann equation conveniently modified to account for the energy dissipation due to the
inelasticity of collisions. For such a description, one usually considers the collective dy-
namics of inelastic hard-spheres interacting through binary collisions [11, 25, 27]. The
loss of mechanical energy due to collisions is characterized by the so-called normal resti-
tution coefficient which quantifies the loss of relative normal velocity of a pair of colliding
particles after the collision with respect to the impact velocity. Namely, ifv andv⋆ denote
the velocities of two particles before they collide, their respective velocitiesv′ andv′⋆ after
collisions are such that

(u′ · n̂) = −(u · n̂) e, (1.1)

where the restitution coefficiente is such that0 6 e 6 1 and n̂ ∈ S2 determines the
impact direction, i.e.̂n stands for the unit vector that points from thev-particle center to
thev⋆-particle center at the instant of impact. Here above

u = v − v⋆, u′ = v′ − v′⋆,

denote respectively the relative velocity before and aftercollision. The major part of the
investigation, at the physical as well as the mathematical levels, has been devoted to the
particular case of a constant normal restitution. However,as described in the monograph

This work began while both the authors were Core Participants to the active program of research ”Quan-
tum and Kinetic Transport: Analysis, Computations, and NewApplication” in residence at INSTITUTE

OF PURE AND APPLIED MATHEMATICS (NSF Math. Institute), UCLA, Los Angeles, CA. We thank the
organizers of the program for the invitation and the IPAM forexcellent working conditions. R. Alonso
acknowledges the support from NSF grant DMS-0439872 and ONRgrant N000140910290.

1



2 RICARDO J. ALONSO & BERTRAND LODS

[11], it appears that a more relevant description of granular gases should deal with a
variable restitution coefficiente(·) depending on the impact velocity, i.e.

e := e(|u · n̂|).
The most common model is the one corresponding to visco-elastic hard-spheres for which
the restitution coefficient has been derived by SCHWAGER & PÖSCHEL [25]. For this
peculiar model,e(·) admits the following representation as an infinite expansion series:

e(|u · n̂|) = 1 +
∞∑

k=1

(−1)kak|u · n̂|k/5, u ∈ R
3, n̂ ∈ S

2 (1.2)

whereak > 0 for anyk ∈ N.We refer the reader to [11, 25] for the physical considerations
leading to the above expression (see also the Appendix A for several properties ofe(·) in
the case of visco-elastic hard-spheres). This is the principal example we have in mind for
most of the results in the paper, though, as we shall see, our approach will cover more
general cases including the one of constant restitution coefficient.

In a kinetic framework, behavior of the granular flows is described, in the spatially situ-
ation we shall consider here, by the so-called velocity distributionf(v, t) which represents
the probability density of particles with velocityv ∈ R3 at timet > 0. The time-evolution
of the one-particle distribution functionf(v, t), v ∈ R

3, t > 0 satisfies the following

∂tf = Qe(f, f)(v, t), f(t = 0, v) = f0(v) (1.3)

whereQe(f, f) is the inelastic Boltzmann collision operator, expressingthe effect of bi-
nary collisions of particles. The collision operatorQe shares a common structure with the
classical Boltzmann operator for elastic collision [13, 26] but is conveniently modified in
order to take into account the inelastic character of the collision mechanism. In particular,
Qe depends in a very strong and explicit way on the restitution coefficiente. Of course,
for e ≡ 1, one recovers the classical Boltzmann operator. We postpone to Section2.1the
precise expression ofQe. Due to the dissipation of kinetic energy during collisions, in the
absence of external forces, the granular temperature

E(t) =

∫

R3

f(t, v)|v|2 dv

is continuously decreasing and is expected to go to zero as time goes to infinity, expressing
thecooling of the granular gases. Determining the precise rate of decay to zero for the
granular temperature is, among other things, one of the questions addressed in this paper.
The asymptotic behavior for the granular temperature was first explained in [17] by HAFF

at the beginning of the 80’s for the case of constant restitution coefficient, thus, it has
become standard to refer to this behavior simply asHaff ’s law.

Up to now, the mathematical investigation of the inelastic Boltzmann equation has been
almost uniquely devoted to the case of a constant restitution coefficient. As well docu-
mented in the survey [27], the study of Boltzmann models for granular flows has been
first restricted to the so-called inelastic Maxwell molecules where the collision rate is
independent on the relative velocity [5, 6, 8, 12]. A more sophisticated model can be
found in [8, Section 6.2] which deals with inelastic Maxwell moleculeswhere the resti-
tution coefficient depends on time through the temperature of the gas. Regarding the
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convergence towards homogeneous cooling state in the case of Maxwell molecules we
refer to the recent work by CARLEN, CARRILLO & CARVALHO [10]. The mathemati-
cal investigations of the more physically relevant case of hard-spheres interactions have
been then initiated by GAMBA , PANFEROV & V ILLANI [14] for diffusively heated gases.
Since then, a systematic study of the hard-spheres case havebeen addressed in a series
of papers by MISCHLER & M OUHOT, who, among other important results, provided the
first rigorous proof of the Haff’s law for hard-spheres interactions and constant normal
restitution [19, 20]. Together with the work of BOBYLEV, GAMBA & PANFEROV [9],
these two papers have been the principal inspiration sourcefor the present work. Let us
also mention that MISCHLER & M OUHOT also addressed the relevant problem of Homo-
geneous Cooling State, proving the existence of self-similar solutions and their stability
with respect to the quasi-elastic limit [21, 22].

All the aforementioned works are dealing with the case of a constant normal restitution
coefficient. From the mathematical viewpoint, the literature on granular gases withvari-
able restitution coefficientis rather limited. In [19], the Cauchy problem for the homoge-
neous inelastic Boltzmann equation is studied in great detail and full generality including
the class of restitution coefficients that we are dealing with in this paper. For the inhomo-
geneous inelastic Boltzmann equation the literature is yetmore scarce, in this respect we
mention the work by the first author [1] that treats the Cauchy problem in the case of near-
vacuum data. It is worthwhile mentioning that the scarcity of results regarding existence
of solutions for the inhomogeneous case is explained by the lack of entropy estimates for
the inelastic Boltzmann equation, thus, powerful theorieslike the DiPerna-Lionsrenor-
malized solutionsis no longer available. More complex behavior that involve boundaries,
for instance clusters and Maxwell demons, are well beyond ofthe present techniques.

From the technical viewpoint we will implement a great deal of the machinery de-
veloped through the years for the theory of homogeneous granular gases with constant
restitution coefficient (see [9, 21, 22, 24] and the recent contribution [3]) to a broader
class of physical restitution coefficients depending on thecollision impact velocity. Of
course, additions, improvements and new ideas will be introduced as needed.

1.2. Description of the results. The present paper provides, to our knowledge, the first
systematic study of the Boltzmann equation for granular gases with non constant restitu-
tion coefficient. A simple recipe to understand this work is the following scheme

L1-theory Lp-theory(1 < p <∞) L∞-theory

Propagation of moments Carleman representation Pointwise estimates

Haff’s law Compactness properties ofQ+
e Uniform boundedness

L1-tails theorem Propagation ofLp-norms L∞-tails theorem
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Thus, in Sections 2, 3 and 4 we develop theL1-theory which has as byproducts the
Haff’s law and theL1-tails theorem. Sections 4 and 5 develop all the integrability esti-
mates needed for the propagation of theLp-norms for1 < p < ∞, which is treated in
Section 6. Finally in Section 7 theL∞-theory is developed to obtain theL∞-tails theorem.
As the reader will notice, this division is natural since thetechniques involved in each of
them will vary considerably. For theL1-theory the basic tool is the so-called Povzner
lemma, which was developed in full grace in [9], as opposed to the compactness argu-
ments necessary for theLp-theory. The latter has been first developed by P. L. LIONS

in the 90’s [18] and fully exploited then by MOUHOT & V ILLANI [24]. Meanwhile, the
L∞-theory is based in several technical observations, and a comparison principle intro-
duced recently by GAMBA , PANFEROV & V ILLANI [15]. Certainly, we will have to work
hard to adapt all these arguments to our present situation that proved to be rewarding at
the end. One of the main tools in our analysis will be the studyof self-similar solutions
to the Boltzmann equation (1.3). Precisely, we shall repeatedly look for solutions to (1.3)
of the form

f(t, v) = V (t)3g(τ(t), V (t)v)

whereτ(·) andV (·) are time scaling functions to be specified later. The rescaled solution
g(τ, w) turns out to be a solution of an evolution problem of the type:

∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = Qee(τ)(g, g)

for someξ(τ) depending on the time scaleτ andQee(τ)(g, g) is a collision operator associ-
ated to a time-dependent restitution coefficientẽ(τ) (see Section2.4for details). The most
notable difference with respect to the case of a constant restitution coefficient is that the
rescaled collision operator depends on the (rescaled) timeτ , leading to anon-autonomous
problemfor g.

Let us explain in more details the results we obtain in this work. As we mentioned,
the first part of the paper is devoted to theL1-theory. The main result of this setting
is the first rigorous proof of what we callgeneralized Haff ’s law. Precisely, the rate of
cooling of the temperatureE(t) of the solution to (1.3) is expected to be algebraic. From
physical considerations and a careful dimensional analysis, HAFF [17] predicted that, for
constant restitution coefficientthe temperatureE(t) of a granular gas should cool down at
a quadratic rate:

E(t) = O

(
1

t2

)
ast→ ∞.

Similar considerations lead SCHWAGER & PÖSCHEL [25] to the conclusion that, for the
restitution coefficient associated to the visco-elastic hard-spheres (1.2), the decay should
be slower than the above one, namely at an algebraic ratet−5/3.

For the Boltzmann equation with constant restitution coefficient, Haff’s law have been
proved rigorously by MISCHLER & M OUHOT [21]. Their proof relies on the propagation
of Lp norms for the time dependent self-similar solutions to (1.3) which implies non-
concentration in these rescaled variables, i.e. the temperature in the rescaled variables is
uniformly bounded from below whenever the initial datum satisfies someLp bound with
p > 1. Translating such an estimate in the original variables proves Haff’s law.
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We generalize their result by dealing with a general variable restitution coefficiente(·)
satisfying reasonable assumptions, all of them being fulfilled by the physical model of
visco-elastic hard-spheres (1.2). Actually, it turns out that the decay rate ofE(t) depends
heavily on the behavior of the restitution coefficiente(|u · n̂|) for small impact velocity.
For instance, if there exist some constantsα > 0 andγ > 0 such that

e(|u · n̂|) ≃ 1 − α|u · n̂|γ for |u · n̂| ≃ 0

then we prove that

E(t) = O

(
1

t2/1+γ

)
as t→ ∞.

We recover the results of [21] for γ = 0 and the decay predicted in [25] for γ = 1/5.
Our approach is still based upon the study of self-similar solutions to (1.3). However, the
proof does not need a compactness argument and is therefore transparent ofLp propaga-
tion (p > 1). This is a major difference with [21] and provides in some sense a more direct
approach since it is natural to expect that the decay of the energy should rely only on the
L1-theory of moments. This is indeed the case and we investigate directly the evolution
of the temperature of the self-similar solutions to (1.3) and it will be clear, in Section
3.2, how some pertinent scaling provides a lower bound for this rescaled temperature. A
crucial argument in our proof is the propagation of moments of any order for the solution
f to (1.3) which can be proved following the, rather standard, approach developed by
BOBYLEV, GAMBA , & PANFEROV [9] providing a sharp version of Povzner estimates.
One of the novelties of our approach relies on the simple but interesting observation that
moments of order2p of f (with p > 1) can all be controlled from above by thep-th power
of the temperatureE(t) (see Corollary2.9). Finally, theL1-theory ends up with Section 4,
where the full power of the Povzner estimate is exploited to prove the propagation of ex-
ponentialL1-tails. The arguments here are rather standard and taken, with minor changes,
from [9].

The second part of the paper begins in Section 5 which is the most technical of the
document. In this section we present a full discussion of theregularity and integrability
properties of the gain part of the collision operatorQ+

B,e associated to a general collision
kernelB(u, σ) = Φ(|u|)b(û · σ) satisfying Grad’s cut-off assumption (see Section 2 for
precise definition). All lemmas here will play an important role for both theLp andL∞

theories. This Section is divided in five subsections starting with a Carleman representa-
tion of the gain operatorQ+

B,e. It is well-known that such a representation is essential for
the study of regularizing properties of the gain operatorQ+

B,e when smooth assumptions
are imposed on the kernelB(u, σ). This has been studied for the classic (elastic) case in
[18, 24, 28], and for the constant inelastic case in [20]. Our contribution here is to extend
known results, in subsections 5.3 and 5.4, for the inelasticcase with variable restitution
coefficient. One of the technical difficulties relies on the fact that, since the estimates of
Section 5 are aimed to be applied for the self-similar variables, we have to keep track of all
the involved constants to make sure that they areindependentof the restitution coefficient.
This will allow us to overcome the technical problem of the time dependence of the gain
operator in the self-similar variables. In subsection 5.2 we derive several convolution-like
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estimates assuming minimal regularity of the angular kernel b(·). The techniques involved
here are quite new (obtained from a combination of similar results of [3, 24]) and produce
neat results. Finally, in subsection 5.5, we introduce two estimates involving exponential
weights that will be essential for the proof of theL∞-tails theorem. Notice that, in all
Section 5, the reader will find an underlying structure in theestimates for the gain op-
eratorQ+

B,e, namely, they are composed of a big “good” part associated tothe behavior
of the angular kernelb in (0, 1) and a small “bad” part associated to the behavior ofb in
the end points{−1, 1} (see Preliminaries section for the angular kernel definition). It is
well established that, having non concentration of energy at hand, the loss operatorQ−

e

dominates each one of these parts (recall that the loss operator turns out to be independent
of the restitution coefficient). This can close a good estimate for the full collision operator.

With the machinery of Section 5 at hand, the paper ends up withthe propagation of
Lp-norms(1 < p < ∞) for the self-similar solution in Section 6 and the propagation of
L∞-norm in Section 7. Surprisingly, the pointwise uniform propagation is not a direct
consequence of theLp-theory (1 < p <∞) as the estimates for theLp-theory degenerate
in the limit p → ∞. Thus, some extra work is needed to reach this limit (see Lemmas
7.1 and7.2). For the last result of the paper, namely the study ofL∞-tails theorem, an
additional ingredient comes into play, namely, a comparison principle for the Boltzmann
equation proved in [15]. This result has been applied with success for the classical Boltz-
mann equation and here we apply it to the inelastic theory to prove the propagation of
exponential bounds. As the reader progresses in the paper hewill note that the program
followed here is constructive, and the results of each Section depends on the previous
ones. Thus, the optimality of the last result in Section 7, i.e. pointwise exponential bound
propagation, is prescribed by the optimality of theL1-exponential propagation of Section
4.

1.3. Notations. Let us introduce the notations we shall use in the sequel. Throughout the
paper we shall use the notation〈·〉 =

√
1 + | · |2. We denote, for anyη ∈ R, the Banach

space

L1
η =

{
f : R

3 → R measurable; ‖f‖L1
η

:=

∫

R3

|f(v)| 〈v〉η dv < +∞
}
.

More generally we define the weighted Lebesgue spaceLp
η(R

3) (p ∈ [1,+∞), η ∈ R)
by the norm

‖f‖Lp
η(R3) =

[∫

R3

|f(v)|p 〈v〉pη dv

]1/p

.

The weighted Sobolev spaceW k,p
η (R3) (p ∈ [1,+∞), η ∈ R andk ∈ N) is defined by

the norm

‖f‖W k,p
η (R3) =


∑

|s|6k

‖∂s
vf‖p

Lp
η




1/p
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where∂s
v denotes the partial derivative associated with the multi-indexs ∈ NN . In the

particular casep = 2 we denoteHk
η = W k,2

η . Moreover this definition can be extended to
Hs

η for anys > 0 by using the Fourier transformF .

2. PRELIMINARIES: L1-THEORY

2.1. The kinetic model. We assume the granular particles to be perfectly smooth hard-
spheres of massm = 1 performing inelastic collisions. Recall that, as explained in Intro-
duction, the inelasticity of the collision mechanism is characterized by a single parameter,
namely the coefficient of normal restitution0 6 e 6 1 which we assume to benon con-
stant. Precisely, let(v, v⋆) denote the velocities of two particles before they collide.Their
respective velocities after collisionsv′ andv′⋆ are given, in virtue of (1.1) and the conser-
vation of momentum, by

v′ = v − 1 + e

2
(u · n̂)n̂, v′⋆ = v⋆ +

1 + e

2
(u · n̂)n̂, (2.1)

where the symbolu stands for the relative velocityu = v−v⋆ andn̂ is the impact direction.
As explained in Introduction, from the physical viewpoint,a common approximation is
to choosee as a suitable function of the impact velocity, i.e.e := e(|u · n̂|). The main
assumptions on the functione(·) are listed in the following (see [1]):

Assumptions 2.1.In all the paper, one assumes the following to hold:

(1) The mappingz ∈ R+ 7→ e(z) ∈ (0, 1] is absolutely continuous.
(2) The mappingz ∈ R+ → ϑ(z) := z e(z) is strictly increasing.

Further assumptions on the functione(·) shall be needed later on. With the above
assumption(2), it is easy to check that the Jacobian of the transformation (2.1) is given
by:

J :=

∣∣∣∣
∂(v′, v′⋆)

∂(v, v⋆)

∣∣∣∣ = |u · n̂| + |u · n̂| de

dz
(|u · n̂|) =

dϑ

dz
(|u · n̂|) > 0.

In practical situations, the restitution coefficiente(·) is usually chosen among the follow-
ing three examples:

Example 2.2(Constant restitution coefficient). The most documented example in the
literature is the one in which

e(z) = e0 ∈ (0, 1] for anyz > 0.

Example 2.3(Monotone decreasing). A second example of interest is the one in which
the restitution coefficiente(·) is a monotone decreasing function:

e(z) =
1

1 + azη
∀z > 0 (2.2)

wherea > 0, η > 0 are two given constants.

Example 2.4(Viscoelastic hard-spheres). The most physically relevant variable restitu-
tion coefficient is the one corresponding to the so-called viscoelastic hard-spheres[11].
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FIGURE 1. Restitution coefficient for viscoelastic hard-spheres given by
Eq. (2.3) with a = 0.12

For such a model, the properties of the restitution coefficient have been derived in[11, 25]
and it can be shown thate(z) is given by(1.2) or is defined implicitly by the following

e(z) + az1/5e(z)3/5 = 1 (2.3)

wherea > 0 is a suitable positive constant depending on the material viscosity (see Figure
1).

In the sequel, it shall be more convenient to deal with a second, equivalent, parametriza-
tion of the post-collisional velocities. Precisely,v andv⋆ being fixed, withv 6= v⋆, let
û = u/|u|. Performing in (2.1) the change of unknown

σ = û− 2 (û · n̂)n̂ ∈ S
2

this provides an alternative parametrization of the unit sphereS2 and, in this case, the
impact velocity reads

|u · n̂| = |u| |û · n̂| = |u|
√

1−bu·σ
2
.

Then, the post-collisional velocities(v′, v′⋆) are given by

v′ = v − β
u− |u|σ

2
, v′⋆ = v⋆ + β

u − |u|σ
2

(2.4)

where

β = β

(
|u|
√

1−bu·σ
2

)
=

1 + e

2
∈
(

1
2
, 1
]
.

This representation allows us to give a precise definition ofthe Boltzmann collision op-
erator inweak form. Given a collision kernelB(u, σ) one defines the associated collision



HAFF’S LAW FOR VISCOESLASTIC HARD SPHERES 9

operatorQB,e through the weak formulation:
∫

R3

QB,e(f, g)(v)ψ(v) dv =
1

2

∫

R3×R3

f(v)g(v⋆)AB,e[ψ](v, v⋆) dv⋆ dv (2.5)

for any test functionψ = ψ(v) where

AB,e[ψ](v, v⋆) =

∫

S2

(
ψ(v′) + ψ(v′⋆) − ψ(v) − ψ(v⋆)

)
B(u, σ) dσ

with v′, v′⋆ are defined in (2.4) and the collision kernelB(u, σ) is given by

B(u, σ) = Φ(|u|)b(û · σ)

whereΦ(·) is a suitable nonnegative function known aspotential, while theangular kernel
b(·) is usually assumed to belong toL1(−1, 1). For any fixed vector̂u, the angular kernel
defines a measure on the sphere through the mappingσ ∈ S2 7→ b(û · σ) ∈ [0,∞] and we
will assume it to satisfy the renormalizedGrad’s cut-offassumption

‖b‖L1(S2) = 2π ‖b‖L1(−1,1) = 1. (2.6)

A particularly relevant model is the one of hard-spheres corresponding toΦ(|u|) = |u|
andb(û · σ) = 1/4π. We shall often in the sequel consider thegeneralized hard-spheres
collision kernel for whichΦ(|u|) = |u| and the angular kernel is non necessarily constant
and satisfies (2.6). For the particular model of hard-spheres interactions, we shall simply
denote the collision operatorQB,e byQe.

2.2. On the Cauchy problem. We consider the following homogeneous Boltzmann equa-
tion {

∂tf(t, v) = QB,e(f, f)(t, v) t > 0, v ∈ R3

f(0, v) = f0(v), v ∈ R3
(2.7)

where the initial datumf0 is a nonnegative velocity distribution such that
∫

R3

f0(v) dv = 1,

∫

R3

f0(v)v dv = 0 and
∫

R3

f0(v)|v|2 dv <∞. (2.8)

Notice that there is no loss of generality to assume the two first moments conditions in
(2.8) since it is always possible to reduce to such a case by a scaling and translational
argument. We shall say that a nonnegativef = f(t, v) is a solution to (2.8) if f ∈
C([0,∞), L1

2(R
3)) and

∫ ∞

0

dt

∫

R3

(
f(t, v)∂tφ(t, v) + φ(t, v)QB,e(f, f)(t, v)

)
dv =

∫

R3

f0(v)φ(0, v) dv

holds for any compactly supportedφ ∈ C1([0,∞) × R3). Under the Assumptions2.1,
it is not difficult to see that the assumptionsH1 andH2 of [20] are fulfilled (actually,
with the terminology of [20], we are dealing here with a non-coupled collision rate and,
more precisely, with the so-calledgeneralized visco-elastic model, see [20], p. 661). In
particular, [20, Theorem 1.2] applies straightforwardly and allows us to state:
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Theorem 2.5(Mischler et al.). For any nonnegative velocity distributionf0 satisfying
(2.8), there is a unique solutionf = f(t, v) to (2.7). Moreover,

∫

R3

f(t, v) dv = 1,

∫

R3

f(t, v)v dv = 0 ∀t > 0. (2.9)

2.3. Povzner-type inequalities.We extend in this section the results of [9] and [21] to
the case of variable restitution coefficient we are dealing with. We shall consider the
general case of a collision operatorQB,e associated to some general collision kernel

B(u, σ) = Φ(|u|)b(û · σ),

for some nonnegative integrable angular kernelb(·) satisfying the renormalized Grad’s
cut-off assumption (2.6). Let f be a given velocity distribution function withf > 0
satisfying ∫

R3

f(v) dv = 1,

∫

R3

f(v)v dv = 0.

Letψ(v) = Ψ(|v|2) be a given test-function withΨ convex and nondecreasing. Then, Eq.
(2.5) leads to

∫

R3

QB,e(f, f)(v)ψ(v) dv =
1

2

∫

R3×R3

f(v)f(v⋆)AB,e[ψ](v, v⋆) dv⋆ dv

with
AB,e[ψ](v, v⋆) = Φ(|u|)

(
A+

B,e[Ψ](v, v⋆) −A−
B,e[Ψ](v, v⋆)

)

where

A+
B,e[Ψ](v, v⋆) =

∫

S2

(
Ψ(|v′|2) + Ψ(|v′⋆|2)

)
b(û · σ) dσ

while, using also (2.6),

A−
B,e[Ψ](v, v⋆) =

∫

S2

(ψ(v) + ψ(v⋆)) b(û · σ) dσ =
(
Ψ(|v|2) + Ψ(|v⋆|2)

)
.

Following [9], we define the velocity of the center of massU =
v + v⋆

2
so that

v′ = U +
|u|
2
ω, v′⋆ = U − |u|

2
ω with ω = (1 − β)û+ βσ

where we recall that, for any vectorV ∈ R3, we setV̂ = V/|V |. Notice that, whene (or
equivalentlyβ) is constant, the strategy of [9] consists, roughly speaking, in performing
a suitable change of unknownσ → ω̂ to computeA+

B,e[ψ]. Since we are dealing with
a variableβ, we do not apply directly such a strategy here. Instead, notice that, since
|ω| 6 1 andΨ is increasing one has

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
|U |2 +

|u|2
4

+ |u||U |Û · ω
)

+ Ψ

(
|U |2 +

|u|2
4

− |u||U |Û · ω
)

= Ψ

(
E

1 + ξ Û · ω
2

)
+ Ψ

(
E

1 − ξ Û · ω
2

)
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where we setE := |v|2 + |v⋆|2 = 2|U |2 + |u|2
2

andξ = 2|U | |u|/E. SinceΨ(·) is convex,
it is known that (see e.g. [9]) that, the mappingΨ0(t) = Ψ(x+ ty) + Ψ(x − ty) is even
and nondecreasing fort > 0 andx, y ∈ R. Therefore, sinceξ 6 1 one gets

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E

1 + Û · ω
2

)
+ Ψ

(
E

1 − Û · ω
2

)
. (2.10)

Assume that̂U · σ > 0, then
∣∣∣Û · ω

∣∣∣ =
∣∣∣(1 − β)Û · û+ βÛ · σ

∣∣∣ 6 (1 − β) + βÛ · σ,

therefore, using the fact thatΨ0 is even and nondecreasing fort > 0, we conclude from
(2.10) that

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E

2 − β + βÛ · σ
2

)
+ Ψ

(
E
β − βÛ · σ

2

)
.

WhenÛ · σ 6 0 a similar argument shows that

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E

2 − β − βÛ · σ
2

)
+ Ψ

(
E
β + βÛ · σ

2

)
.

Hence, setting̃b(s) = b(s) + b(−s) and using these last two estimates with the change of
variablesσ → −σ we get

A+
B,e[Ψ](v, v⋆) 6

∫

{bU ·σ>0}

[
Ψ

(
E

2 − β + βÛ · σ
2

)
+ Ψ

(
E
β − βÛ · σ

2

)]
b̃(û · σ) dσ

6

∫

{bU ·σ>0}

[
Ψ

(
E

3 + Û · σ
4

)
+ Ψ

(
E

1 − Û · σ
4

)]
b̃(û · σ) dσ.

(2.11)

The second inequality can be shown writing

2 − β + βÛ · σ
2

=
1

2
+

(
1

2
− β

2

(
1 − Û · σ

))
and,

β − βÛ · σ
2

=
1

2
−
(

1

2
− β

2

(
1 − Û · σ

))
.

The latter term in parenthesis is maximized whenβ = 1/2, thus the monotonicity ofΨ0

implies the result.

Next, we particularize the previous estimates whenΨ(x) = xp. This choice will lead
to the study of the moments of solutions:

Lemma 2.6. Let q > 1 be such thatb ∈ Lq(S2). Then, for any restitution coefficiente(·)
satisfying Assumptions2.1 and any realp > 1, there exists an explicit constantγp > 0
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such that

Φ(|u|)−1AB,e[| · |p](v, v⋆) 6 −(1 − γp)
(
|v|2p + |v⋆|2p

)

+ γp

[(
|v|2 + |v⋆|2

)p − |v|2p − |v⋆|2p
]
. (2.12)

This constantγp has the following properties:

(1) γ1 6 1.
(2) For p > 1 the mapp 7→ γp is strictly decreasing. In particular,γp < 1 for p > 1.
(3) γp = O

(
1/p1/q′

)
for largep, where1/q + 1/q′ = 1.

(4) For q = 1, one still hasγp ց 0 asp→ ∞.

Proof. Let Ψp(x) = xp. From (2.11), one sees that

A+
B,e[Ψp](v, v⋆) 6 γp E

p

where

γp = sup
bU,bu

∫

bU ·σ>0

[
Ψp

(
3 + Û · σ

4

)
+ Ψp

(
1 − Û · σ

4

)]
b̃(û · σ) dσ. (2.13)

It is clear that the above inequality yields (2.12). Let us prove thatγp satisfies the afore-
mentioned conditions. First, we use Hölder inequality to obtain

γp 6 4π ‖b‖Lq(S2)

(∫ 1

−1

[
Ψp

(
3 + s

4

)
+ Ψp

(
1 − s

4

)]q′

ds

)1/q′

<
16π ‖b‖Lq(S2)

(q′p+ 1)1/q′
.

This proves thatγp is finite and also proves item (3) forq > 1. For items (1) and (2)
observe that the integral in the right-hand-side (2.11) is continuous in the vectorŝU, û ∈
S2. This can be shown by changing the integral to polar coordinates. Thus, the supremum
in these arguments is achieved. Therefore, there existÛ0, û0 ∈ S2 (depending on the
angular kernelb) such that

γp =

∫

{bU0·σ>0}

[
Ψp

(
3 + Û0 · σ

4

)
+ Ψp

(
1 − Û0 · σ

4

)]
b̃(û0 · σ) dσ.

A simple computation with this estimate shows thatγ1 = ‖b‖L1(S2) = 1. Moreover, the
integrand is a.e. strictly decreasing asp increases, this proves (2). Finally, letp → ∞ in
this expression and use Dominated convergence to conclude (4) for the caseq = 1. �

Remark 2.7. Notice that the above constantγp is independent of the variable restitution
coefficiente(·).

The above lemma is the analogous of [9, Corollary 1] for variable restitution coefficient
e(·) and it proves that the subsequent results of [9] extend in a straightforward way to
variable restitution coefficient. In particular, [9, Lemma 3] reads1:

1Notice that, though stated for hard-spheres interactions only, [9, Lemma 3] applies to our situation
thanks to the above Lemma2.6and [9, Lemma 1].
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Proposition 2.8. Letf be a given velocity distribution function withf > 0 with
∫

R3

f(v) dv = 1,

∫

R3

f(v)v dv = 0.

For anyp > 1, we set

mp =

∫

R3

f(v)|v|2p dv.

Assume that the collision kernelB(u, σ) = |u|b(û · σ) is such thatb(·) satisfies(2.6) with
b(·) ∈ Lq(S2) for someq > 1. For any restitution coefficiente(·) satisfying Assumptions
(2.1) and any realp > 1, one has

∫

R3

QB,e(f, f)(v)|v|2p dv 6 −(1 − γp)mp+1/2 + γp Sp, (2.14)

where,

Sp =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2 mp−k +mk mp−k+1/2

)
,

[p+1
2

] denoting the integer part ofp+1
2

andγp being the constant of Lemma2.6.

As well-documented [20, 9], sinceSp involves only moments of orderp−1/2, the above
estimate has important consequences on the propagation of moments for the solution to
(2.7). We show in the following that actually the moments of such asolution can be
controlled from above by the second moment. More precisely:

Corollary 2.9. LetB(u, σ) = |u|b(û · σ) with b(·) satisfying(2.6) with b(·) ∈ Lq(S2) for
someq > 1. Let f0 be a nonnegative velocity distribution satisfying(2.8) and letf(t, v)
be the associated solution to(2.7). For anyt > 0 and anyp > 1 we define

mp(t) :=

∫

R3

f(t, v)|v|2p dv (2.15)

with the convention of notationE(t) = m1(t).
If mp(0) <∞ thensupt>0 mp(t) <∞ and there exists a constantKp > 0 such that

mp(t) 6 Kp E(t)p ∀t > 0. (2.16)

Proof. The first part of the corollary, namely

mp(0) <∞ =⇒ sup
t>0

mp(t) <∞

is a classical consequence of (2.14) whose proof can be recovered from [9, 20]. Let us
prove (2.16) holds for any realp > 1. First, one notes that, by a classical interpolation
argument, it suffices to prove it for anyp such that2p ∈ N. Let us then prove the result
by induction. It is clear that estimate (2.16) holds true forp = 1 with K1 = 1. Let now
p > 1, with 2p ∈ N be fixed and assume that, for any integer1 6 j 6 p − 1/2, there
existsKj > 0 such thatmj(t) 6 KjE(t)j holds for anyt > 0. According to Proposition
2.8, one gets that

d

dt
mp(t) =

∫

R3

QB,e(f, f)(t, v)|v|2p dv 6 −(1 − γp)mp+1/2(t) + γp Sp(t)
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where

Sp(t) =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2(t) mp−k(t) +mk(t) mp−k+1/2(t)

)
, t > 0.

SinceSp(t) involves only moments of order less thanp − 1/2, our induction hypothesis
implies that there exists a constantCp > 0 such that

Sp(t) 6 Cp E(t)p+1/2 ∀t > 0

whereCp =
∑[ p+1

2
]

k=1

(
p
k

)(
Kk+1/2 Kp−k +Kk Kp−k+1/2

)
. Moreover, since

mp+1/2(t) > m1+1/2p
p (t), ∀t > 0

according to Jensen’s inequality (recall that we have herem0(t) = m0(0) = 1 for anyt),
we get that

d

dt
mp(t) 6 −(1 − γp)m

1+1/2p
p (t) + γp Cp E(t)p+1/2 ∀t > 0. (2.17)

Let us choose thenKp such that

Kp > max




mp(0)

(E(0))p ,

(
Cp γp

1 − γp

) 2p
2p+1



 ,

then (2.16) holds. Indeed, we first notice that by continuity of bothmp(t) andE(t) the
estimate (2.16) holds at least for short time. Assume then there exists sometime t⋆ such
thatmp(t⋆) = KpE(t⋆)

p then, from (2.17)

d

dt
mp(t⋆) 6

(
γp Cp − (1 − γp)K

1+1/2p
p

)
E(t⋆)

p+1/2 < 0

so that (2.16) still holds for subsequent times. �

2.4. Self-similar variables. As it was the case for constant restitution coefficient, it shall
be often useful to deal with solutions of the Boltzmann equation in self-similar variables.
Precisely, for a given collision kernel

B(u, σ) = Φ(|u|)b(û · σ)

with b(·) satisfying (2.6) and a given initial datumf0 satisfying (2.8), let f(t, v) be the
solution to (2.7). We introduce a rescaled solutiong = g(τ, w) such that

f(t, v) = V (t)3g(τ(t), V (t)v) (2.18)

whereτ(·) andV (·) are time scaling functions to be determined such thatτ(0) = 0 and
V (0) = 1. Notice that, with this scaling one has

1 =

∫

R3

f(t, v) dv =

∫

R3

g(τ(t), w) dw ∀t > 0
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andg(0, w) = f0(w). A straightforward calculation shows that the functiong = g(τ, w)
satisfies the following:

V (t)−2Qe(f, f)(t, v) = τ̇(t)V (t)∂τg(τ, w) + V̇ (t)∇w · (wg(τ, w))

∣∣∣∣
w=V (t)v

τ=τ(t)

(2.19)

where, here and in the sequel, we shall use the dot symbol for the derivative with respect
to t. Moreover, the expression of the collision operator in self-similar variables is as
follows:

QB,e(f, f)

(
t,

v

V (t)

)
= QBτ ,eeτ (g, g)(τ(t), v)

where the rescaled collision kernelBτ is given by

Bτ(t)(u, σ) := V (t)Φ

( |u|
V (t)

)
b(û · σ)

while the rescaled restitution coefficientẽτ is defined bỹeτ(t)(z) := e
(

z
V (t)

)
, z > 0.

If the mappingt ∈ R
+ 7−→ τ(t) ∈ R

+ is one-to-one with inverseζ , one can rewrite
equation (2.19) in terms ofτ only. Precisely,g(τ, w) is a solution to the following rescaled
Boltzmann equation:

λ(τ)∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = QBτ ,eeτ (g, g)(τ, w) τ > 0 (2.20)

with λ(·) = τ̇(ζ(·)), ξ(·) = V̇ (ζ(·)),

Bτ (u, σ) = V (ζ(τ))Φ

( |u|
V (ζ(τ))

)
b(û · σ), ẽτ (z) = e

(
z

V (ζ(τ))

)
z > 0.

Notice that, for generalized hard-spheres interactions (i.e. wheneverΦ(|u|) = |u|) one
hasBτ = B. For true hard-spheres interactions, i.e.b(·) = 1

4π
one simply denotes the

rescaled collision operator byQeeτ . It is very important to notice that the rescaled operator
now depends on time, i.e.g is a solution to a non-autonomous problem. This is a major
difference with respect to the case of constant restitutioncoefficient.

3. FREE COOLING OF GRANULAR GASES: GENERALIZED HAFF’ S LAW

We prove in this section the so-called generalizedHaff ’s law for granular gases with
variable restitution coefficient. More precisely, we give the exact rate of decay of the
temperatureE(t) of the solution to Eq. (2.7). Notice that, in all this section,we are
dealing only with the generalized hard-spheres collision kernel:

B(u, σ) = |u|b(û · σ)

whereb(·) satisfies (2.6). Let f0 be a nonnegative velocity distribution satisfying (2.8)
and letf(t, v) be the associated solution to the Cauchy problem (2.7). We denote its
temperatureE(t):

E(t) =

∫

R3

f(t, v)|v|2 dv.
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Notice that the above Corollary2.9 together with the last conditions of (2.8) implies that
supt>0 E(t) <∞. The evolution ofE(t) is actually governed by the following:

d

dt
E(t) =

∫

R3

QB,e(f, f)(t, v)|v|2 dv =
1

2

∫

R3×R3

f(t, v)f(t, v⋆)|u|×

×
∫

S2

(
|v′|2 + |v′⋆|2 − |v|2 − |v⋆|2

)
b(û · σ) dσ dv⋆ dv

where we applied (2.5) with ψ(v) = |v|2 and where(v′, v′⋆) are given by (2.4). One checks
in a direct way that

|v′|2 + |v′⋆|2 − |v|2 − |v⋆|2 = −|u|21 − û · σ
4

(
1 − e2

(
|u|
√

1 − û · σ
2

))

so that

d

dt
E(t) = −1

2

∫

R3×R3

f(t, v)f(t, v⋆)|u|3 dv dv⋆

∫

S2

1 − û · σ
4

(
1 − e2

(
|u|
√

1 − û · σ
2

))
b(û · σ) dσ.

We compute this last integral overS2 (for fixedv andv⋆) using polar coordinates to get

|u|3
∫

S2

1 − û · σ
8

(
1 − e2

(
|u|
√

1 − û · σ
2

))
b(û · σ) dσ =

2π|u|3
∫ 1

0

(
1 − e2(|u|y)

)
b(1 − 2y2)y3 dy =: Ψe(|u|2)

where we defined:

Ψe(r) := 2πr3/2

∫ 1

0

(
1 − e(

√
rz)2

)
b
(
1 − 2z2

)
z3 dz, ∀r > 0. (3.1)

In other words, the evolution of the temperatureE(t) is given by

d

dt
E(t) = −

∫

R3×R3

f(t, v)f(t, v⋆)Ψe(|u|2) dv dv⋆, t > 0.

From now on, besides Assumptions2.1, we assume that the restitution coefficiente(·)
satisfies also the following:

Assumptions 3.1.Assume that the mappingz 7→ e(z) ∈ (0, 1] satisfies Assumptions2.1
and

(1) there existα > 0 andγ > 0 such that

e(z) ≃ 1 − α zγ for z ≃ 0

while lim infz→∞ e(z) = e0 < 1.
(2) b(·) ∈ Lq(S2) for someq > 1.
(3) the functionx > 0 7−→ Ψe(x) defined in(3.1) is strictly increasing and convex

over(0,+∞).
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Remark 3.2. For hard-spheres interactions,b(û · σ) = 1
4π

is constant and, settingz =√
ry, it is possible to rewriteΨe as

Ψe(r) =
1

2
√
r

∫ √
r

0

(
1 − e(y)2

)
y3 dy, r > 0.

We prove in the Appendix that the above assumptions3.1are satisfied for the viscoelastic
hard-spheres of Example2.4with γ = 1/5. For constant restitution coefficiente(z) = e0,
Assumption3.1 (1) is fulfilled withγ = 0 andα = 1 − e0. Notice that, for hard-spheres
collision kernel, Assumptions3.1 (3) hold true if e(·) is continuously decreasing (see
Lemma A.1 in Appendix A).

3.1. Upper bound for E(t). We first prove the first part of Haff’s law on the algebraic
decay ofE(t):

Proposition 3.3. Let f0 be a nonnegative velocity distribution satisfying(2.8) and let
f(t, v) be the associated solution to the Cauchy problem(2.7) where the variable restitu-
tion coefficient satisfies Assumptions3.1. Then,

d

dt
E(t) 6 −Ψe(E(t)) ∀t > 0

whereE(t) =
∫

R3 f(t, v)|v|2 dv. Moreover, there existC > 0 andt0 > 0 such that

E(t) 6 C (1 + t)−
2

1+γ ∀t > t0. (3.2)

Proof. Recall that the evolution of the temperature is given by

d

dt
E(t) = −

∫

R3×R3

f(t, v)f(t, v⋆)Ψe(|u|2) dv dv⋆, t > 0, (3.3)

whereu = v − v⋆. SinceΨe(| · |2) is convex according to Assumption3.1 (2) and
f(t, v⋆) dv⋆ is a probability measure overR3, Jensen’s inequality implies

∫

R3

f(t, v⋆)Ψe(|u|2) dv⋆ > Ψe

(∣∣∣∣v −
∫

R3

v⋆f(t, v⋆) dv⋆

∣∣∣∣
2
)

= Ψe(|v|2)

where we used (2.9). Applying again Jensen’s inequality, we see that
∫

R3

f(t, v)Ψe(|v|2) dv > Ψe

(∫

R3

f(t, v)|v|2 dv

)
,

i.e.
d

dt
E(t) 6 −Ψe(E(t)) ∀t > 0.

SinceΨe(·) is strictly increasing withlimx→0 Ψe(x) = 0, this ensures that

lim
t→∞

E(t) = 0.

Moreover, according to Assumptions3.1 (1), it is clear from (3.1) that

Ψe(x) ≃ Cγx
3+γ
2 for x ≃ 0
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whereCγ is a positive constant, namely,Cγ = 2πα
∫ 1

0
y3+γb(1 − 2y2) dy < ∞. Since

E(t) → 0, there existst0 > 0 such thatΨe(E(t)) > CγE(t)
3+γ
2 ∀t > t0 which implies

that
d

dt
E(t) 6 −CγE(t)

3+γ
2 ∀t > t0.

This proves (3.2) �

Example 3.4. In the case of constant restitution coefficiente(z) = e0 ∈ (0, 1) for any
z > 0, for hard-spheres interactions, one has

Ψe(x) =
1 − e20

8
x3/2

and one recovers from(3.2) the decay of the temperature established from physical con-
siderations (dimension analysis) in[17] and proved in[21], namely,E(t) 6 C(1 + t)−2

for large t.

Example 3.5. As already mentioned, for the restitution coefficiente(·) associated to vis-
coelastic hard-spheres (see Example2.4), one hasγ = 1/5 and the above estimate(3.2)
leads a decay of the temperature faster than(1 + t)−5/3 which is the one obtained in[25]
(see also[11]) from physical considerations and dimensional analysis.

Remark 3.6. Notice that, sinceE(t) → 0 as t → ∞, it is possible to resume the argu-
ments of[20, Prop. 5.1]to prove that the solutionf(t, v) to (2.7) converges to a Dirac
mass ast goes to infinity, namely

f(t, v) −→
t→∞

δv=0 weakly∗ in M1(R3)

whereM1(R3) denotes the space of normalized probability measures onR
3.

3.2. Lower bound for E(t): non-concentration on the self-similar variables.Let us
now prove that the above decay of the temperature is optimal under Assumptions3.1. To
do so, we argue as in [21] introducing self-similar variables (see Section2.4). Precisely,
for any solutionf(t, v) to (2.7) associated to an initial datumf0 satisfying (2.8), we define
the rescaled functiong = g(τ, w) such that

f(t, v) = V (t)3g(τ(t), V (t)v)

whereτ(·) andV (·) are time scaling functions to be determined such thatτ(0) = 0 and
V (0) = 1. In such a case,g is a solution to (2.20) with g(0, w) = f0(w).

While the temperatureE(t) of f(t, v) is cooling down to zero (see Prop.3.3), we iden-
tifies in this section suitable rescaled variablesτ(·) andV (·) for which the corresponding
”temperature” ofg is bounded away from zero. Precisely, for anyτ > 0, let

Θ(τ) =

∫

R3

g(τ, w)|w|2 dw.

One sees from the rescaling (2.18) that

E(t) = V (t)−2
Θ(τ(t)) ∀t > 0. (3.4)
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Multiplying equation (2.19) by |w|2 and integrating overR3 leads to

τ̇(t)V (t)
dΘ

dτ
(τ(t)) − 2V̇ (t)Θ(τ(t)) = V (t)−2

∫

R3

Qe(f, f)(t, w)|w|2 dw

= −V (t)−2

∫

R3×R3

f(t, w)f(t, w⋆)Ψe(|w − w⋆|2) dw dw⋆

and using the re-scaling (2.18) again, we get

τ̇ (t)V (t)
dΘ

dτ
(τ(t)) − 2V̇ (t)Θ(τ(t))

= −V (t)3

∫

R3×R3

g(τ(t), v)g(τ(t), v⋆)Ψe

(
|V (t)−1u|2

)
dv dv⋆ (3.5)

with u = v − v⋆. According to Assumption3.1, we already noted that

Ψe(x) ≃ Cγx
3+γ
2 for x ≃ 0

while, for largex, sincelim infz→∞ e(z) = e0 < 1, it is clear that there existsCb > 0

such thatΨe(x) ≃ Cbx
3/2 for large x, namelyCb = 2π(1−e20)

∫ 1

0
b(1−2z2)z3 dz. Thus,

there exists a constantC > 0 such that

Ψe(x) 6 Cx
3+γ
2 ∀x > 0.

Consequently,
∫

R3×R3

g(τ(t), v)g(τ(t), v⋆)Ψe

(
|V (t)−1u|2

)
dv dv⋆

6 CV (t)−(3+γ)

∫

R3×R3

g(τ(t), v)g(τ(t), v⋆)|u|3+γ dv dv⋆

6 23+γCV (t)−(3+γ)

∫

R3

g(τ(t), v) dv

∫

R3

g(τ(t), v⋆)|v⋆|3+γ dv⋆.

Since
∫

R3 g(τ(t), v) dv = 1,
∫

R3×R3

g(τ(t), v)g(τ(t), v⋆)Ψe

(
|V (t)−1u|2

)
dv dv⋆

6 23+γCV (t)−(3+γ)

∫

R3

g(τ(t), v⋆)|v⋆|3+γ dv⋆.

It is easy to see, using Corollary2.9and, especially, Eq. (2.16) with p = 3 + γ, that there
existsK > 0 such that

∫

R3×R3

g(τ(t), v)g(τ(t), v⋆)Ψe

(
|V (t)−1u|2

)
dv dv⋆ 6 KV (t)−(3+γ)

Θ(τ(t))
3+γ

2

for anyt > 0. This, together with (3.5), yields

τ̇ (t)V (t)
dΘ

dτ
(τ(t)) − 2V̇ (t)Θ(τ(t)) > −KV (t)−γ

Θ(τ(t))
3+γ

2 .
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At this stage, one sees that choosing nowV (·) andτ(·) such that

V̇ (t) =
1

γ + 1
V (t)−γ, τ̇ (t)V (t) = 1, τ(0) = 0, V (0) = 1 (3.6)

leads to the differential inequality

dΘ

dτ
(τ(t)) >

(
2

γ + 1
Θ(τ(t)) −KΘ(τ(t))

3+γ
2

)
V (t)−γ.

In particular, a simple application of the maximum principle implies that

Θ(τ(t)) > min

{
Θ(0),

(
2

K(γ + 1)

)2/(1+γ)
}
, ∀t > 0.

Turning back to the original variablef , we just proved the following:

Theorem 3.7. For any initial distribution velocityf0 > 0 satisfying the conditions given
by (2.8), the solutionf(t, v) to the associated Boltzmann equation(2.7) satisfies the gen-
eralized Haff ’s law for variable restitution coefficiente(·) fulfilling Assumptions3.1:

c(1 + t)−
2

1+γ 6 E(t) 6 C(1 + t)−
2

1+γ , t > 0 (3.7)

whereE(t) =
∫

R3 f(t, v)|v|2 dv and c, C are positive constants depending only one(·)
andE(0). More generally, thep−momentmp(t) defined in(2.15) satisfies

cp(1 + t)−
2p

1+γ 6 mp(t) 6 Cp(1 + t)−
2p

1+γ , t > 0, p > 1 (3.8)

where the positive constantscp, Cp depend onp,mp(0), E(0) ande(·).

Proof. We just proved that, forg(τ, w) given by (2.18) where the time scaling functions
τ(·) andV (·) are solutions to (3.6), there existsc > 0 such thatΘ(τ(t)) > c for any
t > 0. According to (3.4), this implies the following lower bound for the temperatureE :

E(t) >
c

V (t)2
∀t > 0.

SinceV̇ (t) = 1
γ+1

V −γ(t) with V (0) = 1, we get thatV (t) = (1 + t)
1

γ+1 for any t > 0
and obtain the desired lower bound, the upper bound being provided by Prop.3.2. For
generalp-moments, the use of Jensen’s inequality (for the lower bound) and Corollary2.9
(for the upper bound) yield

cp E(t)p
6 mp(t) 6 Cp E(t)p

for some positive constantscp, Cp. Then, (3.7) provides the conclusion. �

Example 3.8. For constant restitution coefficient,e(z) = e0 for anyz > 0, sinceγ = 0,
we recover, via a simpler argument, the classical Haff ’s lawof [17] proved recently by
Mischler and Mouhot[21]:

c(1 + t)−2 6 E(t) 6 C(1 + t)−2, t > 0.
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Example 3.9. For viscoelastic hard-spheres (see Example2.4), as already said,e(·) ful-
fills Assumptions3.1with γ = 1/5 and Theorem3.7provides the first rigorous justifica-
tion of the cooling rate conjectured in[11, 25]:

c(1 + t)−5/3
6 E(t) 6 C(1 + t)−5/3, t > 0.

Remark 3.10. Theorem3.7shows that the decay of the temperature is governed, in some
sense, by the behavior of the restitution coefficiente(z) for small impact. The cooling of
the gases is slower for increasingγ. However, if Assumptions3.1hold true, one sees that
the cooling is still algebraic in time even for very largeγ.

From now, when dealing withg = g(τ, w) defined in (2.18), we shall always assume
the time scaling functionsτ(·) andV (·) to satisfy (3.6), i.e.

V (t) = (1 + t)
1

1+γ , τ(t) =

∫ t

0

ds

V (s)
=
γ + 1

γ

(
(1 + t)

γ
1+γ − 1

)
, t > 0

whereγ > 0 is the constant in Assumptions3.1. In this case, from (2.20), g(τ, w) is a
solution to the following Cauchy problem:

(∂τg + ξ(τ)∇w · (wg)) (τ, w) = Qeeτ (g, g)(τ, w), g(0, w) = f0(w), (3.9)

where

ξ(τ) =
1

γτ + (1 + γ)
, and ẽτ : z > 0 7−→ e

(
z

(
1 +

γ

γ + 1
τ

)−1/γ
)
. (3.10)

As already mentioned, in contrast to what happens for constant restitution coefficient, the
”rescaled” collision operatorQeeτ (g, g) is now depending onτ .

Remark 3.11. If γ = 0 in Assumptions3.1, thenV (t) = 1 + t while τ(t) = ln(1 + t). In
such a case,ξ(τ) = 1 is constant (see[20]).

4. HIGH-ENERGY TAILS FOR THE SELF-SIMILAR SOLUTION

We are interested in this Section in the study of the tail behavior of the solutionf(t, v)
to the Boltzmann’s equation (1.3). More precisely, we shall give an estimate of the high-
energy tails off(t, v) through a time-dependent weighted integral bound of the solution
to (1.3). Our approach is reminiscent to the work of BOBYLEV [7] recently improved in a
series of paper [9, 21, 2]. Here again, in all this section, we shall deal with the generalized
hard-spheres collision kernel:

B(u, σ) = |u|b(û · σ)

whereb(·) satisfies (2.6). To prove our result, it shall be convenient to deal, as we did in
the previous section, with the self-similar solutiong = g(τ, w) defined in (2.18).

For any1 6 p <∞ and anyτ > 0, we define:

mp(τ) =

∫

R3

g(τ, w) |w|2p dw.

Notice that (3.8) readily translates into

cp 6 mp(τ) 6 Cp for τ > 0 (4.1)
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wherecp, Cp > 0 are the constants in Theorem3.7. One can prove the following Theorem,
which generalizes [21, Proposition 3.1] to the case of a variable restitution coefficient.

Theorem 4.1(L1-exponential tails Theorem). LetB(u, σ) = |u|b(û · σ) with b(·) satis-
fying (2.6) with b(·) ∈ Lq(S2) for someq > 1. Assume the variable restitution coefficient
e(·) satisfy Assumptions3.1. Letf0 satisfying(2.8) and assume moreover that there exists
r0 > 0 such that ∫

R3

f0(v) exp (r0|v|) dv <∞.

Let g(τ, w) be the self-similar solution defined by(2.18) wheref(t, v) is the solution to
(2.7). Then, there exists somer 6 r0 such that

sup
τ>0

∫

R3

g(τ, w) exp (r|w|) dw <∞. (4.2)

Consequently, the solutionf(t, v) satisfies

sup
t>0

∫

R3

f(t, v) exp (rV (t)|v|) dw <∞. (4.3)

Proof. The method of proof is by now rather standard and carefully documented in [9, 2]
for a time-independent version. We sketch only the time-dependent proof which is divided
in several steps:

Step 1.Note that formally
∫

R3

g(τ, w) exp (r|w|s) dw =

∞∑

k=0

rk

k!
msk/2(τ),

for anyr > 0 and anys > 0. Hence, the summability of the integral is described by the
behavior of the functions

msk/2(τ)

k!
. This motivates the introduction of the renormalized

moments

zp(τ) :=
mp(τ)

Γ(ap+ b)
, with a = 2/s,

whereΓ(·) denotes the Gamma function. We shall prove that the series converges for
somer < r0 and withs = 1 (i.e. a = 2). To do so, it is enough to prove that, for some
b < 1 andQ > 0 large enough, one haszp(τ) 6 Qp for anyp > 1 and anyτ > 0.

Step 2.Recall that, according to Lemma2.6, the estimates proved in Povzner Lemma
(Prop. 2.8) are independent of the restitution coefficiente(·). In particular, they hold
for the time-dependent collision operatorQeeτ providing boundswhich are uniform with
respectto τ . Specifically,

∫

R3

Qeeτ (g, g)(τ, w)|w|2p dw 6 −(1 − γp)mp+1/2(τ) + γp Sp(τ), ∀τ > 0

whereγp is the constant introduced in Lemma2.6and

Sp(τ) =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2(τ) mp−k(τ) + mk(τ) mp−k+1/2(τ)

)
.
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Step 3.An important simplification, first observed in [9], consists in noticing that the
termSp satisfies

Sp(τ) 6 A Γ(ap+ a/2 + 2b) Zp(τ) for a > 1, b > 0,

whereA = A(a, b) > 0 does not depend onp and

Zp(τ) = max
16k6kp

{
zk+1/2(τ) zp−k(τ), zk(τ) zp−k+1/2(τ)

}
.

With such an estimate, the rather involved termSp is more tractable.
Step 4. Using the above steps and the evolution problem (3.9) satisfied by the self-

similar solutiong, we check easily that

dmp

dτ
(τ) + (1 − γp)mp+1/2(τ) 6 γp Γ(ap+ a/2 + 2b)Zp(τ) + 2p ξ(τ)mp(τ)

where we used the fact that
∫

R3 |w|2p∇w ·(wg(τ, w)) dw = −2pmp(τ). Using the asymp-
totic formula

lim
p→∞

Γ(p+ r)

Γ(p + s)
ps−r = 1,

and the fact thatξ(τ) 6 1, one concludes that there are constantsci > 0 (i = 1, 2) and
p0 > 1 large enough (recall thatγp ∼ 1/p1/q′ for largep) so that

dzp

dτ
(τ) + c1 p

a/2z1+1/2p
p (τ) 6 c2 p

a/2+b−1/q′ Zp(τ) + 2p zp(τ) ∀τ > 0, p > p0,

where we also used the fact thatmp+1/2(τ) > m
1+1/2p
p (τ) for any τ > 0 thanks to

Jensen’s inequality.
Final step. We claim that if we choosea = 2 and0 < b < 1/q′ it is possible to find

Q > 0 large enough so thatmp(τ) 6 Qp. Indeed, letp0 andQ <∞ such that

c2
c1
p

b−1/q′

0 6
1

2
, and Q >

{
max

16k6p0

sup
τ>0

zk(τ), Q0,
16

c21
, 1

}
,

hereQ0 is a constant such thatzp(0) 6 Qp
0. This constant exists by the exponential

integrability assumption on the initial datum. Moreover, since moments ofg are uniformly
propagated, the existence of suchfiniteQ is guaranteed. Arguing now by induction and
by standard comparison of ODE’s, one proves as in [21, 9, 2] that yp(τ) := Qp satisfies
for p > p0

dyp

dτ
(τ) + c1 p

a/2y1+1/2p
p (τ) > c2 p

a/2+b−1/q′ Zp(τ) + 2p yp(τ), yp(0) > zp(0)

therefore,yp(τ) > zp(τ) ∀p > p0. Since this is trivially true forp < p0 we obtain finally
that

mp(τ) 6 Γ(2p+ b)Qp, ∀p > 1, τ > 0.

From Step 1, this is enough to prove the Theorem. �

Example 4.2. For viscoelastic hard-spheres (see Example2.4), as already said,V (t) =
(1 + t)5/3. Therefore,

∫

R3

f0(v) exp (r0|v|) dv <∞ =⇒ sup
t>0

∫

R3

f(t, v) exp
(
r(1 + t)5/6|v|

)
dv <∞
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for somer < r0. In particular, using the terminology of[9], f(t, v) has an (uniform in
time) exponential tail of order1.

5. REGULARITY PROPERTIES OF THE COLLISION OPERATOR

We extend now to variable restitution coefficient the regularity properties of the colli-
sion operator obtained originally in [18, 28], extended in [24] and generalized to cover
the inelastic case in [21]. Of course, we only need to investigate the regularity properties
of Q+

e since the loss operatorQ−
e does not depend on the restitution coefficient. To do

so, we shall need some basic estimates on the gain operatorQ+
B,e associated to a general

collision kernelB(u, σ) (see (2.5)).

5.1. Carleman representation. We establish here a technical representation of the gain
termQ+

B,e which is reminiscent of the classical Carleman representation in the elastic case
(extended to the inelastic case for a constant restitution coefficient in [21]). Precisely, let
B(u, σ) be a general collision kernel of the form

B(u, σ) = Φ(|u|)b(û · σ)

whereΦ(·) > 0 while b(·) > 0 satisfies (2.6). For anyψ = ψ(v), define the following
linear operators:

S±(ψ)(u) =

∫

S2

ψ(u±)b(û · σ) dσ, ∀u ∈ R
3 (5.1)

where we set

u− = β

(
|u |
√

1 − û · σ
2

)
u− |u| σ

2
, and u+ = u− u−.

Then, one has the following technical result

Lemma 5.1. For any continuous functionsψ andϕ, one has
∫

R3

ϕ(u)S−(ψ)(u)Φ(|u|) du =

∫

R3

ψ(x)ΓB(ϕ)(x) dx

where the linear operatorΓB is given by

ΓB(ϕ)(x) =

∫

ω⊥

B(z + α(r)ω, α(r))ϕ(α(r)ω+ z) dπz,

x = rω, r > 0, ω ∈ S
2 (5.2)

wheredπz is the Lebesgue measure in the hyperplaneω⊥ perpendicular toω, α(·) is the
inverse of the mappings 7→ sβ(s) and

B(z, ̺) =
8Φ(|z|)

|z|(̺β(̺))2
b

(
1 − 2

̺2

|z|2
)

̺

1 + ϑz(̺)
, ̺ > 0, z ∈ R

3 (5.3)

with ϑ(·) defined in Assumption2.1(2) andϑz(·) denoting its derivative.
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Proof. Up to divideB(z, ̺) by Φ(|z|), there is no loss of generality in assuming for sim-
plicity thatΦ(| · |) ≡ 1. Let

I =

∫

R3

ϕ(u)S−(ψ)(u) du =

∫

R3

ϕ(u) du

∫

S2

ψ(u−)b(û · σ) dσ.

For a fixedu ∈ R3, we perform the integration overS2 using the following formula
∫

S2

F

(
u− |u|σ

2

)
dσ =

4

|u|

∫

R3

δ(|x|2 − x · u)F (x) dx

which is valid for any given functionF . Then,

I = 4

∫

R3×R3

ϕ(u)|u|−1δ(|x|2 − x · u)ψ
(
xβ(|x|)

)
b
(
1 − 2|x|2/|u|2

)
dx du.

Setting nowu = z + x we get

I = 4

∫

R3×R3

ϕ(x+ z)|x+ z|−1δ(x · z)ψ
(
xβ(|x|)

)
b
(
1 − 2|x|2/|x+ z|2

)
dz dx.

Finally, keepingx fixed, we remove the Dirac mass thanks to the identity∫

R3

F (z)δ(x · z) dz =
1

|x|

∫

x⊥

F (z) dπz

which leads to

I = 4

∫

R3

ψ
(
xβ(|x|)

) dx

|x|

∫

x⊥

ϕ(x+ z)

|x+ z| b
(
1 − 2|x|2/|x+ z|2

)
dπz.

We now perform thex integral using polar coordinatesx = ̺ω and with the change of
variablesr = ̺β(̺) with inverseα(r). Notice thatdr = 1

2
(1 + ϑz(̺)) d̺ which yields

I = 8

∫ ∞

0

α(r) dr

1 + ϑz(α(r))

∫

S2

ψ(rω) dω

∫

ω⊥

ϕ(z + α(r)ω)

|z + α(r)ω| b
(

1 − 2
α(r)2

|z + α(r)ω|2
)

dπz.

Turning back to cartesian coordinatesx = rω, dx = r2 dr dω, we get the desired expres-
sionI =

∫
R3 ψ(x)ΓB(ϕ)(x) dx whereΓB is given by (5.2). �

The above result leads to a Carleman-like expression forQ+
B,e:

Corollary 5.2 (Carleman representation). Let e(·) satisfy Assumptions2.1and let

B(u, σ) = Φ(|u|)b(û · σ)

satisfying(2.6). Then, for any velocity distributionsf, g one has

Q+
B,e(f, g)(v) =

∫

R3

f(z) [(tz ◦ ΓB ◦ tz) g] (v) dz

where[tvψ](x) = ψ(v − x) for anyv, x ∈ R3 and any test-functionψ.

Proof. The proof is a simple consequence of the above Lemma togetherwith the follow-
ing identity∫

R3×R3

Q+
B,e(f, g)(v)ψ(v) dv =

1

2

∫

R3×R3

f(v)g(v − u)Φ(|u|)S−(tvψ)(u) dv du (5.4)

valid for any test-functionψ. �
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5.2. Convolution-like estimates forQ+
B,e. For the so-called Variable Hard Spheres col-

lision kernels (i.e. forΦ(|u|) = |u|k, k > 0), general convolution-like estimates are
obtained in [3, Theorem 1] for non-constant restitution coefficient. However, such esti-
mates are given inLp

η with η > 0 and, for the applications we have in mind, we need to
extend some of them toη 6 0. This can be done easily using the method developed in
[24] (see also [14]) and the estimates of [3] leading to the following theorem2:

Theorem 5.3.LetB(u, σ) = Φ(|u|)b(û · σ) whereb(·) satisfies(2.6) andΦ(·) ∈ L∞
−k for

somek ∈ R. Assume thate(·) fulfils Assumption2.1. Then, for any1 6 p 6 ∞ and any
η ∈ R, there existsCη,p,k(B) > 0 such that

∥∥Q+
B,e(f, g)

∥∥
Lp

η
6 Cη,p,k(B) ‖f‖L1

|η+k|+|η|
‖g‖Lp

η+k

where the constantCη,p,k(B) is given by:

Cη,p,k(B) = ck,η,p ‖Φ‖L∞
−k
γ(η, p, b) (5.5)

with a constantck,η,p > 0 depending only onk, η andp while

γ(η, p, b) =

∫ 1

−1

(
1 − s

2

)− 3+η+
2p′

b(s) ds (5.6)

where1/p + 1/p′ = 1 and η+ is the positive part ofη. In the same way, there exists
C̃η,p,k(B) > 0 such that

∥∥Q+
B,e(f, g)

∥∥
Lp

η
6 C̃η,p,k(B) ‖g‖L1

|η+k|+|η|
‖f‖Lp

η+k

where the constant̃Cη,p,k(B) is given by:

C̃η,p,k(B) = c̃k,η,p ‖Φ‖L∞
−k
γ̃(η, p, b) (5.7)

for some constant̃ck,η,p > 0 depending only onk, η andp while

γ̃(η, p, b) =

∫ 1

−1

(
1 + s

2
+ (1 − β0)

2 1 − s

2

)− 3+η+
2p′

b(s) ds (5.8)

where1/p+ 1/p′ = 1 andβ0 = β(0) = 1+e(0)
2

.

Proof. Let 1 6 p 6 ∞ andη ∈ R be fixed and let1/p′ + 1/p = 1. By duality,
∥∥Q+

B,e(f, g)
∥∥

Lp
η

= sup

{∣∣∣∣
∫

R3

Q+
B,e(f, g)(v)ψ(v) dv

∣∣∣∣ ; ‖ψ‖
Lp′

−η
6 1

}
.

As already mentioned (see (5.4))∫

R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫

R3×R3

f(v)g(v − u)T−(tvψ)(u) dv du

with
T−(ψ)(u) = Φ(|u|)S−(ψ)(u), tvψ(x) = ψ(v − x)

2Notice that the constantsγ(η, p, b) and γ̃(η, p, b) given by (5.6) and (5.8) are of course not finite for
any angular kernelb or parametersη, p. It is implicitly assumed that the Theorem applies for the range of
parameters leading to finite constants (see also Remark5.4).
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whereS− has been defined in Section5.1. With the notations of [3], one recognizes that
S−(h) = P(h, 1) for anyh, so that, applying [3, Theorem 5] (withq = ∞ andα = −η),

‖S−(h)‖
Lp′

−η
6 γ(η, p, b)‖h‖

Lp′

−η

with γ(η, p, b) given by (5.6) (see [3, Eq. (2.15)], notice that, with respect to [3], we use
the weight〈v〉η instead of|v|η and this is the reason why we have to introduceη+ in our
definition ofγ(η, p, b)). As a consequence,

‖T (h)‖
Lp′

−η−k

6 γ(η, p, b)‖Φ‖L∞
−k
‖h‖

Lp′

−η
. (5.9)

Now,
∣∣∣∣
∫

R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ 6
∫

R3

|f(v)| dv
(∫

R3

|g(u)| [(tv ◦ T ◦ tv)ψ] (u) du

)

6 ‖g‖Lp
η+k

∫

R3

|f(v)| ‖(tv ◦ T ◦ tv)ψ‖Lp′

−k−η

dv.

Using the fact that, for anys ∈ R, ‖tvh‖Lp′
s

6 2|s|/2〈v〉|s|‖h‖
Lp′

s
for anyv, we get

∣∣∣∣
∫

R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ 6 2|η+k|/2‖g‖Lp
η+k

∫

R3

|f(v)|〈v〉|η+k| ‖(T ◦ tv)ψ‖Lp′

−k−η

dv

6 2|η+k|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫

R3

|f(v)|〈v〉|η+k| ‖tvψ‖Lp′

−η
dv

6 2|η+k|+|η|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫

R3

|f(v)|〈v〉|η+k|+|η| ‖ψ‖
Lp′

−η
dv

which proves the first part of the result. Now, to prove the second part, one notices that
∫

R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫

R3×R3

f(v − u)g(v)T+(tvψ)(u) dv du

with T+(ψ)(u) = Φ(|u|)S+(ψ)(u) whereS+ has been defined in (5.1). Using again the
notations of [3], one hasS+(h) = P(1, h) for anyh, so that, applying [3, Theorem 5]
(with nowp = ∞ andα = −η), we get that

‖S−(h)‖
Lp′

−η
6 γ̃(η, p, b)‖h‖

Lp′

−η

whereγ̃(η, p, b) given by (5.8). One concludes as above, exchanging the roles off and
g. �

Remark 5.4. Clearly, the constantsγ(η, p, b) and γ̃(η, p, b) are not finite for any given
η, p or b because of the possible singularity ins = 1 or s = −1. However, ifp = 1
thenp′ = ∞ and bothγ(η, 1, b) andγ̃(η, 1, b) are finite for any integrable kernelb(·) and
any η ∈ R. Moreover, if one assumes additionally (as in[21]) that the angular kernel
b(·) vanishes in the vicinity ofs = 1 thenγ(η, p, b) < ∞ for any1 6 p 6 ∞ and any
η ∈ R. In the same way, if for instanceβ0 = 1 andb(·) vanishes arounds = −1, then
γ̃(η, p, b) <∞ for any1 6 p 6 ∞ and anyη ∈ R.
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Remark 5.5. Notice that the above constantCη,p,k(B) given by(5.5) does not depend on
the restitution coefficiente(·) while C̃η,p,k depends on the restitution coefficiente(z) only
through its value forz = 0. Notice in particular, that, ife(0) = 1 andb(s) = b(−s), then
γ̃(η, p, b) = γ(η, p, b). This is the case for the viscoelastic hard-spheres (see Example
2.4).

For the special case,p = ∞, we can make the above a bit more precise, providing a
pointwise estimate of the gain part:

Corollary 5.6. Assume the variable restitution coefficiente(·) satisfy Assumptions3.1.
Assume also that the collision kernel is given byB(u, σ) = Φ(|u|)b(û · σ) whereb(·)
satisfies(2.6) andΦ(·) ∈ L∞

−k for somek > 0. Then, for anyε > 0, the exists a positive
constantC := C(‖b‖1 , ε, k) such that

Q+
B,e(f, f)(v) 6 C ‖f‖2

L2
k

+ ε ‖f‖L1
k
‖f‖L∞ 〈v〉k ,

for any nonnegativef ∈ L1
k ∩ L∞(R3).

Proof. Due to the symmetry of the collision operator (recall that welook for an estimate
of thequadraticoperatorQ+

B,e(f, f)) we may assume thatb is supported in[−1, 0]. Fix
ε > 0 and write

b(s) = b(s)χ[−1+δ,0] + b(s)χ[−1,−1+δ) := b1(s) + b2(s),

with δ > 0 chosen later on. Then, we split

Q+
B,e(f, f) = Q+

B1,e(f, f) + Q+
B2,e(f, f)

whereBi(u, σ) = Φ(|u|)bi(û · σ) i = 1, 2. We estimate the first term using Young’s
inequality as obtained in [3, Theorem 1] to get

∥∥Q+
B1,e(f, f)

∥∥
L∞

6 ck ‖Φ‖L∞
−k
C(B1) ‖f‖2

L2
k

for some numerical constantck > 0 and where the constantC(B1) is given by (see [3,
Eq. (3.3)]:

C(B1) :=

(∫ 1

−1

(
1 − s

2

)−3/2

b1(s) ds

)1/2(∫ 1

−1

(
1 + s

2

)−3/2

b1(s) ds

)1/2

.

Notice thatC(B1) < ∞ sinceb1 is supported on[−1 + δ, 0]. MoreoverC(B1) is larger
than the constant obtained in [3, Eq. (3.3)] (since we used the fact that(1−β(0))2 1−s

2
> 0

for anys ∈ (−1, 1)) but is independent of the restitution coefficiente(·). For the second
term we use Theorem5.3with η = −k to get

Q+
B2,e(f, f)(v) 6

∥∥Q+
B2,e(f, f)

∥∥
L∞
−k

〈v〉k

6 C−k,∞,k(B2) ‖f‖L1
k
‖f‖L∞ 〈v〉k

where the constantC−k,∞,k(B2) is given by (5.5) and (5.6). In particular, since

γ(−k,∞, b2) =

∫ −1+δ

−1

(
1 − s

2

)− 3
2

b(s) ds
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andb(·) is integrable in[−1, 0] due to the Grad’s cut-off assumption (2.6), one sees that
the parameterδ can be chosen small enough to getC−k,∞,k(B2) 6 ε. This achieves the
proof. �

5.3. Sobolev regularity for smooth collision kernel. Let Φ and b(·) be smooth and
compactly supported:

Φ ∈ C∞
0 (R3 \ {0}), b ∈ C∞

0 (−1, 1) (5.10)

and let us denote byQB,e the associated collision operator defined by (2.5). Then, one
has the technical result:

Lemma 5.7. Assume thate(·) satisfies Assumptions2.1 with e(·) ∈ Cm(0,∞) for some
integerm ∈ N. Then, under assumption(5.10) on the collision kernel, for any0 6 s 6 m,
there existsC = C(s, B, e) such that

‖ΓB(f)‖Hs+1 6 C(s, B, e) ‖f‖Hs , ∀f ∈ Hs

whereΓB is the operator defined in Lemma5.1 and the constantC(s, B, e) depends
only ons, on the collision kernelB and on the restitution coefficiente(·). More precisely,
C(s, B, e) depends one(·) through theL∞ norm of the derivativesDke(·) (k = 1, . . . , m)
over some compact intervalI bounded away from zero (that depends only onB).

We postpone the proof of this lemma and first prove the following:

Theorem 5.8.LetB(u, σ) = Φ(|u|)b(û · σ) satisfy(5.10) and lete(·) satisfy Assumption
2.1with e(·) ∈ Cm(0,∞) for some integerm ∈ N. Then, for any0 6 s 6 m, one has

∥∥Q+
B,e(f, g)

∥∥
Hs+1

6 C(s, B, e) ‖g‖Hs ‖f‖L1

where the constantC(s, B, e) is the one obtained in Lemma5.7.

Proof. Let F
[
Q+

B,e(f, g)
]
(ξ) denote the Fourier transform ofQ+

B,e(f, g). According to
Corollary5.2,

F
[
Q+

B,e(f, g)
]
(ξ) =

∫

R3

f(v)F [(tv ◦ ΓB ◦ tv) g] (ξ) dv.

To simplify notation, setG(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ). One has
∥∥Q+

B,e(f, g)
∥∥2

Hs+1
=

∫

R3

∣∣F
[
Q+

B,e(f, g)
]
(ξ)
∣∣2 〈ξ〉2(s+1) dξ

=

∫

R3

〈ξ〉2(s+1)

∣∣∣∣
∫

R3

f(v)G(v, ξ) dv

∣∣∣∣
2

dξ

6 ‖f‖L1

∫

R3×R3

|f(v)| |G(v, ξ)|2〈ξ〉2(s+1) dξ dv.

(5.11)

SinceG(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ),∫

R3

|G(v, ξ)|2〈ξ〉2(s+1) dξ = ‖(tv ◦ ΓB ◦ tv) g‖2
Hs+1 6 C(s, B, e)2 ‖g‖2

Hs

where we used Lemma5.7 and the fact that, for anyv, tv is an operator of norm one in
any Sobolev space. Then, estimate (5.11) yields the desired estimate. �
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We come now to the proof of Lemma5.7.

Proof of Lemma5.7. The proof of the regularity property ofΓB can be obtained along
the same lines as the one for elastic Boltzmann operator [24] (or, for the inelastic case
with constant restitution coefficient [21]). More precisely, denote bỹΓB(f)(r, ω) =
ΓB(f)(α−1(r), ω) = ΓB(f)(rβ(r), ω), i.e.

Γ̃B(f)(r, ω) =

∫

ω⊥

B(z + rω, r)ϕ(rω + z) dπz .

One notices that, from (5.10), there isδ > 0 such thatb(x) = 0 for |x ± 1| 6 δ while
{|z| ; z ∈ Supp(Φ)} ⊂ (a,M) for some positive constantsM > a > 0. Then, by virtue
of (5.3), for any fixedr > 0, ω ∈ S2 andz ∈ ω⊥, one sees thatB(z + rω, r) = 0 if
|z|2 > 2−δ

δ
r2 while, for |z|2 6 2−δ

δ
r2, one has|z+ rω|2 6 2r2/δ so thatB(z+ rω, r) = 0

if r <
√
δa2/2. This means that

B(z + rω, r) = 0 ∀r /∈ I =
(√

δa2/2,M
)
, ω ∈ S

2 and anyz⊥ω. (5.12)

In particular,Γ̃B(f)(r, ω) = 0 for anyr /∈ I independently off . Let

B0(z, ̺) =
1 + ϑz(̺)

̺
β2(̺)B(z, ̺) =

Φ(|z|)b
(
1 − 2 ̺2

|z|2

)

|z|̺2

and letΓ̃0(f) be the associated operator, i.e.

Γ̃0(f)(r, ω) =

∫

ω⊥

B0(z + rω, r)ϕ(rω + z) dπz.

Then,B0 does not depend on the restitution coefficiente(·) andΓ̃0 is exactly of the form
of the operatorT studied in [24, Theorem 3.1]. Therefore, arguing as inop. cit., for any
s > 0, there is an explicit constantC0 = C0(s,Φ, b) such that

∥∥∥Γ̃0(f)
∥∥∥

Hs+1
6 C0(s,Φ, b) ‖f‖Hs , ∀f ∈ Hs.

Setting

Ge(̺) =
̺

(1 + ϑz(̺)) β2(̺)
χI(̺)

whereχI is the characteristic function ofI =
(√

δa2/2,M
)

(see Eq. (5.12)), one sees

thatGe is aCm function overI whose derivativesDkGe are bounded overI for anyk 6 m
and

Γ̃B(f)(r, ω) = Ge(r)Γ̃0(f)(r, ω).

Therefore, for any0 6 s 6 m, there is some constantC = C(s, b, e) such that
∥∥∥Γ̃B(f)

∥∥∥
Hs+1

6 C(s, B, e) ‖f‖Hs , ∀f ∈ Hs

where the constantC(s, B, e) only depends onC0 andmaxk=0,...,m ‖DkGe‖L∞(I). Let us
now explain how to deduce Lemma5.7 from the above estimate. Assume firsts = k is
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an integer. It is easy to check that, using polar coordinates,

‖ΓB(f)‖Hk =
∑

|j|6k

∫ ∞

0

Fj(̺)̺
2 d̺

∫

S2

|∂j
vΓ̃B(f)(̺, ω)|2 dω

where, for any|j| 6 k, the functionFj(̺) can be written as

Fj(̺) = Pj(ϑ
(1)(̺), . . . , ϑ(j)(̺))(1 + ϑ(1)(̺))−nj

wherePj(y1, . . . , yj) is a suitable polynomial,nj ∈ N andϑ(p) denotes thep-th derivative
of ϑ(·). It is not difficult to see that, sinceϑ ∈ Cm(0,∞) andI is a compact interval
bounded away from zero, one hassup̺∈I Fj(̺) = Ck <∞ for any|j| 6 k. Thus

‖ΓB(f)‖Hk 6 Ck‖Γ̃B(f)‖Hk (5.13)

whereCk is an explicit constant involving theL∞ norm of the firstk-th order derivatives
of α(·) on I. This proves that the conclusion of the Lemma5.7holds true for any integer
s 6 m and we deduce the general case by simple interpolation. �

Arguing exactly as in [24, Corollary 3.2] we translate the gain of regularity obtained in
Theorem5.8into the following gain of integrability:

Corollary 5.9. LetB(u, σ) = Φ(|u|)b(û ·σ) satisfy(5.10) and lete(·) ∈ C1(0,∞) satisfy
Assumption2.1. Then, for any1 < p <∞

∥∥Q+
B,e(f, g)

∥∥
Lp

6 C(p, B, e) (‖g‖Lq ‖f‖L1 + ‖g‖L1 ‖f‖Lq)

where the constantC(p, B, e) depends one(·) andB through the constantC(1, B, e) of
Theorem5.8while q < p is given by:

q =





5p

3 + 2p
if p ∈ (1, 6]

p/3 if p ∈ [6,∞).
(5.14)

5.4. Regularity and integrability for hard-spheres. We consider in this section the
case of a hard-spheres collision kernel

B(u, σ) =
|u|
4π
.

Of course, such a collision kernel does not enjoy the regularity properties assumed in the
previous section. But, since the constantCη,p,q,k(B) in Theorem5.3depends on‖Φ‖L∞

−k

and some (weighted)L1(S2)-norm ofb(·), we can adapt easily the method of [21] (see also
[24]) which consists in splitting the collision kernel into a smooth part and a remainder
part to get the following estimate:

Theorem 5.10. Assume thate(·) ∈ C1(0,∞) and satisfies Assumptions2.1. For any
p ∈ [1,∞) andδ > 0, there exists a constantCδ > 0 depending only onδ > 0 and the
restitution coefficiente(·) such that

∫

R3

Q+
e (f, f) f p−1 dv 6 Cδ ‖f‖1+pθ

L1 ‖f‖p(1−θ)
Lp + δ ‖f‖L1

2
‖f‖p

Lp
1/p
.
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for some constantθ ∈ (0, 1) depending only onp. Moreover, the constantCδ depends on
the restitution coefficient through theL∞ norm of the derivativesDke(·) (k = 0, 1) over
some compact interval of(0,∞) bounded away from zero (that depends only onB and
δ).

Proof. The proof of this result follows exactly the same lines as thecorresponding one
in [21]. We recall it for the reader convenience. It is based on a suitable splitting of the
collision operatorQ+

e . Letp > 1 be fixed. Consider a smooth collision kernel of the form

BSm,n(|u|, û · σ) = ΦSn(|u|) bSm(û · σ),

with ΦSn smooth and with compact support
[

2
n
, n
]
, andbSm smooth and supported in[

−1 + 2
m
, 1 − 2

m

]
. We assume that

lim
m→∞

‖bSm − 1‖L1(S2) = 0 and lim
n→∞

ΦSn(|u|) = |u| ∀u ∈ R
3.

Set then
BSRm,n(|u|, û · σ) = ΦSn(|u|) bRm(û · σ),

and

BRSm,n(|u|, û · σ) = ΦRn(|u|) bSm(û · σ), BRRm,n(|u|, û · σ) = ΦRn(|u|) bRm(û · σ)

whereΦRn(|u|) = |u| − ΦSn(|u|) while bRm(û · σ) = 1 − bSm(û · σ). With this in hands,
one splitsQ+

e as

Q+
e = Q+

BSm,n ,e + Q+
BSRm,n ,e + Q+

BRSm,n ,e + Q+
BRRm,n ,e

with obvious notations. Letm andn be fixed. SinceBSm,n(|u|, û · σ) fulfils (5.10), one
deduces from Corollary5.9 that there is a constantC(m,n) such that

∥∥∥Q+
BSm,n ,e(f, f)

∥∥∥
Lp

6 C(m,n)‖f‖Lq ‖f‖L1

for someq < p given by (5.14) which, by a simple application of Hölder’s inequality,
yields as in [21]:

∫

R3

Q+
BSm,n ,e(f, f) f p−1 dv 6 C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1

Lp . (5.15)

Now, applying Theorem5.3with k = 1
∥∥∥Q+

BSRm,n ,e(f, f)
∥∥∥

Lp
η

+
∥∥∥Q+

BRRm,n ,e(f, f)
∥∥∥

Lp
η

6 ε(m)‖f‖L1
|η+1|+|η|

‖f‖Lp
η+1

whereε(m) → 0 asm → ∞ since the constant in (5.5) depends continuously (through
(5.6)) on theL1(S2)-norm ofbRm which is arbitrarily small asm grows. Using the above
estimate withη = −1/p′, we get

∫

R3

[
Q+

BSRm,n ,e(f, f) + Q+
BRRm,n ,e(f, f)

]
f p−1 dv 6 ε(m)‖f‖L1

1
‖f‖p

Lp
1/p
. (5.16)

It remains only to estimateI :=

∫

R3

Q+
BRSm,n ,e(f, f) f p−1 dv. As in [21], one notes that

ΦRn(|v − v⋆|) 6 Cn−1
(
|v|2 + |v⋆|2

)
, ∀v, v⋆ ∈ R

3
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whereC > 0. Thus

I 6 Cn−1

∫

R3×R3

f(v)f(v⋆)
(
|v|2 + |v⋆|2

)
dv dv⋆

∫

S2

f p−1(v′)bSm(û · σ) dσ.

Set

I1 =

∫

R3×R3

f(v)f(v⋆)|v|2 dv dv⋆

∫

S2

f p−1(v′)bSm(û · σ) dσ

and

I2 =

∫

R3×R3

f(v)f(v⋆)|v⋆|2 dv dv⋆

∫

S2

f p−1(v′)bSm(û · σ) dσ.

One sees thatI1 can be written as

I1 =

∫

R3×R3

Q+
Bm,e(F, f)(v)ψ(v) dv

where

F (v) = |v|2f(v), ψ(v) = f p−1(v) ∈ Lp′(R3)

and the collision kernelBm(|u|, û·σ) = bSm(û·σ). Applying Theorem5.3with η = k = 0
gives then

I1 6
∥∥Q+

Bm,e(F, f)
∥∥

Lp
‖ψ‖Lp′ 6 C0,p,0(Bm) ‖F‖L1 ‖f‖Lp ‖ψ‖Lp′

6 C0,p,0(Bm) ‖f‖L1
2
‖f‖p

Lp

whereC0,p,0(Bm) is defined by (5.5). Now, with the same notations, we see that

I2 =

∫

R3×R3

Q+
Bm,e(f, F )(v)ψ(v) dv

so that, applying now Theorem5.3 with η = 0 andk = −2 (notice thatΦ = 1 ∈ L∞
2 )

yields

I2 6 C0,p,−2(Bm) ‖f‖L1
2
‖F‖Lp

−2
‖ψ‖Lp′ 6 C0,p,−2(Bm) ‖f‖L1

2
‖f‖p

Lp.

Combining the two estimates forI1 andI2, there exists some constantC = C(m) such
that

I 6
C(m)

n
‖f‖L1

2
‖f‖p

Lp.

This, with (5.15) and (5.16), gives
∫

R3

Q+
e (f, f) f p−1 dv 6 C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1

Lp +

+ ε(m)‖f‖L1
1
‖f‖p

Lp
1/p

+
C(m)

n
‖f‖L1

2
‖f‖p

Lp

which, arguing as in [21], leads to the result choosing firstm big enough thenn big
enough. �
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Corollary 5.11. Assume thate(·) ∈ C1(0,∞) and satisfies Assumptions2.1. For any
p ∈ [1,∞) andδ > 0, there exists a constantCδ > 0 depending only onδ > 0 and the
restitution coefficiente(·) such that
∫

R3

Q+
e (g, g) gp−1〈v〉ηp dv 6 Cδ ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+ δ ‖g‖L1
2+η

‖g‖p
Lp

η+1/p
, ∀η > 0

for some constantθ ∈ (0, 1) depending only onp.

Proof. Let a nonnegative functiong be fixed. Forη > 0, setf(v) = g(v)〈v〉η. Noticing
that〈v′〉η 6 〈v〉η 〈v⋆〉η for anyv, v⋆ ∈ R3, one checks easily using the weak formulation
of Q+

e that
∫

R3

Q+
e (g, g) gp−1〈v〉ηp dv =

∫

R3

〈v〉ηQ+
e (g, g) f p−1 dv 6

∫

R3

Q+
e (f, f)f p−1 dv

and we conclude with Theorem5.10. �

Remark 5.12. Notice that, for anyδ > 0, the above constantCδ is exactly the one
provided by Theorem5.10.

The (almost) explicit dependence of the above constantCδ with respect to the restitution
coefficient has some very important consequences in the study of the (time-dependent)
collision operatorQẽτ in self-similar variable. In particular, we can prove that,for such
an operator, the corresponding constantCδ = Cδ(τ) remains uniformly bounded with
respect toτ > 0. Precisely, one can state the following:

Corollary 5.13. Assume thate(·) ∈ C1(0,∞) and satisfies Assumptions2.1. For any
τ > 0, let ẽτ be the restitution coefficient defined by(3.10) and letQeeτ (f, f) be the
associated collision operator. For anyp ∈ [1,∞) andδ > 0, there exists a constantKδ

that does not depend onτ such that
∫

R3

Qeeτ (g, g) g
p−1〈w〉ηp dw 6 Kδ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+ δ ‖g‖L1
2+η

‖g‖p
Lp

η+1/p
, ∀η > 0

for some constantθ ∈ (0, 1) depending only onp.

Proof. Clearly, from Corollary5.11, for anyτ > 0, there existsCδ(τ) for which the above
inequality holds and it suffices to prove thatKδ = supτ>0Cδ(τ) <∞. Recall that,Cδ(τ)
depends onτ through the restitution coefficient̃eτ and, more precisely,Cδ(τ) depends
on theL∞ norm of the derivativesDkẽτ (·) (k = 0, 1) over some compact interval of
(0,∞) bounded away from zero (independent ofτ ). Now, for anyτ > 0, recall (see

Section4) that ẽτ (·) = e
(

·
λ(τ)

)
whereλ(τ) =

(
1 + γ

γ+1
τ
)1/γ

. Consequently,Dkẽt(·) =

λ−k(τ)(Dke)
(

·
λ(τ)

)
. Sinceλ−1(τ) is continuous and goes to zero asτ goes to∞, one

sees that all theL∞ norms ofDkẽt(·) remain uniformly bounded with respect toτ . The
same holds forCδ(τ) and the proof is achieved. �
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5.5. Pointwise exponential estimates ofQ+
B,e. We provide here some useful pointwise

estimates of the gain partQ+
B,e with exponential weights. Our results take benefit of

the very recentYoung’s inequality with exponential weightsobtained by R. ALONSO, E.
CARNEIRO AND I. M. GAMBA [3]. These results are inspired by similar estimates for
Maxwellians weights obtained for the elastic Boltzmann equation in [15] and apply to
general collision kernelsB(u, σ) = Φ(|u|)b(û · σ) where the angular kernelb(·) and the
variable restitution coefficiente(·) satisfy the following:

Assumptions 5.14.In addition to Assumptions2.1, the restitution coefficiente(·) is as-
sumed to be non-increasing overR with e(z) < 1 for z > 0. Moreover, the collision
kernelB(u, σ) = Φ(|u|)b(û ·σ) whereΦ(·) ∈ L∞

−k for somek > 0 and the angular kernel
satisfies the integral cut-off

ℓb :=

∫ 1

−1

[
1 + s

2
+ (1 − β(0))21 − s

2

]−3/2

b(s) ds <∞. (5.17)

Remark 5.15. It is clear that(5.17) implies in particular thatb(·) satisfies Grad’s cut-off
assumption:b(·) ∈ L1(S2). Note, however, that whenβ(0) < 1, for instance in models
with constant restitution coefficient, assumption(5.17) reduces to Grad’s cut-off.

For this kind of weights we have the following result taken from [3]:

Theorem 5.16.Let1 6 p, q, r 6 ∞ with 1/p+ 1/q = 1 + 1/r. Assume thatB(u, σ) =
Φ(|u|)b(û · σ) and the restitution coefficiente(·) satisfy Assumptions5.14. For any fixed
a > 0, define the exponential weight as

Mλ(v) := e−a|v|λ λ > 0, v ∈ R
3.

Then, there is some constantC > 0 such that∥∥Q+
B,e(f, g) M−1

λ

∥∥
Lr(R3)

6 C ‖f M−1
λ ‖Lp(R3) ‖gM−1

λ ‖Lq(R3). (5.18)

In the important case(p, q, r) = (∞, 1,∞) the (non-sharp) constantC := C(b, β) can
be taken asC = κℓb0 for someκ > 0 andℓb0 defined in(5.17) with

b0(s) :=

[
1 −

(
1 + |θ(s)|

2

)k
]−1

b(s),

where

|θ(s)|2 = (1 − β(x))2 + β2(x) + 2β(x)(1 − β(x))s with x =
√

1−s
2
.

With this result at hand we have the following Proposition.

Proposition 5.17.Let the collision kernelB(·, ·) and the restitution coefficiente(·) satisfy
Assumptions5.14with moreovere(0) = 1. Then for anyε > 0, there existsC(e, ε, ℓb) > 0
such that

Q+
B,e(f, g)(v) M−1

λ (v) 6 C(e, ε, ℓb) ‖f M−1
λ ‖L∞(R3) ‖gM−1

λ ‖L1(R3)

+ ε‖f M−1
λ ‖L∞(R3) ‖gM−1

λ ‖L1
k(R3) 〈v〉k (5.19)

holds for anyv ∈ R3 and any nonnegativef, g.
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Proof. Let f andg be two nonnegative distribution functions. As in the proof of Corollary
5.6we break the angular kernel into two parts3:

b(s) = b(s)χ[−1,1−δ] + b(s)χ(1−δ,1] =: b1(s) + b2(s)

and letB1 andB2 denote the associated collision kernel:Bi(u, σ) = Φ(|u|)bi(û · σ),
i = 1, 2. Let us first estimate the collision operator associated toB2. Using the dissipation
of energy, one notices that

|v′|λ =
(
|v′|2

)λ/2
6
(
|v|2 + |v⋆|2

)λ/2
6 |v|λ + |v⋆|λ,

so that

M−1
λ (v′) 6 M−1

λ (v)M−1
λ (v⋆) ∀v, v⋆ ∈ R

3.

Then, using the weak formulation ofQ+
B2,e we conclude that

Q+
B2,e(f, g)(v) M−1

λ (v) 6 Q+
B2,e(fM−1

λ , gM−1
λ )(v)

6
∥∥Q+

B2,e(fM−1
λ , gM−1

λ )
∥∥

L∞
−k

〈v〉k .

Therefore, according to Theorem5.3,

Q+
B2,e(f, g)(v) M−1

λ (v) 6 C̃−k,∞,k(B2)‖f M−1
λ ‖L∞(R3) ‖gM−1

λ ‖L1
k(R3) 〈v〉k

where the constant̃C−k,∞,k(B2) is given by (5.7). According to (5.8) and sinceβ(0) = 1
andb2(·) is integrable, for any fixedε > 0, we can chooseδ > 0 small enough such that
C̃−k,∞,k(B2) 6 ε, i.e.

Q+
B2,e(f, g)(v) M−1

λ (v) 6 ε‖f M−1
λ ‖L∞(R3) ‖gM−1

λ ‖L1
k(R3) 〈v〉k .

Concerning the collision operator associated toB1, using Theorem5.16with (p, q, r) =
(∞, 1,∞) leads to the estimate

Q+
B1,e(f, g)(v) M−1

λ (v) 6 Ce‖f M−1
λ ‖L∞(R3) ‖gM−1

λ ‖L1(R3)

for some constantCe > 0 depending only onb1(·), the restitution coefficiente(·) andℓb.
This concludes the proof. �

Remark 5.18. Note that the integrand defining the constantCe (see Theorem5.16) has a
singularity only ats = 1 because|θ(1)| = 1 (whenβ(0) = 1). This singularity is avoided
by the splitting technique used throughout this paper. On the contrary, the singularity at
s = −1, when occurs, can not be avoided. This problem arises in the study of inelastic
interactions because of the lack of symmetry that they induce, e.g. for the bilinear form of
the inelastic collision operator, it is not correct to assume thatb can be defined in half the
domain. This is the main reason why we have to add the stronger(and undesired) integral
cut-off hypothesis(5.17).

3notice however that, since we are dealing with the bilinear operatorQB,e(f, g) and not the symmetric
QB,e(f, f), we cannot assumeb(·) to be supported on[−1, 0] (see also Remark5.18).
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6. PROPAGATION OFLEBESGUE NORMS: Lp-THEORY (1 < p <∞).

In this section we are interested in proving the propagationof Lp-norms, with1 6 p <
∞, for the self-similar profile and for the solution to the Boltzmann equation (2.7). We
will use the main result of this section, and a couple of observations to prove the propa-
gation of theL∞-norm later in Section 7. Our strategy is based in the standard technique
of energy estimates which will be carried out in the space of self-similar variables for
optimality. As usual, we will assume that the restitution coefficient satisfies Assumptions
3.1and, given a solutionf(t, v) to (2.7), the rescaled solutiong = g(τ, w) is a solution to
the Cauchy problem (3.9).

We adapt here the technique introduced in [24] for integrability propagation in the
elastic case. Later in [21] such techniques have been applied to prove the propagation
of Lp norms for inelastic interactions in the case of constant restitution coefficient. We
extend their results to the case of a variable restitution coefficient satisfying Assumptions
3.1. One begins with the following Lemma which relies on the factthat the energy of the
self-similar variableg is bounded from below:

Lemma 6.1. Assume thatf0 ∈ L1
η for someη > 2. Then, there exists some positive

constantν0 > 0 such that
∫

Rn

g(τ, w⋆)|w − w⋆| dw⋆ > max {ν0, |w|} >
ν0

2
〈w〉, ∀w ∈ R

3, τ > 0.

In particular,
∫

R3

gp−1Q−
e (g, g) dw >

ν0

2

∫

R3

gp(τ, w)(1 + |w|2)1/2 dw =
ν0

2
‖g(τ)‖p

Lp
1/p
.

Proof. Sincef0 = g0, the propagation ofp-moments in the rescaled profileg implies
supt>0 ‖g(τ)‖L1

η
<∞. Then, for anyR > 0,
∫

{|w|>R}
g(τ, w)|w|2 dw 6

1

Rη−2
sup
{τ>0}

‖g(τ)‖L1
η
.

Recall that in Section 3 we proved that the energyΘ(τ) of g has a uniform lower bound
Θmin > 0, therefore for sufficiently largeR

∫

{|w|6R}
g(τ, w)|w|2 dw =

∫

R3

g(τ, w)|w|2 dw −
∫

{|w|>R}
g(τ, w)|w|2 dw

> Θmin −
1

Rη−2
sup
{τ>0}

‖g(τ)‖L1
η

> Θmin/2 > 0.

We conclude that,
∫

R3

g(τ, w)|w| dw >
1

R

∫

{|w|6R}
g(τ, w)|w|2 dw >

Θmin

2R
=: ν0 > 0.

Thus, using this observation and Jensen’s inequality we getthe conclusion. �

Then, one has the following
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Theorem 6.2.Assume the variable restitution coefficiente(·) satisfy Assumptions3.1for
somepositiveγ > 0. Assume thatf0 ∈ L1

2(1+η) ∩Lp
η(R

3) for some1 6 p <∞ andη > 0.
Then the rescaled functiong defined by(2.18) is such that

sup
τ>0

‖g(τ)‖Lp
η
<∞.

As a consequence,

sup
t>0

{
V (t)3/p′ ‖f(t)‖Lp

}
6 sup

τ>0
‖g(τ)‖Lp <∞

where1/p+ 1/p′ = 1.

Proof. Let η > 0 be fixed. Recall that (see Eq. (3.9)) the self-similar functiong(τ, w)
satisfies

(∂τg + ξ(τ)∇w · (wg)) (τ, w) = Qeeτ (g, g)(τ, w), g(0, w) = f0(w),

whereξ(τ) and ẽτ are defined in (3.10). Multiplying this equation bygp−1(τ, w) 〈w〉ηp

and integrating overR3 yields, after a few algebra,

1

p

d ‖g(τ)‖p
Lp

η

dτ
+ 3

(
1 − 1

p

)
ξ(τ) ‖g‖p

Lp
η

=

∫

R3

Q+
eeτ

(g, g)gp−1 〈w〉ηp dw−
∫

R3

Q−(g, g)gp−1 〈w〉ηp dw + ηξ(τ)

∫

R3

gp(τ, w)|w|2 〈w〉ηp−2 dw.

Using Lemma6.1one has clearly
∫

R3

Q−(g, g)gp−1 〈w〉ηp dw >
ν0

2
‖g(τ)‖p

Lp
η+1/p

.

Moreover,C = supτ>0 ‖g(τ)‖L1
2+η

> ∞ by virtue of the propagation of moments (see
(4.1)). Applying Corollary5.13with δ = ν0

4C
, one has

1

p

d

dτ
‖g(τ)‖p

Lp
η
+
ν0

4
‖g(τ)‖p

Lp
η+1/p

6 K ‖g(τ)‖p(1−θ)

Lp
η

+ξ(τ)

(
η − 3

p′

)
‖g(τ)‖p

Lp
η

∀τ > 0

(6.1)
for some constantK independent ofτ . Sinceγ > 0, the mappingξ(τ) is nonincreasing
with limτ→∞ ξ(τ) = 0 and it is not difficult to prove that (6.1) leads to the result. �

Remark 6.3. Notice that, arguing as in[21, Section 3.4], the uniformLp-norm (forp > 1)
of the rescaled solutiong(τ, w) provided by the above Theorem implies non-concentration
of the rescaled temperature

Θ(τ) =

∫

R3

g(τ, w) |w|2 dw.

Precisely, a simple use of Hölder’s inequality shows that

sup
t>0

‖g(τ(t))‖Lp 6 Cp =⇒ inf
t>0

Θ(τ(t)) > Θmin > 0.

Turning back to the original variablef , one gets thatE(t) > Θmin/V
2(t).
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Remark 6.4. If e(·) satisfies Assumptions3.1 with γ = 0 (typically, if e(·) is a constant
restitution coefficient), thenξ(τ) = 1 for anyτ > 0 and the last part of the proof does not
apply. However, one sees from(6.1) that the conclusion still holds ifη 6 3/p′. Moreover,
for constant restitution coefficient, a version of Theorem6.2is given in[21, Theorem 1.3].

7. POINTWISE ESTIMATES: L∞-THEORY

In this last section we are interested in developing theL∞-theory for solutions to Boltz-
mann equation (1.3). In early 80’s, ARKERYD proved, inspired by the work of Carleman,
that any solution to the elastic Boltzmann equation remain bounded as long as its initial
datum is bounded [4]. His argument is rather clever and consists in proving a series of re-
sults that imply theL∞ control of the gain part of the collision operator by the conserved
quantities, the entropy, and theL∞ norm of the initial datum. The Carleman representa-
tion plays a crucial role in his proof. We extend here his results to the inelastic case (with
variable restitution coefficient). Of course, no entropy control is available here and we
proceed in a different way, dealing with the self-similarity variable (see (2.18)).

7.1. L∞-norm propagation. The reader should notice that the results here are not a
direct consequence of theLp-theory, since the estimates involvingLp-norms forp < ∞
degenerate asp → ∞. Unfortunately, this is an intrinsic feature of the methodology
developed for such theory. The next two Lemmas overcome thisproblem.

Lemma 7.1. Assume that the mappingτ ∈ [0,∞) 7−→ X(τ, w) is absolutely continuous
for almost everyw ∈ R3 with ‖X(τ)‖L∞ < ∞ for anyτ ∈ [0,∞). If there exist positive
constantsa, b > 0 such that

dX

dτ
(τ, w) + aX(τ, w) 〈w〉 6 b+

a

4
‖X(τ)‖L∞ 〈w〉 for a.e. w ∈ R

3, (7.1)

then,

sup
τ>0

‖X(τ)‖L∞ 6 max

{
‖X0‖L∞ ,

2b

a

}
.

Proof. Let C := max
{
‖X(0)‖L∞ ,

2b
a

}
. Assume that‖X(τ0)‖L∞ > C for someτ0 > 0.

There is no loss of generality in assuming that‖X(τ)‖L∞ 6 C for anyτ ∈ (0, τ0). Then,
there existsw0 such that

X(τ0, w0) > C1 := max{‖X(τ0)‖L∞ /2, C}, X(0, w0) 6 C

and the mappingτ 7−→ X(τ, w0) is absolutely continuous. Thus, there existsτ⋆ ∈ [0, τ0)
such thatX(τ, w0) > C1 for anyτ ∈ [τ⋆, τ0) andX(τ⋆, w0) = C1. Then, since

‖X(τ)‖L∞ 6 C < ‖X(τ0)‖L∞ 6 2C1 ∀τ ∈ (τ⋆, τ0)

we see from (7.1) that
dX

dτ
(τ, w0)+

a

2
X(τ, w0)〈w0〉 6 b+

a

4
〈w0〉

(
‖X(τ)‖L∞−2X(τ, w0)

)
6 b ∀τ ∈ (τ⋆, τ0).

In particular, dX
dτ

(τ, w0) 6 b− C1 a/2 6 0 for anyτ ∈ (τ⋆, τ0). Therefore,

C1 < X(τ0, w0) 6 X(τ⋆, w0) = C1,

which is a contradiction. �
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In order to use previous result, we need first to establish a non-uniform control on the
L∞-norm for the self-similar profile.

Lemma 7.2. Let f0 satisfying(2.8) with moreoverf0 ∈ L∞(R3). Letg(τ, w) be the self-
similar solution defined by(2.18) wheref(t, v) is the solution to(2.7). Then, there is a
constantκ > 0 such that

‖g(τ)‖L∞ 6 ‖f0‖L∞ + κ τ ∀τ > 0.

Proof. Recall that the self-similar solutiong(τ, w) satisfies (3.9). Split then the colli-
sion operatorQeeτ (f, f) as in Corollary5.6 (for fixed τ > 0). Then, using the standard
estimates of Theorem5.3and Lemma7.1, for anyp > 2
∫

R3

gp−1Q+
eeτ

(g, g) dw =

∫

R3

gp−1Q+
B1,eeτ

(g, g) dw+

∫

R3

gp−1Q+
B2,eeτ

(g, g) dw

6 C1 ‖g(τ)‖2
L2

1
‖g(τ)‖p−1

Lp−1 + ‖g‖p−1
Lp

1/p

∥∥∥Q+
B2,eeτ

(g, g)
∥∥∥

Lp

−1/p′

.

A simple interpolation inequality shows that

‖g(τ)‖p−1
Lp−1 6 ‖g(τ)‖

1
p−1
L1 ‖g(τ)‖

p
p−2
p−1

Lp = ‖g(τ)‖
p

p−2
p−1

Lp .

On the other hand, arguing as in the proof of Theorem5.3 and choosing the mass ofb2
small enough, one obtains that, for anyε > 0, there is some constantC > 0 (independent
of τ ) such that

∫

R3

gp−1Q+
eeτ

(g, g) dw 6 C1 ‖g(τ)‖2
L2

1
‖g(τ)‖

p
p−2
p−1

Lp + ε ‖g(τ)‖L1
1
‖g(τ)‖p

Lp
1/p
.

Note that our assumptions onf0 imply ‖g0‖L2
1
<∞, hence by Theorem6.2,

sup
τ>0

‖g(τ)‖L2
1
<∞.

Using now the lower bound given in Lemma6.1and choosing

ε = K

(
sup
τ>0

‖g(τ)‖L1
1

)−1

> 0

we obtain
∫

R3

gp−1Qeeτ (g, g)(τ, ω) dw 6 C1 ‖g(τ)‖2
L2

1
‖g(τ)‖

p
p−2
p−1

Lp 6 C2 ‖g(τ)‖
p

p−2
p−1

Lp .

Next, multiply bygp−1 with p > 2 and integrate inR3 the equation (3.9) satisfied byg.
After few calculations one obtains

1

p

dXp

dτ
(τ) 6

∫

R3

gp−1Qeeτ (g, g)(τ, ω) dw 6 C2X

p−2
p−1
p (τ),

whereXp(τ) := ‖g(τ)‖p
Lp. Therefore,

Xp(τ) 6

(
Xp(0)

1
p−1 +

C p

p− 1
τ

)p−1
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which translates to‖g(τ)‖Lp 6

(
‖g0‖p′

Lp + Cp′τ
) 1

p′
. Letting nowp → ∞, we get the

conclusion. �

Finally we are ready to prove theL∞ propagation.

Theorem 7.3. Assume the variable restitution coefficiente(·) satisfy Assumptions3.1.
Let f0 satisfying(2.8) with moreoverf0 ∈ L∞(R3). Let g(τ, w) be the self-similar solu-
tion defined by(2.18) wheref(t, v) is the solution to(2.7). Then, there exists a positive
constantC > 0 depending only on‖f0‖L1

2
and‖f0‖L∞ such that

sup
τ>0

‖g(τ)‖L∞ 6 C.

Whence,‖f(t)‖L∞ 6 C V (t)3 for anyt > 0.

Proof. Recall that the equation for the self-similar profile can be written as

(∂τg + ξ(τ)∇w · (wg)) (τ, ω) = (∂τg + ξ(τ)w · ∇wg + 3ξ(τ)g) (τ, ω)

= Qeeτ (g, g)(τ, ω).

Defining the solution along the trajectories

g#(τ, w) = g(τ, φ(τ)w) with
φ′(τ)

φ(τ)
= ξ(τ), φ(0) = V (0) = 1,

we can rewrite this equation as

∂τg
#(τ, w) + 3ξ(τ)g#(τ, w) = [Qeeτ (g, g)]

#(τ, w). (7.2)

Using Corollary5.6 and the lower bound forQ−(g, g) = Q−
eeτ

(g, g) given in Lemma6.1
one sees that, for anyε > 0, there exists a constantC > 0 (independent ofτ ) such that

∂τg
#(τ, w) + 3ξ(τ)g#(τ, w) +

ν0

2
g#(τ, w) 〈w〉#

6 C ‖g(τ)‖2
L2

1
+ ε ‖g(τ)‖L1

1
‖g(τ)‖L∞ 〈w〉# . (7.3)

Due to propagation of moments we can fixε := ν0

8

(
supτ>0 ‖g(τ)‖L1

1

)−1

. Notice that

‖g0‖2
L2

1
6 ‖g0‖L∞ ‖g0‖L1

2
<∞, so that, according to Theorem6.2,

sup
τ>0

‖g(τ)‖L2
1
<∞.

Moreover, we can disregard the second term in the left hand side of (7.3) because is
nonnegative. Thus, we conclude that, forτ > 0

∂τg
#(τ, w) +

ν0

2
g#(τ, w) 〈w〉# 6 C sup

τ>0
‖g(τ)‖2

L2
1
+
ν0

8
‖g(τ)‖L∞ 〈w〉# . (7.4)

Moreover, according to Lemma7.2 the norm‖g(τ)‖L∞ is finite for anyτ > 0. Notice
that the mappingτ > 0 7−→ g#(τ, w) is absolutely continuous for any fixedw as the
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solution to the rescaled Boltzmann equation (3.9). Hence, using Lemma7.1, inequality
(7.4) implies that

‖g(τ)‖L∞ =
∥∥g#(τ)

∥∥
L∞ 6 max

{
‖f0‖L∞ ,

4C

ν0
sup
τ>0

‖g(τ)‖2
L2

1

}
(7.5)

which proves the Theorem. �

Remark 7.4. Notice that the same reasoning applies readily to the elastic Boltzmann
equation in an even easier way, providing a new proof of the results of[4, 16]. In par-
ticular, our new method shows that it is possible to relax theconditions on the collision
kernel of[4]. Namely, while[4] applies to aboundedb(·), the above result applies to any
integrableb(·) through the cutoff assumption(2.6).

7.2. Pointwise exponential bounds.In GAMBA et. al. [15] the authors use a compari-
son principle that holds for weak solutions of the Boltzmannequation to prove that under
the conditionf0(v) 6 e−a0|v|2+c0, the solution to the classical (elastic) Boltzmann equa-
tion remains pointwise uniformly controlled by a Maxwellian distribution. There are four
main ingredients in the pointwise Maxwellian control prooffor the elastic case:

• theL∞-propagation,
• theL1-Maxwellian propagation,
• the Young’s inequality (with Maxwellian weights),
• the aforementioned comparison principle.

We have seen in Theorem7.3 that the second point holds true for the inelastic Boltz-
mann equation with variable restitution coefficient (at least for the self-similar solution).
Moreover, variants of the second and third points have been obtained in Sections4 and
5.5 respectively. For such estimates, Maxwellian weights haveto be replaced by only
exponential weights (since the tail of self-similar solutions are of order only one, see The-
orem4.1). With all these results at hand, we are in position to prove the following result,
inspired by [15]:

Theorem 7.5(L∞-exponential tails Theorem). Assume thatB(u, σ) = Φ(|u|)b(û · σ)
and the restitution coefficiente(·) satisfy Assumption5.14with k = 1. Let f0 satisfying
(2.8) and assume moreover that there are some constantsa0 > 0 andc0 ∈ R such that

f0(v) 6 exp (−a0|v| + c0) for a. e. v ∈ R
3.

Let g(τ, w) be the self-similar solution defined by(2.18) wheref(t, v) is the solution to
(2.7). Then, there exista > 0 andc > c0 such that

sup
τ>0

g(τ, w) 6 exp (−a|w| + c) for a. e.w ∈ R
3.

Hence,f(t, v) 6 V (t)3 exp (−a|V (t)v| + c) for a. e.v ∈ R3 and anyt > 0.

Proof. Sincef0(v) 6 exp (−a0|v| + c0) , we can apply theL1-exponential propagation
Theorem4.1which implies the existence of some0 < a1 < a0 such that

sup
τ>0

∫

R3

g(τ, w) 〈w〉 exp (a1|w|) dw <∞,
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or equivalently

sup
t>0

∫

R3

f(t, v) 〈V (t)v〉 exp (a1|V (t)v|) dv <∞. (7.6)

Moreover, sincef0 ∈ L∞, we can apply Theorem7.3to conclude that

sup
τ>0

‖g(τ)‖L∞ <∞. (7.7)

The next step it to use the comparison principle given in Appendix B, Theorem B.1. To
this end define

M(w) := exp (−a|w| + c)

where0 < a < min{a1,
ν0

8
} is fixed (ν0 being given in Lemma6.1) and where the

parameterc > c0 ∈ R will be chosen large enough in the sequel. Define then

M0(t, v) := V 3(t)M(V (t) v) t > 0, v ∈ R
3.

According to Proposition5.17, for any fixedε > 0, there is some positive constantCe

such that

Q+
e (M0, f)(t, v) 6

∥∥f(t)M−1
0 (t, v)

∥∥
L1

1
(Ce + ε 〈v〉)M0(t, v).

Now, according to (7.6) and our choice of the parametera > 0, one has

C̃ := sup
t>0

∥∥f(t)M−1
0 (t, v)

∥∥
L1

1
<∞

and
Q+

e (M0, f)(t, v) 6 C̃M(V (t)v) (Ce + ε 〈v〉) ∀t > 0, v ∈ R
3.

Observe that̃C is independent ofc. Then, moving to the self-similar variable one has

Q+
eeτ(t)

(M, g)(τ(t), V (t)v) = V −2(t)Q+
e (M0, f)(t, v),

and sinceV (t) > 1,

Q+
eeτ(t)

(M, g)(τ(t), w) 6 V −2(t)C̃M(w)
(
Ce + ε

〈
V −1(t)w

〉)

6 C̃M(w) (Ce + ǫ 〈w〉)

where ẽτ has been defined in Section4. Fix now ε = ν0/4C̃ and use Lemma6.1 to
conclude that

Qeeτ(t)
(M, g)(τ(t), w) 6

(
C0 −

ν0

4
〈w〉
)
M(w), ∀t > 0, w ∈ R

3.

Recall that equation (3.6) implies that1 > V̇ (t) ց 0 ast → ∞. Then, choosing any
R > C0−3

ν0/4−a
we conclude that fort > 0,

V̇ (t)(3 − a|w|) >

(
C0 −

ν0

4
〈w〉
)

for any|w| > R and anyt > 0.

In other words, for any|w| > R and anyt > 0 :

∂τM(w) + V̇ (t)∇w · (wM)(w) = V̇ (t)(3 − a|w|)M(w)

>

(
C0 −

ǫ0
4
〈w〉
)
M(w) > Qeeτ(t)

(M, g)(τ(t), w) (7.8)



44 RICARDO J. ALONSO & BERTRAND LODS

Then moving back to the original variables(t, v), inequality (7.8) reads

∂tM0(t, v) = V 2(t)V̇ (t)(3 − a|V (t) v|)M(V (t)v)

> V 2(t)Qeeτ(t)
(M, g)(τ(t), V (t)v) = Qe(M0, f)(t, v) for any(t, v) ∈ UR,

whereUR = {(t, v) ∈ (0,∞) × R3 ; |V (t) v| > R}. Moreover, using Theorem7.3 and
(7.7) we have for sufficiently largec

M0(t, v) = V (t)3 exp (−a|V (t)v| + c) > V (t)3 exp (−aR + c)

> V (t)3 sup
τ>0

‖g(τ)‖L∞ > f(t, v) in U c
R.

By choosingc large enough to satisfy alsof0(v) 6 M0(0, v), we can conclude the proof
using the comparison principle in Theorem B.1 in the Appendix B. �

APPENDIX A: V ISCOELASTIC HARD-SPHERES

In this Appendix, we prove that our general Assumptions3.1are met by the restitution
coefficiente(·) associated to the so-called viscoelastic hard-spheres as derived in [25] (see
also [11, Chapter 4]). Before this, we state a more general result forgeneral restitution
coefficient and for hard-spheres collision kernel

B(u, σ) =
|u|
4π

∀u ∈ R
3, σ ∈ S

2

for which we recall thatΨe as defined in (3.1) is given by:

Ψe(x) =
1

2
√
x

∫ √
x

0

(
1 − e(z)2

)
z3 dz, x > 0.

Lemma A. 1. Assume thate(·) satisfies Assumption2.1 and that the mappingz > 0 7→
e(z) is decreasing. Then, the associated functionΨe defined in(3.1) is strictly increasing
and convex.

Proof. Let us assume thatez(z) 6 0 for anyz > 0 whereez(·) denotes the derivative of
e(·). Let Φ(x) = 2Ψe(x

2) for anyx > 0, i.e.

Φ(x) =
1

x

∫ x

0

(
1 − e2(z)

)
z3 dz, x > 0.

It is easy to see thatΨe(·) is convex if and only ifxΦxx(x) − Φx(x) > 0 for anyx > 0
whereΦxx andΦx denote the respectively the second and first derivative ofΦ. A simple
calculation shows that

xΦxx(x) − Φx(x) = −2x3ez(x)e(x) +
3

x2

∫ x

0

(1 − e2(z))z3 dz, ∀x > 0

and, sinceez(x) > 0 while e(·) ∈ (0, 1], one gets thatxΦxx(x) − Φx(x) > 0 for any
x > 0.

In the same way, sinceez(·) 6 0, the mappingz > 0 7→ (1−e2(z))z3 is nondecreasing
and one deduces easily thatΦx(x) > 0 for anyx > 0. This obviously implies thatΨe(·)
is strictly increasing over(0,+∞). �
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Now, for the visco-elastic hard-spheres as derived in [25], the restitution coefficient
e = e(z) is the solution of the equation

e(z) + αz1/5e(z)3/5 = 1 (A.1)

whereα > 0 is a constant depending on the material viscosity (see precisely [11, Eq.
(3.38), p. 40]). Notice there is also an alternative expression of the restitution coefficient
e(z) for viscoelastic hard-spheres as an infinite expansion series in power ofz1/5:

e(z) = 1 +
∞∑

k=1

(−1)kakz
k/5, z > 0

whereak > 0 for anyk ∈ N. It has already proven, on the basis of (A.1) that Assumptions
2.1are met (see [1, p. 1006]). Now, from Eq. (A.1), one sees thatlimz→0+ e(z) = 1 and

e(z) ≃ 1 − αz1/5 for z ≃ 0

which means that Assumption3.1(1) is met. Moreover, it is easy to prove from (A.1) that
the restitution coefficient is continuously decreasing. Thus, according to Lemma A.1, the
restitution coefficiente(·) associated to the visco-elastic hard-spheres satisfy Assumptions
3.1. Notice that our result covers more general models than the one of viscoelastic hard-
spheres as illustrated by the following example:

Example A. 1. For monotone decreasing restitution coefficient introduced in Example
2.3, Assumptions3.1are also met by virtue of the above Lemma. In such a case, according
to (2.2), the cooling of the temperatureE(t) is as follows

E(t) = O
(
(1 + t)−

2
1+η

)
as t→ ∞.

APPENDIX B: COMPARISON PRINCIPLE

We write here, for comfort, the GAMBA , PANFEROV & V ILLANI comparison principle
for the Boltzmann equation [15]. The proof of this result can be found in [15] for the
elastic case.Sameproof applies in the inelastic case. The result is stated in the context of
the, very weak,dissipativesolutions. In particular, spatially homogeneous solutions that
we found in this work are dissipative solutions.

Theorem B. 1. Let f ∈ C([0, T ];L1(R3)) be a dissipative solution of the Boltzmann
equation and letg be a sufficiently regular function, such thatf0 6 g0 and

∂tg −QB,e(g, f) > 0 on U

andf 6 g onU c, whereU is a measurable subset of[0, T ] × R3. Thenf 6 g almost
everywhere on[0, T ] × R3.
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