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TIME-DOMAIN STUDY OF THE DRUDE–BORN–FEDOROV MODEL FOR A CLASS OF
HETEROGENEOUS CHIRAL MATERIALS

PATRICK CIARLET, JR.†, GUILLAUME LEGENDRE‡ AND SERGE NICAISE§

Abstract. We deal with the well-posedness of the transient Maxwell equations in a particular class of heterogeneous isotropic
chiral material modeled by the Drude–Born–Fedorov constitutive relations. A new formulation of the underlying evolution problem
allows us to correct a previous result establishing the existence and uniqueness of the electromagnetic fields in a homogeneous medium.

1. Introduction. Chiral materials are examples of media which respond with both electric and magnetic
polarization to either electric or magnetic excitations. Because of this peculiar behavior, they have been studied
extensively by the electromagnetics community, for a wide range of applications, including prospective ones.

In this work, we consider the time-dependent Maxwell equations in a heterogeneous, isotropic chiral medium
filling a bounded domain surrounded by a perfect conductor. Although their use is mainly restricted to time-
harmonic applications, the Drude–Born–Fedorov constitutive relations (see for instance [10]) are used to model
the behavior of the chiral material, within the scope of what is referred to in the literature as the optical response
approximation [9]. Recent mathematical investigations dealing with electromagnetic waves in chiral media and
involving the Drude–Born–Fedorov relations are the main topics of a number of articles, e.g. [1, 3] and references
therein for the time-harmonic case, [8, 11] and references therein for the time domain case. Here, the well-posedness
result erroneously stated in [8] is reexamined (and corrected) through a different mathematical interpretation of
the evolution system in the case where the electric permittivity and magnetic permeability of the medium are both
possibly non-constant and proportional to the chiral admittance. Our main result asserts the existence of a unique
solution to the problem under a spectral condition involving the admittance. Its proof is based on the invertibility
property of the so-called Drude–Born–Fedorov operator, some characterizations of the orthogonal of its range and
the introduction of an appropriate invariant subspace of its inverse.

More precisely, we consider the following problem. Let Ω be a bounded subset of R3 with a Lipschitz boundary
Γ, no assumption being made on the simple connectedness of Ω, nor on the connectedness of Γ. We consider the
time-dependent Maxwell equations, supplemented with boundary and initial conditions to close the system (the
reader is referred to [8] for a justification of this model),

∂D

∂t
− curlH = 0 in Ω× (0,∞),

∂B

∂t
+ curlE = 0 in Ω× (0,∞),

H ∧ n = J , E ∧ n = 0 on Γ× (0,∞),

E(0) = E0, H(0) = H0 in Ω,

(1.1)

subject to the Drude–Born–Fedorov constitutive relations

D = ε(E + β curlE) and B = µ(H + β curlH). (1.2)

In the above equations, D is the electric displacement, H is the magnetic field, B is the magnetic induction, and
E is the electric field. The vector n denotes the unit outward normal vector to the boundary Γ and the field J is a
surface current density flowing tangentially to the boundary. The positive scalars ε, µ and β denote respectively the
electric permittivity, the magnetic permeability, and the chirality admittance of the heterogeneous isotropic chiral
material. It is assumed that these coefficients are real-valued bounded functions and uniformly positive definite,
i.e. there exists constants ε∗, ε

∗, µ∗, µ
∗, β∗ and β∗ such that

0 < ε∗ ≤ ε(x) ≤ ε∗ < +∞, 0 < µ∗ ≤ µ(x) ≤ µ∗ < +∞,
and 0 < β∗ ≤ β(x) ≤ β∗ < +∞, ∀x ∈ Ω.
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In addition, the class of chiral material considered in this paper is characterized by two more hypotheses: we require
that there exist two constants κε and κµ such that

κε = (εβ)
−1

and κµ = (µβ)
−1

in Ω, (1.3)

and moreover that the chiral admittance β is piecewise regular, in the following sense: we suppose there exists a
partition of Ω in a finite set of Lipschitz domains Ω1, . . . ,ΩK such that the restriction of β to each Ωk, 1 ≤ k ≤ K,
belongs to C 0(Ωk). Note that these conditions always hold if ε, µ and β are constant, which is the case originally
treated in [8]. On the other hand, when these coefficients are all piecewise constant, conditions (1.3) are satisfied if
their respective jumps hold on the same interfaces. Physically speaking, we do not claim that this model is pertinent.
However, from a mathematical point of view, these assumptions allow one to partly recover a familiar functional
setting (see the discussion in subsection 7.2 in [8]), which is the one for Maxwell’s equations in a nonhomogeneous,
isotropic dielectric material.

We finally recall that the surface current density is linked to the surface charge density σ by the charge
conservation equation

∂σ

∂t
+ divτ J = 0 on Γ,

in which divτ is the surface divergence operator. In the remainder of the paper, we restrict ourselves to a zero
surface charge density, therefore the surface current density will be (surface) divergence free.

An outline of the paper is the following. In Section 2, we first introduce the various ingredients needed to set
a proper mathematical framework for the physical problem (1.1)-(1.2). Section 3 is devoted to the invertibility of
the operator underlying the Drude–Born–Fedorov constitutive relations (1.2). This intermediary result then allows
us to establish the well-posedness of the evolution problem in the next section. Finally, we discuss the range of
applicability of this result in section 5.

2. Some definitions and technical results. Let us give some definitions and recall a number of results
relative to the functional frawework used throughout the paper.

We first define the Hilbert spaces

H(curl ; Ω) =
{
v ∈ L2(Ω)3 | curlv ∈ L2(Ω)3

}
,

H(div β−1; Ω) =
{
v ∈ L2(Ω)3 | div(β−1v) ∈ L2(Ω)

}
,

equipped with their usual norms, and their respective, closed, subspaces

H0(curl ; Ω) = {v ∈ H(curl ; Ω) | v ∧ n = 0 on Γ} ,
H0(div β−1; Ω) =

{
v ∈ H(div β−1; Ω) | β−1v · n = 0 on Γ

}
,

H(div β−10; Ω) =
{
v ∈ H(div β−1; Ω) | div(β−1v) = 0 in Ω

}
.

We also introduce the space X(Ω, β−1) = H(curl ; Ω) ∩ H(div β−1; Ω), and its subspaces XN (Ω, β−1) =
H0(curl ; Ω)∩H(div β−1; Ω) and XT (Ω, β−1) = H(curl ; Ω)∩H0(div β−1; Ω). It is well-known that the embedding
of X(Ω, β−1) into L2(Ω)3 is not compact (see, for instance, [2]), but that those of XN (Ω, β−1) and XT (Ω, β−1) are
(see [13]).

Concerning the traces of vector fields of H(curl ; Ω), the following integration by parts formula, or Green’s
formula, holds∫

Ω

u · curlv dx−
∫

Ω

curlu · v dx = 〈u ∧ n,n ∧ (v ∧ n)〉Γ ,

∀u ∈ H(curl ; Ω), ∀v ∈ H(curl ; Ω),

where u∧n and n∧ (v ∧n) are respectively the tangential trace of u and the trace of the tangential components
of v, and 〈·, ·〉Γ stands for the duality product between H−1/2(divΓ; Γ) and its dual H−1/2(curlΓ; Γ), both endowed
with their natural quotient norm (see [6, 7] or [4] for a summary). In addition, the trace mapping u 7→ u ∧ n|Γ
(resp. v 7→ n ∧ (v ∧ n)|Γ is onto from H(curl ; Ω) to H−1/2(divΓ; Γ) (resp. H−1/2(curlΓ; Γ)).

When the domain Ω is not simply connected, we introduce the kernel

H(m,β−1) =
{
v ∈ XT (Ω, β−1) | div(β−1v) = 0 in Ω and curlv = 0 in Ω

}
,

and assume there exists a set of m connected open surfaces Σj , 1 ≤ j ≤ m, m being the genus of ∂Ω, called “cuts”,

which allow one to reduce Ω to a simply-connected domain denoted Ω̇ = Ω \ ∪j=1,...,mΣj .
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Similarly, when the boundary Γ is not connected, we denote by Γi, 0 ≤ i ≤ p, its (maximal) connected components,
Γ0 being the boundary of the only unbounded connected component of R3\Ω, and we introduce the space

H(e, β−1) =
{
v ∈ XN (Ω, β−1) | div(β−1v) = 0 in Ω and curlv = 0 in Ω

}
.

The proofs of Propositions 3.14 and 3.18 in [2] can be easily adapted to characterize the spaces H(m,β−1) and
H(e, β−1) as follows.

Proposition 2.1. The dimension of the space H(m,β−1) is equal to m. It is spanned by the functions ∇̃qTj ,

1 ≤ j ≤ m, where each qTj is the solution in H1(Ω̇), unique up to an additive constant, to the problem
−div(β−1∇qTj ) = 0 in Ω̇,

∂nq
T
j = 0 on Γ,

[qTj ]Σk
= constant and [β−1∂nq

T
j ]Σk

= 0, 1 ≤ k ≤ m,〈
β−1∂nq

T
j , 1

〉
Σk

= δjk, 1 ≤ k ≤ m.

Above, given g ∈ L2(Ω̇), g̃ denotes its canonical extension to L2(Ω).
Proposition 2.2. The dimension of the space H(e, β−1) is equal to p. It is spanned by the functions ∇qNi ,

1 ≤ i ≤ p, where each qNi is the unique solution in H1(Ω) to the problem
−div(β−1∇qNi ) = 0 in Ω,

qNi |Γ0
= 0 and qNi |Γ`

= constant, 1 ≤ ` ≤ p,〈
β−1∂nq

N
i , 1

〉
Γ0

= −1 and
〈
β−1∂nq

N
i , 1

〉
Γ`

= δi`, 1 ≤ ` ≤ p.

Let Pm (resp. Pe) denote the orthogonal projection from XT (Ω, β−1) onto
H(m,β−1) (resp. from XN (Ω, β−1) onto H(e, β−1)), with respect to the weighted L2(Ω)-inner product

(v,w)β−1 =

∫
Ω

β−1 v ·w dx. (2.1)

As a consequence of the last two propositions, the projection Pmu (resp. Peu) of a field u satisfying div(β−1u) = 0
in Ω is completely characterized by the set of scalars

〈
β−1u · n, 1

〉
Σj

, 1 ≤ j ≤ m, (resp.
〈
β−1u · n, 1

〉
Γi

, 1 ≤ i ≤ p).
Finally, we recall the following relationship

divτ (v ∧ n|Γ) = (curlv) · n|Γ, (2.2)

which is valid for any (sufficiently smooth) vector field v defined in Ω.

3. An auxiliary problem. In this section, we study existence and uniqueness of a solution to the following
auxiliary problem, derived from system (1.1) and constitutive relations (1.2): given f ∈ H0(div β−10; Ω), find
u ∈ XN (Ω, β−1) satisfying

u+ β curlu = f in Ω. (3.1)

We take inspiration from the work of Boulmezaoud et al. [5] on the existence and uniqueness of Beltrami (or
force-free) fields in a bounded domain, with the preliminary consideration of a curl-div system.

3.1. Preliminary study of a curl-div system. We now extend some of the results previously obtained in
[5] to a more general context. We introduce the following problem: given j ∈ H(div β−10; Ω) ∩ H(e, β−1)⊥, find
u ∈ XT (Ω, β−1) such that

β curlu = j, div(β−1u) = 0, and Pmu = 0. (3.2)

This problem was studied in Lemma 5 of [5] in the case β = 1 and for a smooth domain. We adapt it to our setting
(that is, to the case of a non constant parameter β and a Lipschitz domain) as follows.

Lemma 3.1. A field u ∈ XT (Ω, β−1) is solution to (3.2) if and only if it solves the variational problem

(β curlu, curlv)L2(Ω)3 + (div(β−1u),div(β−1v))L2(Ω)3

+ (Pmu, Pmv)β−1 = (j, curlv)L2(Ω)3 , ∀v ∈ XT (Ω, β−1). (3.3)
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Moreover, this variational problem admits a unique solution.
Proof. The existence and uniqueness of a solution to (3.3) simply follows from the Lax–Milgram lemma, the left-

hand side of (3.3) defining a coercive and continuous bilinear form on XT (Ω, β−1)×XT (Ω, β−1) as a consequence
of Corollary 3.16 in [2]. It remains to show the equivalence between (3.2) and (3.3). As problem (3.2) obviously
implies problem (3.3), let us concentrate on proving the converse statement by following the steps given in [5]. Let
u ∈ XT (Ω, β−1) be a solution to (3.3). First, taking v = Pmu as a test function, we find that (Pmu, Pmu)β−1 = 0,
hence Pmu = 0 almost everywhere in Ω. Next, consider ϕ ∈ H1(Ω)/R, solution to the variational problem∫

Ω

β−1∇ϕ ·∇ψ dx = −
∫

Ω

div(β−1u)ψ dx, ∀ψ ∈ H1(Ω).

Such a solution exists since the right-hand side is orthogonal to 1 by the Green formula, namely∫
Ω

div(β−1u) dx =
〈
β−1u · n, 1

〉
Γ

= 0.

Furthermore, it is governed by the Neumann problem

div(β−1∇ϕ) = div(β−1u) in Ω, β−1∇ϕ · n = 0 on Γ.

Taking v =∇ϕ in (3.3), we deduce that

(div(β−1u),div(β−1∇ϕ))L2(Ω)3 = 0,

and therefore div(β−1u) = 0 almost everywhere in Ω. Finally, let us set w = β curlu− j. Then, using (3.3) and
the first two steps, we have

(w, curlv)L2(Ω)3 = 0, ∀v ∈ XT (Ω, β−1).

By virtue of Lemma 3.5 in [2], this implies that

(w, curl Φ)L2(Ω)3 = 0, ∀Φ ∈ H1(Ω)3. (3.4)

Taking Φ in D(Ω)3, we then find that curlw = 0 in Ω, which guarantees that w is in H(curl ; Ω). Coming back
to (3.4) and applying the Green formula, we obtain

〈w ∧ n,Φ〉Γ = 0, ∀Φ ∈ H1(Ω)3.

In other words, the fieldw belongs to H0(curl ; Ω). Since div(β−1w) = 0 in Ω, we infer thatw belongs toH(e, β−1).
Finally, seeing that Pew = 0 since〈

β−1w · n, 1
〉

Γi
= 〈curlu · n, 1〉Γi

−
〈
β−1j · n, 1

〉
Γi

= 0, ∀i ∈ {1, . . . , p} ,

by (2.2) and the assumption on j, we deduce, using Proposition 2.2, that w = 0 in Ω.
As in [5], we now introduce the (bounded linear) operator from H(div β−10; Ω) ∩H(e, β−1)⊥ into itself

Kβ : j 7→ u,

where u ∈ XT (Ω, β−1) is the unique solution to problem (3.2). Since XT (Ω, β−1) ∩H(div β−10; Ω) is compactly
embedded into H(div β−10; Ω)∩H(e, β−1)⊥, the operator Kβ is clearly compact. Accordingly, the operator Id+Kβ

is a Fredholm operator of index zero from H(div β−10; Ω)∩H(e, β−1)⊥ into itself. Therefore, it is an isomorphism
if and only if its kernel is reduced to the null subspace, and the same goes for the operator Id+Kβ

∗, where Kβ
∗

denotes the adjoint of the operator Kβ , since dim ker(Id+Kβ) = dim ker(Id+Kβ
∗) according the Riesz–Fredholm

theory.
In order to identify the adjoint of Kβ , we need to establish a Weyl–Helmholtz type decomposition for the

elements of H(div β−10; Ω) ∩H(e, β−1)⊥. We start by proving the following result.
Lemma 3.2. Let u in L2(Ω)3 be a divergence-free field such that u · n = 0 on Γ and Pmu = 0. Then, there

exists one, and only one, field φ in XN (Ω, β−1) such that

u = curlφ in Ω, div(β−1φ) = 0 in Ω, and Peφ = 0.
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Proof. By Theorem 3.17 of [2], there exists ψ ∈ XN (Ω, 1) such that u = curlψ in Ω and fulfilling the statement
of the lemma with β = 1. Since ψ doesn’t verify div(β−1ψ) = 0 in Ω, we consider χ ∈ H1

0 (Ω) such that

(∇χ,∇v)β−1 = (ψ,∇v)β−1 , ∀v ∈ H1
0 (Ω).

This field satisfies

div(β−1∇χ) = div(β−1ψ) in Ω,

and the boundary condition

β−1∇χ ∧ n = 0 on Γ.

Consequently, the function φ = ψ −∇χ−
∑p
i=1

〈
β−1(ψ −∇χ) · n, 1

〉
Γi
∇qNi meets the requested properties. To

conclude that the field φ is unique, we make the following observation: if u = 0, φ belongs to H(e, β−1) and is
such that Peφ = 0, so φ is zero.

We next give a decomposition for any vector field in H(div β−10; Ω) ∩H(e, β−1)⊥.
Lemma 3.3. Let j ∈ H(div β−10; Ω) ∩ H(e, β−1)⊥ be given. Then, there exist s ∈ H1(Ω)/R, coefficients cj,

1 ≤ j ≤ m, and φ ∈ XN (Ω, β−1) such that

j =∇s+

m∑
j=1

cj∇qTj + β curlφ, with div(β−1φ) = 0 in Ω and Peφ = 0. (3.5)

The fields s and φ, and the coefficients (cj)1≤j≤m are unique.
Proof. Consider the function s ∈ H1(Ω)/R, solution to the Neumann problem

div(β−1∇s) = 0 in Ω, β−1∇s · n = β−1j · n on Γ,

which exists since 〈
β−1j · n, 1

〉
Γ

=

∫
Ω

div(β−1j) dx = 0.

The coefficients cj , 1 ≤ j ≤ m, are then given by

cj =
〈
β−1(j −∇s) · n, 1

〉
Σj
.

As the field u = β−1
(
j −∇s−

∑m
j=1 cj∇qTj

)
satisfies the hypotheses of Lemma 3.2, we deduce the existence of

the vector field φ.
By construction, it is easily seen that the fields s, φ, and the coefficients (cj)1≤j≤m are unique.

We may now introduce the operator K? from H(div β−10; Ω) ∩H(e, β−1)⊥ into itself such that

K? : j 7→ φ, (3.6)

where φ is the field appearing in Lemma 3.3 (and which depends continuously on j). It turns out that this operator
is the adjoint of Kβ (i.e., K? = Kβ

∗).
Lemma 3.4. The operator K? is the adjoint of Kβ when H(div β−10; Ω) ∩ H(e, β−1)⊥ is equipped with the

inner product (2.1).
Proof. Using Lemma 3.3, we can write

v =∇s+

m∑
j=1

cj∇qTj + β curlK?v, ∀v ∈ H(div β−10; Ω) ∩H(e, β−1)⊥.

Hence, for any u in H(div β−10; Ω) ∩H(e, β−1)⊥, we have

(Kβu,v)β−1 =

∫
Ω

Kβu · (β−1∇s+ β−1
m∑
j=1

cj∇qTj + curlK?v) dx.

5



Integrating by parts, we see that

(Kβu,∇s)β−1 = −
∫

Ω

div(β−1Kβu) sdx+
〈
β−1Kβu · n, s

〉
Γ

= 0,

since div(β−1Kβu) = 0 in Ω and Kβu belongs to XT (Ω, β−1). On the other hand, we find that

(Kβu,∇qTj )β−1 = (Pm(Kβu),∇qTj )β−1 = 0,

as Pm(Kβu) = 0. Consequently, one has

(Kβu,v)β−1 =

∫
Ω

Kβu · curlK?v dx.

Applying the Green formula and using the fact that (K?v) ∧ n = 0 on Γ, we reach

(Kβu,v)β−1 =

∫
Ω

curl (Kβu) ·K?v dx,

and, since curl (Kβu) = β−1u, we have finally proved that

(Kβu,v)β−1 = (u,K?v)β−1 ,

∀u ∈ H(div β−10; Ω) ∩H(e, β−1)⊥, ∀v ∈ H(div β−10; Ω) ∩H(e, β−1)⊥.

3.2. The Drude–Born–Fedorov operator. So far, we have not used the fact that β is piecewise regular, an
assumption which appeared before stating the proportionality assumptions (1.3). From now on, it will be explicitly
needed, starting with Theorem 3.5.

We next consider the mapping

Aβ : XN (Ω, β−1)→ H(div β−1; Ω)
u 7→ u+ β curlu,

defining the so-called Drude–Born–Fedorov operator, and suppose that H(div β−1; Ω) is equipped with the inner
product

(u,v)H = (u,v)β−1 +
(
div(β−1u),div(β−1v)

)
L2(Ω)

,

∀u ∈ H(div β−1; Ω), ∀v ∈ H(div β−1; Ω).

Let us characterize the orthogonal to the range of operator Aβ in H(div β−1; Ω). We first remark that Aβv = v for
any v ∈ H(e, β−1), so that H(e, β−1) ⊂ R(Aβ). Also, according to the definition of Pe (with respect to the scalar
product (·, ·)β−1), one finds that

Pew = 0, ∀w ∈ R(Aβ)⊥. (3.7)

Theorem 3.5. In H(div β−1; Ω), one has

R(Aβ)⊥ =
{
w ∈ H(div β−1; Ω) |w + β curlw = 0

}
.

Proof. Let us start with the inclusion R(Aβ)⊥ ⊂ {w ∈ H(div β−1; Ω) |w + β curlw = 0}. Let w ∈ R(Aβ)⊥;
it is such that

0 = (Aβv,w)H = (v + β curlv,w)β−1 +
(
div(β−1v),div(β−1w)

)
L2(Ω)

,

∀v ∈ XN (Ω, β−1). (3.8)

For any g ∈ L2(Ω), let ϕ ∈ H1
0 (Ω) be the unique solution to

div(β−1∇ϕ)− ϕ = g in Ω,

6



in the following sense ∫
Ω

(
β−1∇ϕ ·∇χ+ ϕχ

)
dx = −

∫
Ω

gχdx, ∀χ ∈ H1
0 (Ω), (3.9)

and consider in (3.8) the test function v =∇ϕ. This implies that

(∇ϕ,w)β−1 +
(
div(β−1∇ϕ),div(β−1w)

)
L2(Ω)

= 0.

Integrating by parts the first term in the left-hand side, we obtain

0 =
(
−ϕ+ div(β−1∇ϕ),div(β−1w)

)
L2(Ω)

=
(
g,div(β−1w

)
L2(Ω)

, ∀g ∈ L2(Ω).

In other words, one has

div(β−1w) = 0 in Ω,

and we see, by applying the Green formula, that (3.8) reduces to

(v,w + β curlw)β−1 = 0, ∀v ∈ XN (Ω, β−1). (3.10)

Now, for any z in D(Ωk)3, 1 ≤ k ≤ K, let us set v = z −∇ψ, where ψ belongs to H1
0 (Ωk) and is such that

div(β−1∇ψ) = div(β−1z) in Ωk. By construction, the field v belongs to XN (Ω, β−1) and plugging this test
function in equality (3.10) yields

w + β curlw = 0 in Ωk.

Hence, the field w belongs to H(curl ,Ωk) and we can apply the Green formula on each subdomain Ωk to get

K∑
k=1

〈w ∧ n,n ∧ (v ∧ n)〉∂Ωk
= 0, ∀v ∈ XN (Ω, β−1).

Hence, the tangential components of w are continuous across interfaces between subdomains. This implies that w
belongs to H(curl ; Ω) and satisfies

w + β curlw = 0 in Ω.

The converse inclusion follows directly from using the Green formula and remarking that the identity w +
β curlw = 0 implies that div(β−1w) = 0.

Lemma 3.6. Assume that

ker(Id+Kβ) = {0}. (3.11)

Then, a vector field w belongs to R(Aβ)⊥ if and only if there exists g in H
−1/2
0 (Γ) = {g ∈ H−1/2(Γ) | 〈g, 1〉Γ = 0}

such that

w = w0 +∇ϕg,

where w0 = −Kβ(Id+Kβ)−1∇ϕg and ϕg ∈ H1(Ω)/R is the variational solution to

div(β−1∇ϕg) = 0 in Ω,

β−1∇ϕg · n = g on Γ,

in the following sense ∫
Ω

β−1∇ϕg ·∇χdx = 〈g, χ〉Γ , ∀χ ∈ H
1(Ω)/R.

Proof. For any w in R(Aβ)⊥, let us denote its trace on Γ, which is an element of H
−1/2
0 (Γ), by g = β−1w ·n|Γ

and set

w0 = w −∇ϕg.

7



We remark thatw0 belongs toH0(div β−10; Ω)∩H(curl ; Ω). Setting j = β curlw0, we see that j ∈ H(div β−10; Ω)∩
H(e, β−1)⊥ and Kβj = w0, and that

j +Kβj = w0 + β curlw0 = −∇ϕg,

this last equality following from the identity w + β curlw = 0. The operator Id + Kβ being invertible due to
condition (3.11), we deduce that

j = −(Id+Kβ)−1∇ϕg,

and therefore

w0 = Kβj = −Kβ(Id+Kβ)−1∇ϕg.

Conversely, for any g in H
−1/2
0 (Γ), let us set w0 = −Kβ(Id+Kβ)−1∇ϕg and

w = w0 +∇ϕg.

The above arguments show that w is in H(div β−1; Ω) and satisfies w + β curlw = 0, so it belongs to R(Aβ)⊥.
Corollary 3.7. Assume that condition (3.11) holds. Then, there exist nonzero elements f ∈ H0(div β−10; Ω)

such that f 6∈ R(Aβ).

Proof. For any nonzero element g in H
−1/2
0 (Γ), let us set w0 = −Kβ(Id+Kβ)−1∇ϕg and w = w0 +∇ϕg, ϕg

being defined as in Lemma 3.6.
On the one hand, Lemma 3.6 shows that the field w belongs to R(Aβ)⊥. On the other hand, the field w0 is in

H0(div β−10; Ω) and is nonzero (indeed, if were the case, the identity w0 + β curlw0 = −∇ϕg would imply that
ϕg = 0 and hence g would be zero).

Finally, w0 cannot be in the range of Aβ , because it is not orthogonal to w. Indeed, one has

(w0,w)H = (w0,w)β−1 = (w0,w0 +∇ϕg)β−1 = (w0,w0)β−1 6= 0,

as an integration by parts yields (w0,∇ϕg)β−1 = 0.
Let us now go back to the auxiliary problem (3.1). We are now in a position to formulate a non-invertibility

result, which is a direct consequence of the preceding corollary.
Corollary 3.8. Under condition (3.11), the operator Aβ is not an isomorphism from XN (Ω, β−1)∩H0(div β−10; Ω)

into H0(div β−10; Ω).
This last corollary negates an affirmation which was, erroneously, thought to be proved in the case of a

homogeneous material in [8]. The correction of this point is one of the main goals of the present work.
Nevertheless, one can establish the following results.
Theorem 3.9. Assume that condition (3.11) holds. Then, the range R(Aβ) is closed in H(div β−1; Ω).
Proof. Let us consider a sequence (un)n∈N in XN (Ω, β−1) such that

fn = un + β curlun → f in H as n→ +∞.

This equivalently means that

fn → f in L2(Ω)3 and div(β−1un)→ div(β−1f) in L2(Ω), as n→ +∞. (3.12)

Let ϕn in H1
c (Ω) =

{
v ∈ H1(Ω) | v|Γ0

= 0, v|Γi
= constant, 1 ≤ i ≤ p

}
be the unique variational solution to1

div(β−1∇ϕn) = div(β−1un) in Ω.

According to (3.12), the sequence (ϕn)n∈N converges in H1
c (Ω), namely there exists ϕ ∈ H1

c (Ω) such that

ϕn → ϕ in H1
c (Ω) as n→ +∞, with div(β−1∇ϕ) = div(β−1f).

We next focus our attention on the divergence-free part of un, ∀n ∈ N, by setting

Φn = un −∇ϕn.

1Observe that, ∀n ∈ N, ϕn is such that 〈β−1∇ϕn · n, 1〉Γi
= 〈β−1un · n, 1〉Γi

, 1 ≤ i ≤ p.
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The sequence (Φn)n∈N then satisfies

div(β−1Φn) = 0 in Ω, Φn ∧ n = 0 on Γ, PeΦn = 0, ∀n ∈ N,
f̃n = Φn + β curl Φn = fn −∇ϕn → f −∇ϕ in L2(Ω)3 as n→ +∞.

Consider now jn = β curl Φn, ∀n ∈ N. By construction (see (3.5) and (3.6)), we have

Φn = Kβ
∗jn,

and consequently

jn +Kβ
∗jn = Φn + β curl Φn = f̃n → f −∇ϕ in H(div β−1; Ω) as n→ +∞.

Since the operator Id +Kβ
∗ is bounded from H(div β−1; Ω) into itself and invertible, its inverse is also bounded,

which implies that

jn = (Id+Kβ
∗)−1f̃n → (Id+Kβ

∗)−1(f −∇ϕ) in H(div β−1; Ω) as n→ +∞.

As Kβ
∗ is bounded, we deduce in turn that

Φn = Kβ
∗jn → Kβ

∗(Id+Kβ
∗)−1(f −∇ϕ) = Φ in H(div β−1; Ω) as n→ +∞.

This last property implies that

un = Φn +∇ϕn → Φ +∇ϕ = u in L2(Ω)3 as n→ +∞,

as well as div(β−1u) = div(β−1f) in L2(Ω). Moreover, we have

curlun = curl Φn = β−1(f̃n −Φn)→ β−1(f −∇ϕ−Φ) in L2(Ω)3,

so that un tends to u in XN (Ω, β−1) as n tends to infinity, with curlu = β−1(f −∇ϕ−Φ). This finally leads to

u+ β curlu = Φ +∇ϕ+ f −∇ϕ−Φ = f ,

and shows that f indeed belongs to R(Aβ).
Corollary 3.10. Under condition (3.11), the Drude–Born–Fedorov operator Aβ is an isomorphism from

XN (Ω, β−1) into R(Aβ).
Remark 3.1. For a homogeneous isotropic chiral material, that is when the value of the chiral admittance β is

constant over the whole domain Ω, condition (3.11) means that β does not belong to a discrete set of real numbers
related to the spectrum of the curl operator (see [5] and [14] for details). Here, as the admittance is not necessarily
constant, this condition only expresses that −1 is not an eigenvalue of the operator Kβ . We may conjecture that
it is however generic, in the sense that if it is satisfied for a given function β0 then, given a small perturbation β′

of β0, −1 is not an eigenvalue of the operator Kβ′ either.
We conclude this section with a second decomposition for the elements of R(Aβ)⊥, which is needed in the

remainder of the paper.
Lemma 3.11. Assume condition (3.11) holds. Then, a field w belongs to R(Aβ)⊥ if and only if there exists h

in H−1/2(divΓ; Γ) such that

w = w0 +wh,

with w0 = −Kβ
∗(Id+Kβ

∗)−1(wh + β curlwh) and wh ∈ H(div β−10,Ω)∩H(curl ; Ω) is the variational solution
to

β curl (β curlwh) = 0 in Ω,
wh ∧ n = h on Γ,
Pewh = Pew,

(3.13)

in the sense described below.
Nota bene. By construction, one has that w ∧ n = h on Γ. As a consequence, the tangential trace mapping is
surjective from R(Aβ)⊥ to H−1/2(divΓ; Γ).
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Proof. Let w ∈ R(Aβ)⊥. Then, one has curlw = −β−1w belongs to L2(Ω)3 and therefore w belongs to
H(curl ; Ω) and h = w ∧ n belongs to H−1/2(divΓ; Γ). Let us now fix an element ŵ in H(curl ; Ω) such that

ŵ ∧ n = h. (3.14)

Up to subtracting a gradient, we can assume that β−1ŵ is divergence-free and that it is furthermore orthogonal
to H(e, β−1). For that, consider the unique solution ŵh ∈ XN (Ω, β−1) satisfying

(β curl ŵh, curlv)L2(Ω)3 +
(
div(β−1ŵh),div(β−1v)

)
L2(Ω)

+ (Peŵh, Pev)β−1 =

(β curl ŵ, curlv)L2(Ω)3 + (Pe(w − ŵ), Pev)β−1 , ∀v ∈ XN (Ω, β−1). (3.15)

Then, the field

wh = ŵh + ŵ,

belongs to H(div β−10,Ω) ∩H(curl ; Ω), with Pewh = Pew, and is the solution to (3.13). Now we set

w0 = wh −w, (3.16)

which is in XN (Ω, β−1) ∩H(div β−10,Ω) and such that Pew0 = 0, and we consider j∗ = β curlw0. By (3.5) and
(3.6), we have that w0 = Kβ

∗j∗ and, from (3.16),

j∗ +Kβ
∗j∗ = β curlw0 +w0 = β curlwh +wh ∈ H(div β−10,Ω).

Since the operator Id+Kβ
∗ is invertible, we deduce that

j∗ = (Id+Kβ
∗)−1(β curlwh +wh),

hence the decomposition

w = wh −w0 = wh −Kβ
∗(Id+Kβ

∗)−1(β curlwh +wh).

Conversely, given h in H−1/2(divΓ; Γ), we fix any element ŵ in H(div β−10,Ω)∩H(curl ; Ω) satisfying Peŵ = 0
and (3.14) and we consider ŵh the unique solution in XN (Ω, β−1) to (3.15). The above arguments then show that

w = wh −Kβ
∗(Id+Kβ

∗)−1(β curlwh +wh)

is an element of R(Aβ)⊥.

4. Evolution problem. In order to be solved, the original physical problem must be recast in the mathe-
matical framework introduced so far. We thus need to precise the hypotheses on the data.

The a priori assumptions on the initial conditions are that E0 ∈ XN (Ω, β) and H0 ∈ H(curl ,Ω), satisfying
H0 ∧ n = J(0) on Γ. Concerning the surface current density J , we assume that it is measurable with respect to
the time variable t. We already know from Section 1 that divτ J(·, t) = 0 on Γ, t ≥ 0, and we furthermore suppose
that J is such that there exists a lifting HJ (t), t ≥ 0, with HJ (t) ∧ n = J(t) on Γ. The existence of such a
lifting allows us to replace the system (1.1)-(1.2) by an equivalent evolution problem with homogeneous boundary
conditions.

As a consequence, the fields E and H̃ = H −HJ satisfy

ε
∂

∂t
(E + β curlE)− curl H̃ = curlHJ in Ω, t > 0,

µ
∂

∂t

(
H̃ + β curl H̃

)
+ curlE = −µ ∂

∂t
(HJ + β curlHJ ) in Ω, t > 0,

E ∧ n = 0, H̃ ∧ n = 0 on Γ, t > 0,

E(0) = E0, H̃(0) = H̃0 = H0 −HJ (0) in Ω,

which can be written as the following abstract evolution problem: find E (t) ∈
XN (Ω, β−1)×XN (Ω, β−1), t > 0, such that

d

dt
(AβE )− CE = F , t > 0,

E (0) = E0,

(4.1)
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by setting

E =

(
E

H̃

)
, E0 =

(
E0

H̃0

)
and F =

(
ε−1 curlHJ

− ∂
∂t (HJ + β curlHJ )

)
,

and introducing the operators

Aβ =

(
Aβ 0
0 Aβ

)
and C =

(
0 ε−1curl

−µ−1curl 0

)
.

Assuming that condition (3.11) is satisfied in the remainder of this section, Corollary 3.10 enables us to prove
that the above problem is well-posed under the proportionality conditions (1.3). Indeed, considering the new
unknown2 D = AβE , problem (4.1) is equivalent to

dD

dt
− CAβ−1D = F , t > 0,

D(0) = AβE0.

(4.2)

Let us then denote by S the largest vector subspace of R(Aβ) such that

Aβ
−1S ⊂ S,

in the sense that

{Aβ−1y |y ∈ S} ⊂ S.

We now simply remark that the linear operator CAβ−1 is a bounded operator from S = S × S into itself

provided (1.3) holds. Indeed, from our assumption on the coefficients, we may write, for any

(
ϕ
ψ

)
in S,

CAβ−1

(
ϕ
ψ

)
=

(
ε−1curl (Aβ

−1ψ)
−µ−1curl (Aβ

−1ϕ)

)
=

(
ε−1β−1β curl (Aβ

−1ψ)
−µ−1β−1β curl (Aβ

−1ϕ)

)
=

(
κεβ curl (Aβ

−1ψ)
−κµβ curl (Aβ

−1ϕ)

)
=

(
κε
(
(Id+ β curl )(Aβ

−1ψ)−Aβ−1ψ
)

−κµ
(
(Id+ β curl )(Aβ

−1ϕ)−Aβ−1ϕ
) )

=

(
κε(ψ −Aβ−1ψ)
−κµ(ϕ−Aβ−1ϕ)

)
.

Hence system (4.2) has a unique mild solution D ∈ C ([0,∞);S), for any AβE0 ∈ S and F ∈ L1
loc(0,∞;S) (see

[12] for instance). Coming back to the original unknowns E and H, we have obtained the following result.
Theorem 4.1. Assume that E0 ∈ Aβ−1S, H0 ∈ HJ (0) + Aβ

−1S, and J is such that there exists a lifting

HJ ∈ W 1,1
loc (0,∞;H(β curl ;S)), where H(β curl ;S) = {v ∈ S |β curlv ∈ S}. Then, under conditions (1.3) and

(3.11), problem (1.1)-(1.2) has a unique solution

E ∈ C ([0,∞);Aβ
−1S), H ∈HJ + C ([0,∞);Aβ

−1S).

In particular, we have

E ∈ C ([0,∞);XN (Ω, β−1)), H ∈HJ + C ([0,∞);XN (Ω, β−1)).

As an end note, let us emphasize the difference between the present approach to the evolution problem (4.1),
which amounts (up to some multiplicative coefficients) to use the fields D and B as the unknowns of the Maxwell
problem, and the one followed in [8], which kept the “natural” unknowns E and H. From the point of view of
electromagnetics, this can be seen as a reinterpretation of the original problem, by inversion of the constitutive
relations. While, in retrospect, the problem in E and H did not allow us to establish a full existence result, the
problem in D and B does not yield directly an explicit functional setting for the data and the solution. So, this
new result requires further studies, which are provided in the next section.

2In other words, from the point of view of electromagnetics, the unknowns are now the fields ε−1D and µ−1B.
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5. Range of applicability of Theorem 4.1. Gathered in this last section are some results intended to
make the space S more “explicit”. We thus provide some information on the validity of the existence result of the
time-dependent solutions in [8].

5.1. Some elementary results.
• The vector space S is not reduced to {0} (this result has already been alluded to in the Erratum to

[8]).
Lemma 5.1. Consider the space

S0 =
{
∇v | v ∈ H1

c (Ω) and div(β−1∇v) ∈ L2(Ω)
}
.

Then, S0 is a subspace of R(Aβ) and furthermore

S0 ⊂ S.

Proof. For the first assertion, let w ∈ R(Aβ)⊥ and ∇u ∈ S0. By the Green formula, we have

(∇u,w)H = (∇u,w)β−1 = 0,

since div(β−1w) = 0 in Ω, according to Theorem 3.5.
For the second one, we notice that

Aβ
−1(∇u) =∇u,

which belongs to XN (Ω, β−1). This shows that Aβ
−1S0 = S0, hence the inclusion S0 ⊂ S.

• The vector space S is closed.
Lemma 5.2. The vector space S is a closed subspace of R(Aβ).
Proof. Let x belong to the closure S, then there exists a sequence (xn)n∈N of elements of S going to x in

H(div β−1; Ω) as n tends to infinity. Since the embedding of XN (Ω, β−1) into H(div β−1; Ω) is continuous, as is
the operator Aβ

−1 from R(Aβ) to XN (Ω, β−1), we have

Aβ
−1xn → Aβ

−1x in H as n→∞.

This implies that Aβ
−1x ∈ S because

(
Aβ
−1xn

)
n∈N is a sequence of elements of S.

We just have shown that Aβ
−1S ⊂ S and consequently that S ⊂ S, by definition of S.

• An abstract, but somewhat natural, characterization of S.
Lemma 5.3. The set S is equal to

S = ∩k∈N∗D(Aβ
−k) =

{
y ∈ R(Aβ) | ∀k ∈ N∗, ∃zk ∈ D(Aβ

k), Aβ
kzk = y

}
.

Proof. Let us set

S̆ =
{
y ∈ R(Aβ) | ∀k ∈ N∗, ∃zk ∈ D(Aβ

k), Aβ
kzk = y

}
.

We first show the inclusion S ⊂ S̆. If y ∈ S, then there exists v ∈ XN (Ω, β−1) such that

y = Aβv.

But, by definition, v also belongs to S. Therefore there exists v1 ∈ XN (Ω, β−1) satisfying

v = Aβv1.

By iterating, we conclude that y ∈ S̆.
Conversely let y ∈ S̆, then there exists z1 ∈ XN (Ω, β−1) such that

Aβz1 = y.

This implies that z1 belongs to S̆, because, for all k ∈ N∗, there exists zk ∈ D(Aβ
k) such that Aβ

kzk = y.

Therefore, we have z1 = Aβ
−1(Aβ

kzk) = Aβ
k−1zk.
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5.2. A more involved result. To establish the interesting property that S is strictly larger than S0, we first
need a number of intermediate results. Following [8], we introduce the following bilinear form on XN (Ω, β−1) ×
XN (Ω, β−1)

a(u,v) = (u+ β curlu,v + β curlv)β−1

+ (div(β−1u),div(β−1v))L2(Ω) + (Peu, Pev)β−1 . (5.1)

Lemma 5.4. Assume that (3.11) holds. Then, the bilinear form defined by (5.1) is coercive, i.e., there exists
γ > 0 such that

a(u,u) ≥ γ ‖u‖2XN (Ω,β−1), ∀u ∈ XN (Ω, β−1). (5.2)

Proof. As in [8], we use a contradiction argument. Suppose that (5.2) does not hold. Then, there exists a
sequence (un)n∈N in XN (Ω, β−1) such that

a(un,un)→ 0 as n→∞, and ‖un‖XN (Ω,β−1) = 1, ∀n ∈ N. (5.3)

The second property implies that the sequence (un)n is bounded in XN (Ω, β−1). Since XN (Ω, β−1) is compactly
embedded into L2(Ω)3, we deduce that there exists a subsequence, still denoted by (un)n∈N, and u in XN (Ω, β−1)
such that

un → u weakly in XN (Ω, β−1), as n→∞,
un → u strongly in L2(Ω)3, as n→∞.

Now as (5.3) means that

un + β curlun → 0 strongly in L2(Ω)3,

div(β−1un)→ 0 strongly in L2(Ω),

Peun → 0 strongly in L2(Ω),

we deduce that un converges strongly to u in XN (Ω, β−1) and that

u+ β curlu = 0 in Ω, (5.4)

div(β−1u) = 0 in Ω, (5.5)

Peu = 0, (5.6)

‖u‖XN (Ω,β−1) = 1. (5.7)

As u ∧ n = 0 on Γ, the field j = β curlu, which belongs to H(div β−1; Ω), satisfies j · n = 0 on Γ. This implies
that u = Kβ

∗j, according to (3.5) and (3.6). Now using (5.4), we see that

Kβ
∗j + j = 0,

and since the assumption (3.11) guarantees that Id + Kβ
∗ is an isomorphism, we deduce that j = 0. Then, one

has u = 0, which contradicts (5.7).
Lemma 5.5. Assume that (3.11) holds. For any y in H(div β−10,Ω) ∩ R(Aβ), there exists z ∈ D(Aβ

2) such
that

Aβ
2z = y.

Proof. As a consequence of Lemma 5.4 and Lax–Milgram’s lemma, there exists a unique solution z ∈
XN (Ω, β−1) to

a(z,v) = (y,v)β−1 + (Pey, Pev)β−1 , ∀v ∈ XN (Ω, β−1). (5.8)

First, choosing v ∈ H(e, β−1) yields

(Pez, Pev)β−1 = (Pey, Pev)β−1 , ∀v ∈ H(e, β−1),
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and thus

Pez = Pey.

Next, for any g ∈ L2(Ω), let ϕ ∈ H1
0 (Ω) be the unique solution to (3.9) and consider in (5.8) a test function of the

form v =∇ϕ to obtain

(z + β curl z,∇ϕ)β−1 +
(
div(β−1z),div(β−1∇ϕ)

)
L2(Ω)

= 0.

Integrating by parts in the first term in the left-hand side leads to

0 =
(
div(β−1z),−ϕ+ div(β−1∇ϕ)

)
L2(Ω)

=
(
div(β−1z), g

)
L2(Ω)

, ∀g ∈ L2(Ω),

and therefore

div(β−1z) = 0 in Ω. (5.9)

Problem (5.8) then reduces to

(z + β curl z,v + β curlv)β−1 = (y,v)β−1 , ∀v ∈ XN (Ω, β−1), (5.10)

and, choosing v in D(Ωk) for 1 ≤ k ≤ K, we see that (5.10) implies that

(Id+ β curl )(z + β curl z) = y in Ωk.

Hence, the field z+β curl z belongs to H(curl ,Ωk). Returning to (5.10) and applying the Green formula on each
subdomain Ωk, we find

K∑
k=1

〈(z + β curl z) ∧ n,n ∧ (v ∧ n)〉∂Ωk
= 0, ∀v ∈ XN (Ω, β−1). (5.11)

This implies that z + β curl z belongs to H(curl ,Ω) and satisfies

(Id+ β curl )(z + β curl z) = y in Ω. (5.12)

It remains to check that

(z + β curl z) ∧ n = 0 on Γ. (5.13)

This boundary condition cannot be deduced from (5.11) because the test functions v are in XN (Ω, β−1). But,
noticing that y belongs to R(Aβ), it stems from (5.12) that (Id + β curl )(z + β curl z) is in R(Aβ) as well, or,
equivalently, is orthogonal to R(Aβ)⊥ in H(div β−1; Ω), which yields, keeping (5.9) in mind,

((Id+ β curl )(z + β curl z),w)β−1 = 0, ∀w ∈ R(Aβ)⊥.

After an integration by parts, we obtain

(z + β curl z,w + β curlw)β−1 + 〈w ∧ n,n ∧ ((z + β curl z) ∧ n)〉Γ = 0, ∀w ∈ R(Aβ)⊥,

and, owing to Theorem 3.5,

〈w ∧ n,n ∧ ((z + β curl z) ∧ n)〉Γ = 0, ∀w ∈ R(Aβ)⊥.

We finally deduce from the results of Lemma 3.11 that

n ∧ ((z + β curl z) ∧ n) = 0 in H−1/2(curlΓ; Γ),

which implies (5.13).
Lemma 5.6. Let y ∈ S be such that it is orthogonal to S0 in H(div β−1; Ω). Then, one has div(β−1y) = 0 in

Ω.
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Proof. The orthogonality assumption is equivalent to∫
Ω

(
β−1y ·∇u+ div(β−1y) div(β−1∇u)

)
dx = 0,

∀u ∈ {v ∈ H1
0 (Ω) | div(β−1∇v) ∈ L2(Ω)}.

Once more, for any g ∈ L2(Ω), we consider ϕ ∈ H1
0 (Ω) the unique solution to (3.9) and take u = ϕ hereabove.

Applying the Green formula then leads to∫
Ω

div(β−1y)g dx = 0, ∀g ∈ L2(Ω),

hence the conclusion.
• The vector space S is larger than S0.
Lemma 5.7. The set S \ S0 is non empty.
Proof. Let y ∈ S ∩ S⊥0 . Then, by virtue of Lemma 5.6, the field β−1y is divergence-free and therefore, owing

to Lemma 3.3, we have the following decomposition

y =∇s+

m∑
j=1

cj∇qTj + β curlφ,

with s ∈ H1(Ω)/R, coefficients cj , 1 ≤ j ≤ m, and φ ∈ XN (Ω, β−1), such that div(β−1φ) = 0 in Ω and Peφ = 0.
Since y belongs to S, it is orthogonal to R(Aβ)⊥ and therefore

(y,w)H = 0, ∀w ∈ R(Aβ)⊥,

or equivalently, using the above decomposition of y,∫
Ω

(β−1∇s+

m∑
j=1

cj β
−1∇qTj + curlφ) ·w dx = 0, ∀w ∈ R(Aβ)⊥.

Applying the Green formula (bearing in mind that w + β curlw = 0 and that div(β−1w) = 0 in Ω), we obtain

〈β−1w · n, s+

m∑
j=1

cj q
T
j 〉Γ − (φ,w)β−1 = 0, ∀w ∈ R(Aβ)⊥.

Therefore, using Lemma 3.6, we deduce that

〈g, s+

m∑
j=1

cj q
T
j 〉Γ − (φ,w)β−1 = 0, ∀g ∈ H−1/2

0 (Γ), (5.14)

with w given as in Lemma 3.6. Let us next fix φ̃ ∈ XN (Ω, β−1), such that div β−1φ̃ = 0 and Peφ̃ = 0, and consider
the unique s0 ∈ H1/2(Γ)/R governed by

〈s0, g〉Γ = (φ̃,w)β−1 , ∀g ∈ H−1/2
0 (Γ). (5.15)

Such a s0 exists because the right-hand side of this identity is a linear form on H
−1/2
0 (Γ). Now consider the unique

lifting s̃ ∈ H1(Ω)/R such that

div(β−1∇s̃) = 0 in Ω,

s̃ = s0 on Γ.

In view of (5.14), the property (5.15) implies that the field ỹ, defined by

ỹ =∇s̃+ β curl φ̃,

is orthogonal to R(Aβ)⊥. This means that ỹ belongs to R(Aβ). Moreover, by construction, the field β−1ỹ is
divergence-free (and, as such, it is orthogonal to S0). Hence, by virtue of Lemma 5.5, there exists z ∈ D(Aβ

2) such
that

Aβ
2z = ỹ
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Now let v ∈ XN (Ω, β−1) be such that ỹ = Aβv, then we remark that

Aβ(Aβz − v) = 0,

and since Aβ is injective we deduce that

v = Aβz,

which garantees that v belongs to R(Aβ). Moreover, since

ỹ = v + β curlv,

and β−1ỹ is divergence-free, we deduce that β−1v is divergence-free. Applying once more Lemma 5.5, there exists
z3 ∈ D(Aβ

2) such that

Aβ
2z3 = v,

which implies that

Aβ
3z3 = Aβv = ỹ.

By iteration, we show that ỹ belongs to D(Aβ
k), for all k ∈ N, and we conclude using Lemma 5.3.
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