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Abstract

We address the issue of constructing directional wavelet bases. After consid-
ering orthonormal directional wavelets whose Fourier transforms are indicator
functions, we give a construction of directional wavelets with fast decay that is
based on an hexagonal filter bank tree. An implementation for squarely sampled
images and numerical results are presented. Then we discuss the frequency lo-
calization of directional wavelet bases. We analyze the incompatibility between
a proper localization and the non-redundancy constraint, and show that the
non permissibility condition can be extended to general wavelet bases that are
not necessary generated by a filter bank tree. At last, we show that there exist
directional wavelet tight frames that are well localized and have a redundancy
factor arbitrary close to 1.

Key words. Wavelet transform, directional wavelets, two-dimensional filter banks.
AMS Subject Classifications. 42C40, 65T60, 68U10, 94A08.

1 Introduction

Because of their ability to characterize piecewise smooth functions with few coeffi-
cients, wavelets have been a successful tool in several signal and image processing
tasks. Wavelets for 2D images are typically constructed by tensor products of 1D
wavelets. However the obtained separable wavelets do not provide sparse represen-
tations of every image’s structures. Indeed a common image model is based on the
observation that if one zooms in on a detail of an ordinary image, its geometrical
flow is generally, nearly uniform. In other words, its local Fourier transform is con-
centrated along a line which is orthogonal to the flow (see Fig. 1). When the image
is decomposed in a separable wavelet basis, its energy is spread on many coefficients
(see Fig. 2-(a)). Moreover, both diagonal directions are ambiguously represented by
a single wavelet. Although the wavelet transform provides sparse (but not optimal)
representations of horizontal and vertical singularities (using the horizontal and the
vertical wavelets), it does not permit to represent efficiently singularities which are
positioned along other directions.

For more than a decade, new transforms have been proposed in order to make up
for this lack of directionality of separable wavelets. Several adaptative transforms were
developed. For instance, first generation bandelets[17] consist in warping separable
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Figure 1: (a) Detail of an image. (b) Its spectrum is concentrated along a line.
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Figure 2: Frequency support of (a) Wavelets, (b) Bandelets (first generation), (c)
Curvelets.



wavelets along the geometrical flow of images, and performing a bandeletization (see
Fig. 2-(b)). We focus in this article on the construction of non adaptative transforms
that are generally implemented in a faster algorithm as they do not require prior
information on the image. Among the most prominent non-adaptative, directional
transforms, one may mention hexagonal wavelets [24, 9], directional filter banks [2],
steerable pyramids [25], directional wavelets [21, 1], brushlets [20], dual-tree complex
wavelets [16, 23], ridgelets [4], curvelets [5] (see Fig. 2-(c)) and contourlets [11]. All
these transforms are of great interest for applications in fields such as compression,
denoising, enhancement and oriented feature extraction. Their construction leaves
however some open questions. Indeed, in compression, powerful and practical trans-
forms must satisfy the following requirements

- Arbitrary fine directions

Good spatial localization

Good frequency localization

Fast and accurate implementation

No redundancy.

But none of the quoted above transforms satisfies all these properties. The last
one is crucial in the approach we adopted. Curvelets and contourlets are known
to perform very well at low bit rate compression. But they are redundant frames.
As a consequences, separable wavelets remain sometimes more efficient to compress
images at rates that are used in practice. Let us emphasize that, in this article, we
are thinking of compression applications. If one deals with denoising, for instance,
the constraint “no redundancy” has to be replaced by “shift invariance”.
Directional wavelets were introduced in [21]. A family of wavelets is generated
from a single function, called mother wavelet, by translation, dilation and rotation,

a(aRy - —b), a€R,,beR? Ry € SO(2,R).

The 3 parameters a, b, f can be discretized in order to obtain tight frames for L?(R?).
Curvelets are constructed with a more subtle family of rotation-dilation operators.
Indeed it is proved in [5] that one obtains sparser representations of some classes of
images by using functions that have a finer angular resolution at finer scales, following
a parabolic scaling law. (At scale a the angular resolution must be O(y/a).) For that
reason, we consider the more general family (that we still call directional wavelets)

{Idet Dy|(Dy - =) }rexver = {¥k(- —7)} ek rers

where T' is a regular lattice on R? and, for all k, ¢ = |det Dy|'/24(Dy.-), T} =
D;lf, and Dy, is a linear operator on R2. The sequence { Dy }kex can be constructed
following the theory of wavelets with composite dilations [14] although more general
sequences are considered in this article. In order to complete the basis, one has to
consider also a low frequency function ¢ that we can denote vy but that it is not
obtained by dilating the mother wavelet . At last, in order to obtain bases for
L?(R?), we will not always assume that 15, = | det Dy.|'/24)(D}, -) but that 1, is close
to |det Dg|/24)(Dy -) in a sense that will be specified below. Notice that the same
kind of hypothesis is made to obtain second generation curvelets tight frames [3].



In Section 2, the construction of directional wavelet bases is restricted to wavelets
that are Fourier transforms of indicator functions. In order to meet the above require-
ments, these wavelets have to be approximated by functions with fast decay. In that
direction, we presents a numerical implementation of one of the transforms introduced

n [13]. Tt is implemented in a fast algorithm that is based on a filter bank tree with
hexagonal and 2-channels filter banks. This hexagonal directional wavelet transform
is defined in Section 3.1. In Section 3.2, we propose an implementation for squarely
sampled images, while in Section 3.3, we give some numerical results and compar-
isons. In Section 4, we consider the frequency localization of directional wavelets
with fast decay. While it satisfies all the other, cited above, required properties, the
proposed hexagonal directional wavelet transform fails to achieve a perfect frequency
localization. General wavelets that are not necessary generated by filter bank trees
are considered in Section 4.2. The incompatibilities between all the required prop-
erties is addressed in a statement that generalizes the permissibility condition for
filter banks. In order to circumvent this obstruction in the construction of directional
wavelet bases, we show, in Section 5, that there are directional wavelet tight frames
that are well localized in the space and in the frequency domains, and that have
arbitrary small redundancy factors. At last, a conclusion is drawn in Section 6.

2 Shannon Directional Wavelet Bases

As it is shown in Figure 2, the issue of obtaining sparse representations of images
can be addressed by constructing tilings of the frequency domain. In this section, the
frequency localization is therefore singled out as one consider wavelets whose Fourier
transforms are indicator functions. The next sections are devoted to the issue of
approximating these basis functions with wavelets which are well localized in space
and frequency domains.
Assume the Fourier transform of ¢ is
Ui = 2m| Al T2 xa,

where Ay, is an open subset of R?, |Ay| is its area and x4, is the indicator function
of Ag. Recall that the dual lattice I'* of a lattice I' C R? is defined by

I*={yeR": (n,v) € 2xZ, Vn € T},

so that the Fourier transform is an isomorphism between ¢?(I") and L?(R?/T"*). (See
the appendix for more informations on the Fourier transform on regular lattice.)

Proposition 1 The family {¢}(- —7)}rek ner, s an orthonormal basis for L*(R?)
if and only if

1. {Ay 4+ {7} }yers is a tiling of R?,
2. {Ap}rex is a tiling of R2.

Proof. The main idea of the proof of this proposition is that Condition 1 is satisfied
if and only if {¢);(- —v)}yer, is an orthonormal basis for

Wi = {f € L*(R?) : supp f C Az},
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Figure 3: Examples of tilings (a) {4+ {7} }yer and (b) {Ax}rek.

and Condition 2 is equivalent to

L*(R?*) = P Wi,

ke

where the sum is orthogonal. Details of the proof are left to the reader. o

Except possibly for one set, the sets Ay are obtained by dilating a single set A.
(Ar = DjA where Dj is the adjoint operator of Dy.) In order to have real valued
wavelets, we assume that A is symmetric about 0, and in order to have a fine angular
resolution, A must be included in a cone. An interesting example is given by

A={¢eR?: [&] < al&land 1 < [&] <2},

for some a > 0. One checks easily that Condition 1 of Proposition 1 is satisfied with
I'™* = Zey + Zeg where e; = (0,2) and e2 = (3¢, 1) (see Fig. 3-(a)). With good choices
for « and K € N, Condition 2 is satisfied by applying to A, dilations of factor 2 (and
1/2) and rotations of angle 7/K (see Fig. 3-(b)). Thus, if Vs = 2m|A|71/2 x4 and R
is the rotation of angle /K, then

{274°(2R" - —9)}jez ket K} yer

is an orthonormal basis for L?(R?). There are many other examples that satisfy the
conditions of Proposition 1. The same set A can be dilated in such way that one
obtains the tiling of Fig. 2-(c), generating what could be called a Shannon curvelet
basis. Notice that, more generally, when going from one scale to a finer one, the
number of directions can be multiplied by any integer number. There are also other
examples of sets A defining mother wavelets ¢*. One has, for instance, p/(p — 1)-adic
directional wavelets, with p € N, by using

A={¢eR?: |G| <oa|&|and p—1<|&] < p}

that forms a tiling of R? when it is shifted along I'* = Ze; + Zes where e; = (0,2)
and es = ((2p — 1), 1)



3 Regular Directional Wavelet Bases

We address below the construction of regular wavelets (in the sense of wavelets with
fast decay) {9« }rex that approximate Shannon wavelets {97 }rex. The term approz-
imate is used here in the sense that the loss of energy is controlled :

1 — will3 <€ for e small. (1)

Necessary and sufficient conditions for a family {¥x(- — v)}reix, ver,, with general
i € L2(R?), to be a basis for L?(R?) can be found (see Prop. 4 below). The difficulty
is however to find wavelets 1, that satisfy these conditions. An easy way to construct
directional regular wavelets is to consider wavelets implemented in filter bank trees,
as their design is reduced to the construction of filter banks. This idea was developed
in [13] and several examples of regular directional wavelet basis were given. Close
ideas were also proposed in [22]. We develop, in this section, one of the examples
introduced in [13]. Numerical results and comparisons are given.

3.1 Hexagonal Directional Wavelets

Hexagonal wavelets were introduced in [24] and [9]. These wavelets are obtained one
from another by dilation, translation and rotation of F27/3, and are therefore an
example of directional wavelet basis in the sense of [1] with 3 directions. They are
designed for images that are sampled on the regular hexagonal lattice

b= ( Y )ZQ'

Let us recall that the hexagonal reciprocal lattice is
1 -1/2
* 2 _
' =27 MZ* where M = ( 0 V32 ) . (2)

and that the associated reciprocal cell has the shape of a regular hexagon.
The space L?(R?) is decomposed into multiscale and multidirectional subspaces

r’R=F P W= & d4r'w,

JEZ ke{1,2,3} JEZ ke{1,2,3}

where d; is the dilation of factor 2/ and R is the rotation of angle 27 /3. Each subspace
is spanned by a mother wavelet v, that is shifted along an hexagonal lattice at a given
scale. More precisely {2714(27 - —v) : v € T'} is a Riesz basis or an orthonormal
basis for WJ’“ These wavelets are generated by a multiresolution analysis (MRA) [18]

(Vj)jes for L?(R?) with a scaling function ¢ such that {27¢(27 - —=X\): A €'} isa
basis for V;. The decomposition

‘/3 = ‘/j—l @ le—l @ W_]Z—l @ WJS_I
leads to the equations
~ 1 ~
W) = LHolw/2)dw/2)

—~

W) = SH/2) B/, Ve (1,23}

[=p)
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Figure 4: (a) Hexagonal filter bank and (b) ideal frequency supports of hexagonal
wavelets (| 4 stands for keeping the points of 2I" only).

for almost every w € R?, where Hy, € L?(R?/T*), for all k € {0,...,3}. In order
to have an orthonormal basis, the conjugate mirror filters (Hx)refo,1,2,3,} should be
designed in such a way that the matrix

(Hi(w +7)keq0,1,2,3},7e(0.50) /1>
is unitary for almost every w € R?, where
(0.50*)/T* = {(0,0), (,0), (7/2,V37/2), (=7 /2,V31/2)}.

In the case of a discrete image sampled on I', wavelet coefficients are computed
via a filter bank tree. The above conjugate mirror filters define a filter bank whose
frequency selectivity is symbolized in Figure 4-(a). It decomposes the original image
onto 4 subbands. At each level, the same filter bank is applied again to the low
frequency subband only. One obtains this way a transform corresponding to the
frequency partitioning of Figure 4-(b).

The Hexagonal Directional Wavelet Transform (HDWT) that we propose con-
sists in dividing each directional fluctuation space ij in more subspaces with finer

directions
wh= @ wit
le{1,---,2r}

This operation is achieved by applying specific filter banks to the high frequency
channels of Figure 4-(b). Indeed if we apply the filter bank of Figure 5-(a) to the high
frequency subband f1, the latter can be divided into 2 new directional subbands. We
can clearly apply the same process to the 2 other high frequency subbands in order
to obtain 6 directions as in Figure 6-(a). Notice that the filters used at this step can
be designed by dilating and shifting the well known diamond shaped quincunx filter.

Each of these 6 subbands can be divided again into 2 other subbands in order to
obtain 12 directions. Apply for example the filter bank of Figure 5-(b) to the subband
#2 of Figure 6-(a). By iterating the process, we can have 3 x 2P directions where p € N.
A parabolic scaling law[5] can be applied to the transform as in Figure 6-(b).
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Figure 6: Ideal frequency supports of hexagonal directional wavelets.



3.2 Implementation on square lattice

The question of filter’s design is not developed in this article. Several methods have
already been proposed in order to construct non-separable filter banks. Most of them
are restricted to 2 channels. For example, generalized McClellan transform [26] per-
mits to design transfer functions whose essential support approximate some arbitrary
set. In [9], a 4-channel biorthogonal, hexagonal filter bank was constructed. More
recently, a method has been proposed to obtain 2-channel filter banks with directional
vanishing moments [10]. However the design of M-band filters with finite impulse re-
sponses and an arbitrarily small angle between two consecutive directional vanishing
moments remains an open question.

As our objective is to construct wavelets that approximate the associated Shannon
wavelets, we do not use the hexagonal filter of [9] that is not sufficiently well localized
in the frequency domain. In the experiments below, all the filters involved in the
transform have been designed using the equation

1/2
Hy = |det D% g * x a4 - 3)
g XA +7)I2)

(ZvG(D*lA*)/A*

where Ag is the ideal support of Hy, D is the dilation matrix of the filter bank and A is
the lattice that supports the signal to be filtered. We chose for g a Gaussian function.
It is approximated by a compactly supported function. Such a design method is a
simple way to obtain simultaneously orthonormality, space and frequency localization,
linear phase and nearly vanishing directional moments. Moreover, when g tends to a
Dirac measure dp, Hy tend to the associated Shannon filters in the sense that

|| Ho — | det D|*? x4, |2 — 0.

In other words, Condition (1) can be satisfied for arbitrarily small e.

These filters have however infinite impulse responses. They are therefore imple-
mented in the Fourier domain. It may seems to be a drawback of the proposed
implementations. There are however several reasons for using the Fourier transform.
First, in order to have a fine directionality one should use filters that are very well
localized in the frequency domain and that have therefore large space support. If the
associated filter bank is implemented in the spatial domain, the computation time
of the algorithm is proportional to the length of that support and might be larger
than the computation time of a FFT (although it is O(NN) where N is the size of the
image). Secondly, if O(log N) directions are set at the finest scale, the computation
time of the whole transform that is implemented in the spatial domain is actually
O(Nlog N). A major argument for using the Fourier transform is that images are
in general sampled on a square lattice. The Fourier transform is a natural tool to
re-sample images on an hexagonal lattice as it comes down to shifting their spectrum.
This point is developed further below. At last recall that the curvelets are also ban-
dlimited and are implemented in the Fourier domain. In some sense, the transform
remains faithful to the curvelets although it generates some aliasing problems that
are addressed later. By using bandlimited wavelets, we can measure in some way the
magnitude of this aliasing.

As it is alluded to above, the algorithm is implemented for images that are sam-
pled on the square lattice Z2. There are at least two ways to implement hexagonal
directional wavelets on a square lattice. A first method consists in changing the fil-
ters Hj, into Hy o M where M is given in (2). If one assumes that the spectrum of
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Figure 7: Two possible reciprocal cells for the square lattice, (a): Voronoi cell and (b):
irregular hexagonal cell. Periodization of a square reciprocal cell, (a): square lattice.
(c) : irregular hexagonal lattice. The dashed lines corresponds to the Voronoi set of
the hexagonal reciprocal lattice. The black disk is the essential frequency support of
an image.
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images is supported on the circumscribed disk of the square reciprocal cell, then there
is nearly no aliasing in the obtained transform as it is shown in Figure 7-(b). The
transform can moreover be implemented with finite impulse response filters. However
the obtained refinement filter is clearly not enough isotropic.

In the experiments below, we follow another approach. A standard Fourier trans-
form is applied to the image. The obtained transform is however considered as the
Fourier transform of an image sampled on the irregular hexagonal lattice

f:<1}2 ?)ZQ'

It amounts to exchanging the periodization vectors (27, 0) and (0, 27) for (27,0) and
(m,2m). The Fourier coefficients remain the same, they are just shifted. As it is shown
in Figure 7-(c), one can keep the same reciprocal cell.

Notice that the image could also be re-sampled on a regular hexagonal lattice
without deteriorating the circular spectrum of the image. The number of samples to
represent the image would be reduced that way by a factor v/3/2. This idea is not
developed in the article as our objective is to design bases for £2(Z?). The reciprocal
cells of Figure 7 have the same surface. Thus there is no lost of data when exchanging
the lattices whatever the shape of the frequency support of the image. Moreover this
process transforms an orthonormal basis into an orthonormal basis.

All the filter banks are implemented in the Fourier domain. Let X be the Fourier
transform of an input, discrete 2D signal x. For each filter bank, the output yi of the
k™ channel is given by its Fourier transform

Yi= Y. Hi(- +0)X(- +7)
YVE(D-TA%) /A"

At the end of the process, an inverse Fourier transform is applied to each subband.
A different Fourier transform is used for each lattice. They all run in an O(N log N)
algorithm for an image of size N (see [19] for an hexagonal FFT, and the appendix
for a FFT on a general, regular lattice).

The hexagonal filter is designed using (3) with

Ag={w eR?: |wi| < 7/2 & |2w1 + 3wa| < 27 & |2w1 — 3w < 27} 4+ T%,

10



Figure 8: Decomposition of the Barbara image onto 12 directional subbands.

A =T, D =2Idy and (0.5)/T* = {(0,0), (,0), (r/2,7), (—7/2,7)}. The wavelet
filters are defined by

Hi(w) = e'«r=2/2) Hy(w+ (7,0)),
Hy(w) = ez:(“’1+“’2/2) Ho(w + (7/2,7)),
H3(w) = e Hy(w+ (—7/2,7)).

One checks easily that the associated matrix is unitary. The 2-channel filter banks
are designed by the same method. One set

Hy(w) = ei<“”5>H0(w +9),

where {7} = (D7'A*)/A* and § is such that (v, §) = 7 modulo 27.

The hexagonal directional filter banks have been implemented up to 12 directions.
Figure 8 shows the Barbara image that have decomposed onto 12 directional subbands
and a low frequency subband.

3.3 Numerical results

We present in this section some numerical results obtained with the HDWT, and
comparisons with the Hexagonal Wavelet Transform (HWT) and the 9/7 Separable
Wavelet Transform (SWT) [8]. Let us point out that the compression performance of
the 9/7 tap filters are widely recognized and that it has been incorporated in the JPEG
2000 standard. On the other hand, we do not show the best possible implementation

11



Figure 9: Non linear approximation of Barbara image (detail). (a) Original image.
(b) HWT (PSNR = 27.08). (c¢) SWT (PSNR = 27.02). (d) HDWT (PSNR = 28.58).
Images are reconstructed from the 10% largest coefficients.

of the transform proposed in Section 3.1. For instance, using finite impulse response
filters on hexagonally sampled images would permit to reduce the Gibbs oscillations
generated by the thresholding or quantization of the coefficients. The 3 transforms
are implemented with 6 levels of decomposition. There are 12 directions at the 2
finest scales of the HDWT, 6 at the 2 intermediate scales and 3 at the coarsest scales.
The HWT consists in choosing 3 directions at each level of the HDWT.

In Figure 9 we show non linear approximations of the 512 x 512 Barbara image.
For the 3 transforms, the 10* largest coefficients have been retained. We obtained
a better result with the HDWT than with the SWT and HWT, in terms of PSNR
and visually. As expected, textures are better preserved. Statistical comparisons are
given in Figure 10. When few coeflicient are retained the HDWT gives a much better
approximation than the SWT. The two lines merge when more than 10° coefficients
are retained. However the SWT never outperforms the HDWT contrary to what
happens with redundant frames such as curvelets and contourlets.

As alluded to in the introduction, the benefit of directional transforms is larger
in regions where the image has a strong and smooth geometrical flow. The Barbara
image is therefore very well adapted to the HDWT. When the comparison is made on

12
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Figure 10: PSNR versus number of retained coefficients for Barbara image (dashed
line: SWT, solid line: HDWT).

texture-less images, the improvement becomes less significant. For instance, when the
3 transforms are applied to the 512 x 512 fresco image and the 10* largest coefficients
are retained, the PSNR of the obtained images are close (see Figure 11). We emphasize
that the efficiency of the HDWT could be improved by designing new filter banks.
The proposed transform has however a drawback that appears clearly when we look
at the detail shown in Figure 11. Although the HWT does not have ambiguous
directions, it has only 3 directions. As a consequence, some directions are not well
reproduced. With the configuration we adopted, this is the case for the horizontal
structures that appears on the right of the image. As expected, only the horizontal
and vertical structures are well preserved with the SWT. All the directions should be
well represented with the HDW'T. The left hand side of the image is better rendered
with the HDWT than with the HWT and the SWT. But one can observe that the
horizontal structures on the right hand side are not well preserved with the HDWT.
This could be justified by the fact that, like the HWT, the HDW'T has only 3 directions
at the coarsest scales. However the 12 directions at the finest scales should make up
for the lack of directions of coarse wavelets. The main reason for this phenomenon
is that some directional wavelets are aliased. This problem is addressed in the next
section.

13
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Figure 11: Non linear approximation of fresco image (detail). (a) Original image. (b)
HWT (PSNR = 24.85). (¢) SWT (PSNR = 24.87). (d) HDWT (PSNR = 25.03).
Images are reconstructed from the 10* largest coefficients. The 3 images are aliased
but in different directions

(a)

Figure 12: (a) Hexagonal wavelets and (b) hexagonal directional wavelets. The hexag-
onal directional wavelets are aliased.
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4 On the frequency localization of Directional Wavelet
Bases

4.1 Frequency localization of the HDWT

The aliasing alluded to above appears clearly on 6 of the wavelets shown in Figure 12!,
in the case of 12 directions. More precisely, the 12 wavelets are aliased. Each of
them has 2 directions, the main direction that corresponds to the ideal frequency
support, and an aliased direction obtained by symmetry about the Cartesian axes.
This phenomenon could be justified by the way the HDWT is implemented, that is to
say by the combinations, at each scale, of an hexagonal filter bank and one or more
2-channel filter banks. This combination generates non-uniform filter banks [13] that
split the image into a refinement subband and, for example, 12 directional wavelet
subbands as in Figure 8, and whose wavelet filters are aliased. Figure 13 shows the
transfer functions of 2 among the 12 passband directional wavelet filters that are
designed by the proposed method. Some spikes appear clearly in the right hand side
graph. They do not appears in the left hand side one because the main direction and
the aliased direction are too close.

The causes for this frequency leaks are unfortunately not due to the way the 12
subbands are split. Suppose indeed that we want to compute directly the wavelet
coefficients at a same scale, using a single non-uniform filter bank, and that we design
therefore new filters. Then the obtained filters will be aliased again, for two reasons.
First, the periodization of the transfer functions introduces energy in unwanted regions
of the spectrum. It corresponds to the 2 largest peaks in the aliased direction, in
Figure 13-(b). The same phenomenon appears in some other transforms based on
filter banks such as decimated contourlets.

Another reason why the hexagonal directional wavelets are aliased is connected
to the permissibility condition for the filter banks that are used in this transform.
One says that a filter bank is (or more precisely the passband supports of its filters
are) permissible if one can design smooth transfer functions whose supports remain
in a neighborhood of their ideal supports [7], or in other words, if for all € > 0, there
exists a perfect reconstruction filter bank { Hy } . such that supp Hy C Ap+B(0,¢), Vk,
where B(0, €) stands for the ball of center 0 and radius ¢, and Ay is the ideal frequency
support of the filter. Although each uniform (2-channel and 4-channel) filter bank
used in the proposed transform is permissible, the non uniform filter banks generated
by the combination of these filter banks are not permissible. The frequency support of
the filter of Figure 13-(b) is schematized in Figure 14-(b). In Figure 14-(a) is shown the
frequency support that would have a permissible filter if such a filter existed. Notice
that by the periodization of the transfer function, the ideal filter is also aliased. A
detailed proof of this property is given in [13] for another frequency partitioning. It
can be easily adapted to the HDWT. Moreover, the arguments developed in the proof
of Proposition 2 below can be applied to show the non-permissibility of directional
filter banks.

1We do not show the discrete wavelets at the finest scale of the HDWT, but the wavelets defined
on a continuous domain
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Figure 14: (a) Ideal and (b) real frequency supports of passband hexagonal directional
filters.
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4.2 Frequency localization of general directional wavelets

From this argumentation, one might think that the obstruction to the construction
of non-aliased directional wavelet bases could be bypassed if one uses wavelets that
are not generated by a filter bank tree. (Recall that the periodization of transfer
functions introduces aliasing.) Consider a Shannon directional wavelet basis {15 (- —
v) }kek ver, that we want to approximate with regular wavelets. Let us suppose that
the basis satisfies a parabolic scaling law so that the number of directions increases
with the scale. Recall that this last property is fundamental to obtain an optimal
sparsity behavior for images with C? singularities [6]. The frequency support of each
wavelet is adjacent to the support of 2 other wavelets that have the same scale and at
least 1 wavelet that has a coarser scale. If the number of directions increases with the
scale, there is also a wavelet whose frequency support is adjacent to the support of
at least 2 wavelets that have a finer scale. There are therefore at least 5 neighboring
wavelets. We claim that this Shannon wavelet basis cannot be approximated by a
regular wavelet basis {15 (- —7)}rek,ver, so that the frequency support of ¢, remains

in an arbitrary small neighborhood of supp 1/[2 , for all k € K. We obtain this way a
generalization of the property on the non-permissibility of the filter banks, discussed
above.

Proposition 2 Consider a Shannon directional wavelet basis {1} (- — ¥)} ek ver,

with 1/[; = |Ag|~Y2 xa,, such that one of the sets Aj has more than 4 adjacent sets
A;. For € > 0 sufficiently small, there are no families of functions {¢y}rex and

{Jk}ke;c that satisfy the following properties simultaneously.
i) {k(- =)} ke ver, and {Jk( —7) }kex e, are biorthogonal bases for L?(R?).
it) 1712 and zzk are continuous, Vk € K.

iii) supp Up C Ap+B(0, e diam(Ay)) and supp vy C Ap+B(0, € diam(Ay)), Vk € K.

We tried to give a statement that applies to the most general frequency partition-
ings. In the proof, we consider 6 wavelets only, and in condition (%), the radius of the
ball does not have to depend on the diameter of Aix. In the case when Ay = Dk_lA7

it is however natural to assume that supp ¥y, C D (A + B(0,¢)).

Proof. The proof by contradiction of this statement is based on geometric arguments.
Suppose Conditions 4),ii) and i) are satisfied for an € > 0 arbitrarily small. Denote
by Ao the frequency support of a Shannon wavelet having at least 5 neighboring
wavelets, and by Ay, k € {1,---,5}, the 5 neighboring wavelet frequency supports
(see Fig. 15). The orthogonality condition

<1/}0('_7)7{/;k>207 \V/’YGFO, vk€{1775}

becomes, after a standard calculation,
D do(- =N Uk(- —7) =0, Vke{l,--,5}, (4)
YETG

while the condition

~ 1 if =0,
w050 ={ 5 i T2t o,
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Figure 15: Ideal frequency support of ¢y for k € {0,---,5}. The hatched areas
correspond to the support of % 151.

leads to

S G- =)ol =) =1, (5)

veTy
where Z stands for the conjugate complex number of z. If Conditions ii) and iii) are

satisfied for € small enough, then the support of %Jk has 2 connected components.
They are represented by the hatched areas in Figure 15, when k = 1. By (4), this

2 components should cancel each other out when 1//)3{/;;@ is shifted along I'j. The
reciprocal lattice I'f; must also satisfy (5) which means that the ideal support of %
forms a tiling of R? when it is shifted along I'j. These last 2 conditions are summed
up in Figure 16-(a). We can observe that, in this example, the 2 components cancels
each other out when k£ =1 but does not when k = 2 (see Figure 16-(b)).

More generally, there does not exists a tiling { Ao + {7} },er; for the ideal support

of ¥y such that the 5 (or more) neighboring wavelets i satisfy Condition (4) in the

sense that the 2 connected components of %{/)Vk can cancel each other out. Indeed,
the tiling generated by the support of % is an isohedral tiling [15]. (It is generated
by a single tile and its symmetry group acts transitively on the tiles.) Among the 81
types of possible isohedral tilings, several ones have tiles with more than 4 adjacent
tiles but one can verify that none of them has the required type. An easy way to
check this claim is to consider a tile formed by 2 adjacent tiles, as for instance, the
tile marked by 0 in Figure 16. When it is shifted along the good regular lattice, it
generates another isohedral tiling. If it has the required type, the tile should have at
least 8 adjacent tiles as in Figure 17. The conclusion comes from the fact that a tile
of an isohedral tiling has at most 6 adjacent tiles [15]. o
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Figure 16: Ideal support of % (- —«) for v € I'§. The 2 components of the support

of % (- — )zzl( — ) cancel each other out while the components of the support of
to(+ —7) ¥a(- —7) do not.

Figure 17: The required type of tiling does not exist since tiles of an isohedral tiling
have at most 6 adjacent tiles.
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Proposition 2 does not apply to the frequency partitioning of Figure 3-b as each
set Ay has only 4 adjacent sets. The argumentation above can however be generalized
to this example if one includes sets that are connected by a dot, though the aliasing
might remain localized in the neighborhood of a dot. This phenomenon occurs with
hexagonal wavelets but that the artifact is visually negligible (see Figure 12-(a)).
Notice that there are also non-aliased bases that satisfy a non isotropic scaling law
but that are not obtained by shifting a finite number of mother wavelets at each scale.
One might think here of orthonormal ridgelets [12].

5 Directional Wavelet Tight Frames With Arbitrary
Small Redundancy Factor

Proposition 2 reveals an obstruction to the construction of directional wavelet bases
that approximate properly Shannon directional wavelets. On the other hand, second
generation discrete curvelets [3] approximate the associated Shannon wavelet tight
frame with a good frequency localization. This frame is however highly redundant.
We show in this section that the latter construction can be generalized in order to
obtain well localized directional wavelet tight frames with arbitrary small redundancy
factor.

5.1 Shannon Directional Wavelet Tight Frames

Proposition 1 can be generalized to the case of tight frames as follows.

Proposition 3 Let 1/[2 = (1/]Ak|)Y?xa, with A, CR?, for all k € K. If
1. { Ak + {7} }yer; is a packing of R?,

2. {Ag}rex is a tiling of R?,
3. —=p(>1),Vkek,

where |Ci| is the area of the reciprocal cell of T'y, then the family {5 (- — )} ke, vers
is a tight frame for L*(R?) with redundancy factor p.

Proof. Condition 1 of Proposition 1 has been changed in Conditions 1 and 3. They
are sufficient conditions for {¢3(+ — 7)}rex,yer, to be a tight frame for Wy with
redundancy factor p. o

5.2 Regular Directional Wavelet Tight Frames

In the discussion below, we assume that the functions 171; have fast decay and are
bandlimited. We make therefore the assumption that ¢ is in the Schwartz class
S(R?) although Proposition 4 could be proved with more general functions. This
hypothesis makes however convergence questions easier to treat.

20



Proposition 4 Suppose that ¢ € S(R?), ||[¢kll2 =1, Vk € K,

§£:|Ck|’ﬁ;

ke

2
’ < 0

and
min{|:1:—y|: x,y € UFZ&$3’£9}>O-
ke

The family {1 (- — ) }rek very is a tight frame for L*(R?) with redundancy factor
p if and only if

o Yolal @] = e,

keK
b > Gk k(€ =) Br©) =0, vye [J T,
kEK, kek

where K, ={keK: veT}}.

Notice that the condition min{|z —y|: z,y € Upcic I's & = # y} > 0 is not satisfied
by directional wavelets that are generated by standard rotations and dilations as
considered in [1] and shown in Figure 3-(b). In this case, another proposition needs to
be proved. On the other hand, this condition is satisfied by all the directional wavelets
that fulfill a parabolic scaling law and such that low frequencies are represented by a
scaling function ¢. It is therefore satisfied by curvelets.

Proof. Let us assume that {¢x(- — 7)}rex,yer, is a tight frame for L?(R?) with
redundancy factor p. It is characterized by the equation

pf(x) =" > (frvw(- =) il =), (6)

ke veT

for all f € L?(R?) and almost every z € R?, with unconditional convergence in
L?(R?). Applying a Fourier transform to this equation, we get

pFO) =D 3" (fn(- =) e S i(6),

kel ~vely

for almost every ¢ € R?, with
(Fon(- =) = F (For) (=),
where F denotes the Fourier transform. Hence

pf(&) = @m) 2> 3 F (fin) (—) e T Bue).

ke veTl,

Using Poisson summation formula

DG et =1(Cr,] Y g€ =),

yeTly ’YEFZ
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we obtain, let us say for all f € S(R?),

pf(€) = (@2m) 23 1Cr | D (&= 7) Ukl§ =) Ui (©).

kex veTy,

Notice that

S 1Crd D2 |fe = )| |onte = | o)

kek yery,
) 1/2 ) 1/2
< Y |- <Z|crk| (e =) ) (Z Crul (€| )
yery, keK keK
< C<ox
Then, by Fubini’s Theorem,
pfO) =@m™2 3 fE—1) D 1Cr, ] r(E — 1) (o). (7)

* kek
’YGUke/c ry v

Since min{|z —y| : 2,y € Upec Tx &  # y} > 0, (7) is satisfied, for all f € S(R?),
if and only if Conditions a and b are satisfied.

Conversely, assume that Conditions a and b are satisfied. Equation (7) is therefore
satisfied for all f € S(R?). The same arguments as above lead to (6). Now, suppose
that f € L*(R?). By the density of S(R?) in L?(R?), there is a sequence {f,}, of
functions in S(R?) that tends to f. Every f, satisfies (6) and consequently

PlFallz =D > Wt =P (8)

kel ~vely

By Fatou’s Lemma, we know therefore that Y, > cp, [(f,¥%(- —7))|* converges.
It is then easy to prove that

PIFIE =D > [fww(- =P,

kel vyel'y

for all f € L?(R?), by making f,, tends to f in (8). Hence the conclusion. o

Below, we will need only the following sufficient conditions for a tight frame.

Corollary 1 Suppose ||g|2 =1, Vk € K and

a. || [e(©) = (2m)p,

kEK,
b. supp 17);( — ) N supp @ =0, VkeK,VyeTlyg,
then {(+ — ) }kex,yer, s a tight frame for L*(R?) with redundancy factor p.

A consequence of this result is that, for all p > 1, there is a directional wavelet tight
frame

{¥k(- =) }kex yery
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Figure 18: Packings {A + {7} },cr for (a) curvelets and (b) directional wavelets with
dilation factor < 2.

with redundancy factor p, and such that, for all k& € I, ¥y has fast decay and 12);
is supported on a neighborhood of its ideal support. Her is an example that prove
this claim. The idea is to construct a Shannon directional wavelet tight frame with
arbitrary small redundancy factor p > 1 using Proposition 3. If d(Ax + {v}, Ax +
{n}) > 0, for all v,n € T'y with v # 5, and all k € K, where d stands for the
distance, then the wavelets 1712 are obtained by smoothing x4, in such a way that,
supp 171;( — ) and supp 1712( —n) are disjoint for all v,n and k. Condition a of
Corollary 1 can also easily be satisfied in order to construct the sought regular tight
frame.

The set A = {£ € R? : al&| < & and 1 < |&] < 2} considered in Section 2
cannot be used any longer. Indeed, if it is shifted along the same lattice as in Figure
3-(a), the smoothed Fourier transforms of the wavelets cannot have disjoint supports.
There are, on the other hand, lattices I'* such that {4+ {7} },er- is a packing of R?
and d(Ay + v, Ax + 1) > 0 if v # 7, but their density cannot be arbitrary close to 1.
An example of such a packing is given in Figure 18-(a). (This kind of packing is used
in the construction of curvelets[3].)

Consider henceforth the set

A={¢cR?: |&] < al&] and 1 < |&] < B}

with 8 € (1,2). When it is shifted along I'* = Ze; + Zez where e; = (0,(8 + 2)/2)
and ez = (a(f+1) — B+2,(6+2)/4), it forms a packing which density tends to 1 as
0 tends to 2. This example is shown in Figure 18-(b). We show in Figure 19-b, the
frequency partitioning corresponding to the obtained (-adic directional wavelets.

Notice that in the limit case when 8 = 2, we find again the tiling of Figure 3-
(a). It is, of course, not realistic to choose  too close to 2 as, in such a case, the
wavelets have no aliasing and fast decay but, by Heisenberg principle, their essential
spatial support is too large (and the wavelets are therefore not sufficiently localized
in the spatial domain). Moreover the discretization process needed for an implemen-
tation on images with a finite number of pixels, does not permit to make ( tends
to 2 either. Nevertheless, we can expect to obtain properly localized (in space and
frequency) wavelets tight frames with redundancy factor less than 2 while curvelets
have a redundancy factor equal to 7.2[3].
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Figure 19: Packings {Ax}rex for (a) curvelets and (b) directional wavelets with
dilation factor < 2.

6 Conclusion and outlook

The new directional wavelet transform that we proposed in Section 3 is implemented
in a simple and fast algorithm. In some sense, it improves the curvelet and contourlet
transforms as it is non redundant. However it has lost in frequency localization since
the directional wavelets are aliased. In spite of this drawback, we have obtained
encouraging numerical results. The later could be improved by developing new filter
design techniques. In particular, FIR filters could be used when the transform is
applied to hexagonally sampled images, and would permit to reduce the Gibbs and
aliasing phenomenon.

Proposition 2 shows that we cannot construct directional wavelets (as they are
defined in this article) without aliasing or redundancy. The proposed transform can
therefore be very attractive when we cannot manage with redundant transforms as,
for instance, in lossless compression. On the other hand, we shown in Section 5
that the redundancy factor of well localized directional wavelet tight frames can be
dramatically reduced, and consequently that these wavelets could be used in low bit
rate compression.

The discussion above leaves however some open questions. In particular, we shown
that there are no biorthogonal directional wavelet bases that are both well localized
in the sense that the wavelets and the dual wavelets have fast decay and their Fourier
transform are supported on an arbitrary close neighborhood of their ideal support.
But we do not know whether there are well localized directional wavelet bases whose
dual basis is aliased. These transforms would be very useful since images could be
reconstructed without aliasing artifact by reserving the well localized wavelet bases
for the synthesis.

For instance, consider a Shannon directional wavelet basis given by the sets { A }rex
and the lattices {T'x}rex, with Ay = DfA and T'y, = D,;ll" except possibly for one
index k corresponding to the low frequency wavelet ¢. Define ¢ by its Fourier trans-

form
V(&) = 2n| ATV g x xa(§) €, VEER?,
where g is supported on a neighborhood of 0, fR2 g(x)dr =1 and o € T so that the
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wavelets are not too much aligned. It satisfies the identity

S [ac - = B2

~yeI*

which means that {¢(- — )} er is an orthonormal basis for W = (¢¥(- —¥)),er.
More generally, if ¢, = v o Dy, then {¢,(- — v)}yer, is an orthonormal basis for

Wi = (Yr(- —7))yery, but we do not know whether {5(- — v)}rex yer, is a basis
for L?(R?). In particular, do we have

L*(R?) = P Wi?

kex

7 Appendix: Fast Fourier Transform on regular lat-
tice.

For convenience, we give a brief description of a fast algorithm for the computation
of the Fourier transform of an image I defined on a regular quotient lattice I'/A with
I CACR2

The Fourier transform of I is defined by

~

W= > Ih]e ™™, vaeT /A"
veT/A

~

Notice that the inverse Fourier transform is given by the reconstruction formula

1 ~ )
Iy = ——— I\ ey e AJT,
[] 77N AGAZ*/F* [Ae yeAN/

so that the FFT and the IFFT can be computed using a similar scheme. Let us show
that they are implemented in a O(N log N) algorithm where N = #(T"/A). Suppose
first that 2I" C A and write " as

3

I =J@er+{m),

i=0

with ~; € T', Vi € {0,---,3} (and 7o = 0). Thus we have

3
f[)\] Z Z I[27 + 7] e 42 =)
i=0 y€l/(2-1A)
3
_ fz.[g/\] e~ v )
i=0
where I; = (v + I[2y +;]) is defined on T'/(27A) with #(I'/(27A)) = #(T'/A) /4.
So, to compute f, one just need to compute the Fourier transform of the 4 smaller
images I; and multiply them by e =72, R
Suppose that #(I'/A) = 4™ and denote by C,, the computation cost of I. If one
neglects the cost of sums, we obtain the recurrence relation

Cp=4Cp_1 +4"
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(Since v9 = 0, we have actually C,, = 4C,,_1 + 34""1) We can decrease n until
2" ¢ A. In such a case, we find another lattice A C A such that

3

r=J @+,

i=0

and apply the same process. As Cy = 0, we get C,, = 4"n. As a conclusion, for an
image of size N = 4", the computation cost is IV log, V.
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