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by large claims

M. Barges*', S. Loisel’and X. Venel*
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Abstract

Market cycles play a great role in reinsurance. Cycle transitions are not independent from the
claim arrival process : a large claim or a high number of claims may accelerate cycle transitions.
To take this into account, a semi-Markovian risk model is proposed and analyzed. A refined
Erlangization method is developed to compute the finite-time ruin probability of a reinsurance
company. As this model needs the claim amounts to be Phase-type distributed, we explain how
to fit mixtures of Erlang distributions to long-tailed distributions. Numerical applications and
comparisons to results obtained from simulation methods are given. The impact of dependency
between claim amounts and phase changes is studied.

JEL classification codes: G22 C60

Keywords: Finite-time ruin probability, reinsurance cycles, Erlangization, dependence in risk
theory, phase-type distributions.

1 Introduction

The classical Sparre-Anderson risk model describes the surplus process {R;}+>0 for an insurance or
a reinsurance company as Ry = u and

Rt:U—FCt—St,

where u represents the non-negative initial capital and ¢ > 0 is the premium income rate. The
compound renewal process {S;};>0 designates the cumulated claim amount up to time ¢ and is
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expressed as

0, if Ny =0,
Sy = N '
> ity X otherwise,

where the claim amounts X;, ¢ > 1, are non-negative and i.i.d. random variables. The number of
claims up to time t is modeled by the renewal process { N };>o with i.i.d. inter-arrival times noted
by Wi, k > 1. The X;’s, ¢ > 1 are independent from the process (IV¢);>o. In this paper, we are
interested in the evaluation of the finite-time ruin probability

$(u,T)=P[Bt€[0,T], u+ct—S5 <0, u>0T3>0.

Different methods to compute this finite-time (non-)ruin have been proposed in the literature.
Picard and Lefevre (1997) derived an explicit formula for the finite-time non-ruin probability in a
compound Poisson model where the claim amounts are integer-valued. This idea was then widely
used and extended to more general modelizations as in De Vylder and Goovaerts (1999), Ignatov and
Kaishev (2004), Rulliere and Loisel (2004) or Lefevre and Loisel (2009), among others. Asymptotic
methods have also been used to evaluate the finite-time ruin probability as in Biard et al. (2009)
where the claim sizes are heavy-tailed and stationarity and independence assumptions are relaxed
in possible correlation crises. Previous general asymptotic results have been provided for sums of
random variables as in Wiithrich (2003), Albrecher et al. (2006) or Kortschak and Albrecher (2009).

The method we focus on is called Erlangization. It was first introduced in Avram and Usabel
(2003) but principally developed by Asmussen et al. (2002). The Erlangization method consists
in replacing the deterministic time horizon T" by an Erlang-distributed random variable H with
mean 7" and independent from the claim process. Asmussen et al. (2002) have shown that the ruin
probability before the independent Erlang time H coincides with the ruin probability in a certain
Markovian fluid model with a matrix-exponential form. They considered the compound Poisson risk
model with phase-type claim amounts. Stanford et al. (2005a) proposed an extension to the general
Sparre-Anderson risk model. In Yu et al. (2007), the risk process with phase-type distributed inter-
claim times and claim amounts is perturbed by a standard Brownian motion. Ramaswami et al.
(2008) also extended the Erlangization method to Markovian modulated fluid flow models which
will prove to be essential our work. Erlangization has also been used in some other domains as in
Stanford et al. (2005b) where the forestry problem of the evolution of uncontrolled fire perimeter
over time is treated. For a complete review on fluid flow matrix analytic methods applied in ruin
theory, see Badescu and Landriault (2009).

We propose here to consider the reinsurance market. In the reinsurance business, the presence
of underwriting cycles cannot be ignored. As said in Cummins et al. (2008), reinsurance cycles are
composed of soft phases, during which reinsurance supply is extensive and reinsurance premium
income rates are quite low and decreasing, and hard phases where the supply is too low and the
premium income rate becomes higher and higher. Phase transitions are hard to explain, and seem
to happen due to both endogenous and exogenous events. In Weiss (2007), it is mentionned that
these changes can come from institutional features as well as the effects of real phenomena. These
phenomena can be asymmetric information in capital markets, capital surpluses and shortages in
insurance or interest and/or loss shocks.



A simple generalization of the above-mentioned Erlangization model could be obtained with a
Markovian environment process which would modulate the premium income rate, following the idea
of Asmussen (1989) and of many others. Nevertheless, this first generalization leads to a model in
which the cumulated claim amount process has no feedback control on the phases of the Markovian
environment process {J;}. This is not the case in real world, as changes in cycle phases may be
triggered by a large claim. In this paper, we propose a generalization of the above risk model that
takes into account this possible trigger.

We consider a simplification of a multi-phases cycle as it is exposed in Subsection 3.1 into a
2-phases reinsurance cycle consisting of a soft phase with low premium rate and a hard phase
with high premium rate. In financial insurance, it is usual to suppose only two environment states
as in the model introduced by Hardy (2001) where the volatility of a stock is either high or low
according to the state environment. Considering two environment phases permits of course not only
model simplifications but also avoids many estimation problems which appear when more phases
are assumed.

In the Solvency II framework, the capital required to cover risk is determined in such a way
that a 1-year Value-at-Risk is controlled. Nevertheless, for reinsurance risk, and in particular for
catastrophe risk, l-year occurrence probabilities of extreme events are small, and risk must be
controlled within a larger time period, 5 to 10 years, to determine not only solvency requirements
but also long term economic capital in internal risk models. The average length of reinsurance
cycles typically ranges from 4 to 10 years, see Venezian (1985), Cummins and Outreville (1987)
and Weiss (2007). It is thus necessary to use a risk model that incorporates this cyclic behavior.

Even if the numerical application provided is Section 6 is detailed when only the premium
income rates changes according to the cycle phases, our model is developed for the inter-claim
time and claim amount distributions to be dependent from the environment cycle process. The
feedback of the claim amounts on the environment process thus involves some dependence between
inter-claim times and claim amounts. Other types of dependence have already been explored in the
study of infinite- or finite-time ruin probability. Boudreault et al. (2006) and Albrecher and Boxma
(2004) assumed that each claim amount depends on the previous inter-claim time or inversely that
each inter-claim time depend on the previous claim amount. This has been extended to claim
amounts depending on several preceding inter-claim times as can be seen in Biard et al. (2009). In
Albrecher and Teugels (2006) the dependence between the inter-claim times and claim amounts is
introduced by an arbitrary copula.

One of the contributions of the paper is to propose a more suitable model for long term economic
capital management for reinsurance companies. Within this framework, the dependence of the
premium income rate, the claim amount distribution and the inter-claim time distribution with
the cycle environment is taken into account. The model also permits a feedback control from the
claim amounts on the cycle phases. We adapt the Erlangization method to this context in order
to approximate the finite-time ruin probability. We use intensive calculation techniques to this
aim and compare our results to Monte-Carlo simulations. We evaluate the model error in several
examples and quantify the impact of the claim amounts feedback over a 5-years time horizon. We
show that for some reasonable values, the finite-time ruin probability observes a decrease of 6%
when this correlation is not considered.



This paper begins with a recall on the Erlangization method and related results. In Section 3
reinsurance cycles are discussed. General notations are given and a first naive model is proposed
where we show how the Erlangization method can be adapted to deterministic phase changes.
The main model incorporating the impact of the claim amounts on the change in cycle phases
is presented in Section 4. Section 5 is dedicated to the control of the precisions of the proposed
main model. Finally, an extended and practical illustration is provided in Section 6 where fitting
methods and finite-time ruin probability approximations are given.

2 Erlangization method

We recall in this section the principle of the Erlangization method and the central theorems from
Asmussen et al. (2002) which lead to an approximation for the finite-time ruin probability. We
follow the presentation of Asmussen et al. (2002) and Ramaswami et al. (2008) and slightly adapt
the notation for it to be consistent with our purpose. First, the surplus process R is embedded
in an initial semi-Markovian fluid process {(Jt, Vi)} where J; is a fluid flow and V; a Markovian
environment process. The state space FE of V, consists of two subspaces E_ and E+ such that when
Jt is in state ¢ € E_, Vt isin a decreasmg inter-claim time state (no jump) with fluid rate r; = —¢;
and when J; is in state i € E+, V, is in an increasing claim state (jump) with fluid rate r; = 1. The
transition intensity matrix of J; is noted as

A A
A= ),
Ay Ayy
where A;,;, correspond to the transition from a state of subspace E;, to a state of subspace E,
with i; and ig € {—,+}.

The aim of the Erlangization method is to evaluate the finite-time ruin probability before
an Erlang horizon H ~ Erlang(a,L). The finite-time ruin probability can thus be seen as the
probability that the fluid flow reaches the initial reserve u in an increasing state (claim state)
conditioned on starting in a decreasing state (inter-claim time state) before the expiry of the
Erlang horizon H. For this purpose, we construct an expanded absorbing semi-Markovian fluid
process {(J¢, V4)}. The state space E of the Markovian environment process J; is now composed
of three subsets Ey, E_ and E; where Fjy is the one state absorbing space, E_ is the decreasing
inter-claim time state space and F is the increasing claim state space.

The transition intensity matrix for the Markovian environment process J; is

0 0 0 0 0 0
6=|h Her oA, |=|h 6. 6., |, (1)
0 In®A IL®Ay 0 O, 644

where H is the phase generator of the Erlang horizon ‘H and h_ is the vector of absorbtion prob-
abilities for the fluid process in a decreasing state. Operators ® and @ respectively denote the
Kronecker product and the Kronecker sum.



The incorporation of the premium income rates which correspond to the fluid rates for the fluid
process V; is done by time scaling. These fluid rates are r; = 0 for ¢ € Ey, r; = —¢; for i € E_ and

r; = 1 for ¢ € E4. The matrix © which takes the premium income rates into account associated
with O is

0 0 0
O=| Iz®R.)'xh. (IL®R.)'x0__ (IL®R.)'x6_,
0 O, O4+
0 0 0
=| (C)'xh. (CHt'xO__ (CH'xO_,
0 O O4+
0 0 0
- h, (’“)77 ®7+ 5
0 O4- O4q

where R_ is a diagonal matrix formed with the decreasing fluid rates.

Denote by 7;; the probability that when Jy =i € E_, then the first upcrossing of level 0 of {V;}
occurs at time ¢t with J; = j € E;. The matrix n corresponds to the matrix of the ”upcrossing
phase probabilities” at the completion of a downwards excursion for {V;}, conditioned on starting
in a decreasing state. We now cite some results from Asmussen et al. (2002), which can also be
seen in Ramaswami et al. (2008) which aim to give an evaluation for the probability ¥ (u, H) of
reaching u conditioned on starting in a decreasing state before the expiry of the Erlang horizon.
We first reccal a general result on the upcrossing probabilities of fluid models.

Theorem 1 Let {(J;, V;)} be a semi-Markovian fluid process and © the transition intensity matriz
of the Markovian environment process {J;}. Let also n denote the "upcrossing phase probabilities”
at the completion of a downwards excursion for {V;}, conditioned on starting in a decreasing state
i € E_. Note by v(u) the vector of the infinite horizon phase-distribution at u (the initial surplus,
starting at 0),conditioned on starting in a decreasing state. Then we have :

(a) the matriz n satisfies the Riccati equation:

nOtt +n0t n+0 T+t =0 (2)

and
P(u) = ne”"1
where
U=06""+et.

(b) let now § > 0 be a "convergence improving parameter”, satisfying 6 > max(—(©~ 7)) for all
state i of H. Then, the solution n of the previous Riccati equation can be computed by the iteration
scheme n = limn_mon(”) where n(o) =0,

" = (61 + 07 )™ + 0 ) (61 - (07T + o)~ 3)



Focusing on our case where we look at the fluid process before the expiry of the Erlang horizon
time H with initial probability vector v, we have the following corollary.

Corollary 2 Including the Erlang time H with the initial probability vector v, it follows that

P(u, H) = yne” "1, (4)

where V =01t + 01T,
Finally, Asmussen et al. (2002) obtained the following convergence result.

Theorem 3 For T > 0, H the Erlang distribution with L stages and mean T', then

Y(u, H) = (u, T) as L — oo, at rate O(L™1).

The proof of Theorem 1 is based on the fluid flow theory and on the study of the steady-
state distribution of the general fluid process {(V;, J¢)}. Indeed, Asmussen (1995) proved that the
distribution of the steady-state variable (V,.J) is described by V' being phase-type given J = ¢, with
phase generator U independent from ¢, the unit column vector e as initial vector for i € E and »;
as the ith row of n, for ¢ € E_. The Corollary 2 is then deduced when including the Erlang time
horizon. The details of the proof of Theorem 3 can be found in Asmussen et al. (2002).

We show in appendix how to deal with the matrix inversions that are involved in Equation (3).

3 A few words on reinsurance cycles modeling

3.1 Reinsurance cycles

In order to give an idea of a possible generalization of the model we propose in this paper, we first
expose here a cycle modeling with several phases. Then we recall the reasons of our simplification
choice to a 2-phases cycle.

Reinsurance cycles can be composed of several phases with soft phases where the premium rates
are low and hard phases with high premium rates. Intermediate phases have premium rates varying
according to their proximity with the soft or the hard phases. We suppose that a reinsurance
cycle has, for example, 10 phases where ¢ = 1 corresponds to the softest phase and ¢ = 10 to
the hardest phase. We note ¢;, ¢ = 1,...,10, the premium income rate for the 10 phases with
c1 < c2 < ... < cppand assume that when the cycle is in phase 7, it could only go to phase i — 1,
t+1, i+ 2 or stay at ¢ depending on the claim amount. When a large claim occurs, the cycle have
high probability to go to phase i + 1 and if the claim is very large, the cycle can also directly jump
to phase ¢ + 2. Figure 1 shows a possible cycle phase path using these ideas.
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Figure 1: Example of a cycle path with 10 phases

We could also double the phase states such as 1+, 1T, 2+ 2T 3+ 3T . (or 1, 2+, 2T 3+ 3T ..
10) in order to keep the general trend of the cycle. For example, we could set probabilities at state
3 according to the cycle trend as in Table 1.

Phase 3' to | Probability || Phase 3T to | Probability
Phase 2 0.001 Phase 2 0.09
Phase 3 0.9 Phase 3 0.9
Phase 4 0.09 Phase 4 0.009
Phase 5 0.009 Phase 5 0.001

Table 1: Example of phase change probabilities at phase 3.

But, in this paper, we focus our study on a reinsurance cycle that is composed of only a soft
phase with low premium rate and a hard phase with high premium rate. Indeed, dealing with
models with more than two phases in a cycle would require very large transition matrices and
would highly increase computational issues. Moreover, it is conventional in finance insurance to
consider environment processes with 2 states, as in Hardy (2001), which furthermore avoids many
estimation problems.

We assume that large claims have high probabilities to cause a change from the soft phase to
the hard phase. This impact of the claim amounts on the environment process represents quite
well the general reinsurance loss market as most of insurance and reinsurance companies hold high
expositions in the most risky regions (Western Europe, Japan, Eastern United-States, South-East
Asia, China,...). In consequence, a big event (catastrophe,...) impacts all the actors with a very
large claim.

3.2 General notation

We fix now some notation for all the following sections. We suppose that in each cycle phase the
claim amounts are i.i.d. and phase-type distributed such as X; ~ PH(G;, ;) where G; is the phase



generator matrix and «; the initial row vector in cycle phase ¢. The inter-claim times are also i.i.d.
and phase-type distributed. The inter-claim time random variable for cycle phase i is noted as
W; ~ PH(K;, ;) with K; the phase generator matrix and f; the initial row vector. We write by
g; = —G,e and k; = —K;e the rates of absorption for respectively X; and W; where e is the unit
column vector. Denote by 1" the fixed time horizon. The phase-type parametrization of the Erlang
horizon time H with L stages, mean T" and rate a = L/T is H ~ PH(H,~v = (1,0, ...,0)) where

—a a 0 0
gH=1|0 0
0 0 —a a
0 0 0 -—a

3.3 Deterministic phase changes

We give first a naive model which assumes that only one change of phase happens and that this
time of phase change is known in advance. We present here the case where the cycle environment
process begins in the soft phase and switches to the hard phase at a deterministic time 77 and stops
at the horizon T'. But this model could be adapted with the cycle beginning in the hard phase and
going to the soft phase. The times spent in the soft phase and in the hard phase are respectively
Ty and 15 = T —Tj. Here, the Erlang horizon time H with mean 7" and L stages is the sum of two
intermediate Erlang horizon times H; and Ho with means_ respectively T1 and Th and L and Lo
stages. We can then write the transition intensity matrix © as

0 0 0
O=[(h. 6._ O_,

0 64 64y
0 0 0 0 0
0 H, & Ky Mo IdL1®k1041 0

= | ha ® ey, 0 Hy ® Ky 0 Idp, ® kaas |,

0 Idy, ® g161 0 Idy, ® Gy 0
0 0 Idr, ® g2 0 Idr, ® Ga

where M2 = ((h1 X 72) X eg,) X (2 is the bloc matrix of transitions between the two phases and
h; = — H;e the absorption rate vector for the phase-type parametrization of the Erlang horizon H;.

Remark 4 The way to determine the numbers of stages Ly and Lo for respectively Hi and Ho is
shown in appendizx.

Example 5 Consider that H; ~ Erlang(1,a) and Hs ~ Erlang(2,a), then we have



0 0 0 0 0 0 0
0 Kl — a[dm (a X en1) X 52 0 ]{51041 0 0
R 0 0 K2 - (LIdn2 aIdn2 0 kgag 0
O = | aen, 0 0 Ky —ald,, 0 0 koas |
0 9151 0 0 Gy 0 0
0 0 9262 0 0 G2 0
0 0 0 922 0 0 Gs

where ny 1s the number of stages of W1 and no the number of stages of Ws.

Using the same idea, it is also possible to construct an intensity matrix O for the situation where
the environment process begins in the hard phase and goes to the soft phase at a deterministic
time. But in fact, cycle phase changes are random and may be influenced by large claims.

4 Phase change instants dependent from claim amounts

We now focus on the main model of the article where we let the cycle switch from the soft phase
to the hard phase when a claim amount is greater than a threshold xy > 0. In what follows, we
suppose that the cycle begins in the soft phase but using the idea of the previous simple model,
one can add an initial hard phase with a deterministic length. As noted in introduction, the going
back to the soft phase should also depend from the claim amount, for example according to the
severity of the claim that caused the passing to the hard phase. But for simplification reasons, we
suppose here that it happens after a deterministic time ¢y > 0. The fact that the time spent in the
previous soft phase is not known, we can not proceed as in the deterministic phase change model
developed above.

We require here that the claim amounts are distributed as mixtures of Erlang distributions.
Mixtures of Erlang distributions include the exponential distribution, the Erlang distribution and
mixtures of Exponential distributions. The canonical random variable for the claim amounts in
cycle phase i, ¢ = 1,2, is then written as

g
Xi =) iV,
=1

where Y;; are n; independent and Erlang distributed random variables such that Yj; ~ Erlang(mi;, Aij)
with shape parameters m;; > 0 and rate parameters \;; > 0. The scalars «;; > 0 are the mixture
proportions and must satisfy a;1+...4+ a4, = 1. We assume that E[Y;1] = mi1/Ain > ... > E[Yi,] =

This section is decomposed into 2 subsections. The first one introduces the transition from the
soft phase to the hard phase which depends on the claim amounts. The second subsection exposes
the way the go back to the soft phase.



4.1 From the soft phase to the hard phase

We first introduce the transition from the soft phase to the hard phase which is dependent from the
claim amounts. To modelize the fact that the environment process goes to the hard phase when a
claim amount is greater than the threshold zy, we use the probabilities

p1j = P(Y1; > 20) = 1 — Fyy; (o) (5)

where Yi; ~ Erlang(maj, Aij), for j = 1,...,n1. As the random variables Yi; are ordered by
decreasing mean, we have p1; > ... > p1,,. Then we integrate these probabilities into the transition
matrix A of the initial Markov process {I;} as follows. Construct line vectors pi; = (0, ...,0,p1;) of
length my; and concatenate them in p; = (P11, ..., Pin, ). Then, set

P = (pll ® ekl)?

the matrix containing the probabilities for the claim amounts to be greater than xy when the
environment process is in the soft phase as needed to incorporate them into A. The latter becomes

K] 0 klal 0
A= 0 K2 0 kgOéQ
| Progb PPogB G o |’
0 9232 0 Go

where

Pli = ((enl *pl), ® ek1)7

and the operator ® is the Hadamard product (entrywise product). Thus the transition intensity
matrix © of {J;} can be obtained as exposed in Section 2. The concept of dependent changes is
here probabilistically respected to approximate the ruin probability.

4.2 From the hard phase to the soft phase

We now include the fact that the cycle process can go back to the soft phase from the hard phase.
As said previously, we do not suppose that this transition is dependent from the claim amount but
that the expected time spent in the hard phase is fixed at time ¢y3. This transition can happen at
any state of the Erlang time H when the process is in the hard phase. The possibility to go from
the hard phase to the soft phase is introduced by a transition probability ¢ in the block O__ of
the Markovian process {J;}. It corresponds to the probability of changing from the hard phase to
the soft phase at any state of the Erlang time H and is given as follows.

Note by Z the number of Bernoulli trials with success probability ¢ needed to get one change

from the hard phase to the soft phase. The random variable Z is indeed geometrically distributed
with mean %. We set the expected value of Z equal to the number of stages of the Erlang time H

10



at which we want the cycle to jump to the soft phase. We write this as
E [Z] =a X ty

which ensures that the time spent in the hard phase is ¢y on average. The rate parameter a of the
Erlang time H corresponds to the number of states needed to have a one year long time. We thus
deduce the probability ¢ as

1 T

CLXtOZLXtO'

For a better overview, suppose that H ~ Erlang(L,a) with L = 2 and that the inter-claim
times W7 and Wy are identically distributed. Their canonical random variable W is distributed as
a mixture of exponential distributions with intensity matrix K such as

S Y
K‘( 0 —)\2>'

The block ©__ becomes

A —a 0 0 0 a 0 0 0
0 —d2—a 0 0 0 a 0 0
0 0 -\ —a 0 aq 0 a(l —q) 0

5 _ 0 0 0 -2 —a 0 aq 0 a(l —q)
o 0 0 0 0 —A1—a 0 0 0
0 0 0 0 0 —X2—a 0 0
0 0 0 0 0 0 -1 —a 0

0 0 0 0 0 0 0 X —a

_ A__ —al M*
o 0 A__—al |

The environment process can go from the hard phase to the soft phase without affecting the run
of the Erlang time . This can of course be extended for L > 2 leading to a block matrix

A_—al  M* 0 0 - 0 0
0 A_—al M* 0 -- 0 0
6 | .. N
0 0 0 0 - A_—al M
0 0 0 0 - 0 A_ —al

where the block M* contains the transition probabilities from the hard phase to the soft phase.

4.3 Computational aspects

Ramaswami et al. (2008) proposed a recursion procedure to solve Equation (2) in 7 using its
particular structure which permits to reduce the dimension of the matrices involved in Theorem 1

11



and gain significative computational time. Indeed, the upcrossing phase probability matrix n has
the following upper triangular block Toeplitz structure

Mo M N2 - NL-1

0 mo m - "Np_2
n= 0O 0 mno -+ nr-3

0 0 0 - no

Denote that in our model, the block O__ of the intensity matrix © can be expressed as

A__ —al M* o o - 0 0
0 A_—al M* 0 -- 0 0
O _ = ,
0 0 0 0 -+ A__—al M*
0 0 o o0 - 0 A__—al

where the block M™* contains the transition probabilities between the two phases as explained
above. Following the idea of Ramaswami et al. (2008), writing out Equation (2) leads to the
recursion equations for the blocks of n

oAy _nmo+RE(A__ —al)no+noAiy +RIA_, =0 (6)
l
mA 4+ + anA+—771—j +R-L (A —al)m+ R-LM g = 0; l=1,.,L-1. (7
j=0

Define for a matrix A the vector vec(A) as the vector obtained by concatenating successive
columns of A from a single matrix. From Graham (1981), we can write for a matrix product AX B
that

vec(AX B) = (B' ® A)vec(X),

where B! is the transpose of the matrix B. As in Ramaswami et al. (2008), we use this notation
and Equations (7) to derive a recursive expression for 7, [ = 1,..., L — 1 and obtain

_ -1
vec(m) = {[Ays +Ap_no)' @ T +I® [RZL (A—— —al) + noAy—]}
-1

xvec | — |[RZL M n_q + anAJF_m,j . (8)
j=1

Then, we only need to solve the nonlinear equation (6) using Theorem 1 to approximate 7 and
use the recursive expression (8) for n;, [ = 1,...,L — 1 in order to derive an approximation of 7.

12



5 Control of precisions

The control of precisions of our approximation method is based on the following points : the num-
ber L of stages of the Erlang horizon H, the cycle change probabilities and the fitting algorithms
that we use to obtain claim amounts distributed as mixtures of Erlang distributions..

5.1 Model errors

As shown is Theorem 6 of Asmussen et al. (2002), the following convergence result for the finite-time
ruin probability stands:

v (w,T)

-2

¢(Ua HL) = ¢(U>T) +

where T' > 0 and Hj, denote the Erlang distribution for ‘H with L stages and mean 7. The model
error can be estimated using the numerical computation for the second derivative of 1 (u,T') as

TZJ(U,T + h) + 211’(“, T) B ¢(U’T B h)
h2

Y@ (u,T) = + O(h?).

The same authors also suggest to use the Richardson extrapolation leading to the improved
estimate

P(u,T) = (L +1)¢p(u, Hp 1) — Lip(u, Hy) (9)

with an refined convergence rate L~2.

Using probabilities p1; = Pr(Y1; > x0), j = 1,...,n1, as probabilistic modeling for the cycle
environment to change from the soft phase to the hard phase can provide some errors. Indeed, the
closer to 0 or to 1 all the pi;’s, the most efficient the approximation. So, the threshold zg must
be appropriately fixed. Giving such phase change probabilities leads to consider the Y7; as if they
are separate random variables. Medium values for the p;;’s includes some perturbations and the
modeling of the general claim behavior can fail.

The change of the environment process from the hard phase to the soft phase as explained in
the Subsection 4.2 introduces a possible change of phase even when the process enters in the hard
phase in the tg last years of the horizon time 7. There, the process should not be able to change the
phase but setting different probabilities for the phase change breaks the repeating block structure
of n and then the recursion equation (8) could not be used anymore. We suggest then to use the
possibility for the environment process to go back to the soft phase only for a large horizon time T
and a large ratio T'/t.

An other part of the potential error comes from the fitting algorithm. To ensure a good fit,
several statistical tools such as Chi-squared test, Kolmogorov-Smirnov test, qq- and pp-plots can

13



be used.

5.2 Numerical errors

Some numerical issues can also include some deviation as the matrix inversion required in Equation
(3). This matrix inversion is done using the matrix right division operator ”/” in Matlab R2007a
software. Furthermore, we use the software package Ezpokit from R. B. Sidje (see Sidje (1998))
which uses Krylov subspace projection methods in order two compute the matrix exponential of
Equation (4). The resort to this numerical tool can also include a slight deviation but permits to
save substantial computation time.

6 Numerical applications

We illustrate in this section the use of our model when it is considered that the phase change
instants depend on the claim amounts. As discussed in introduction, the European Solvency 11
regulation project will impose the insurance and reinsurance companies to have a 1-year horizon
time ruin probability less than a certain threshold which is fixed at 0.5%. For reinsurance companies
dealing with large claims and catastrophic events, it seems more realistic to consider a 5- or 10-
years horizon time with a ruin probability respectively around 2.5% or 5%. We propose for this
application to deal with a 5-years period with a ruin probability around 2.5%. We also suppose that
the environment process begins in the soft phase and does not go back to it. This last hypothesis of
not going back to the soft phase could be seen as restrictive but is in fact quite realistic. Indeed, our
studying time horizon is smaller than the average underwriting cycle length of 6 years as explained
in Weiss (2007), Cummins and Outreville (1987) or Venezian (1985). The phases differ here only
by their premium income rates, a low one for the soft phase and a high one for the hard phase.

6.1 Data simulation

We first simulate 5000 realizations from a Generalized Pareto Distribution (GPD) with cumulative
distribution function (c.d.f.), for > 0,

Fepp(z) =1— (1 + &>E ;

g

where o > 0 is the scale parameter and £ > 0 the shape parameter. This last parameter is also
referred as the extreme value parameter in extreme value theory where o = 1/¢ is called the index of
the regular variation of the distribution. This distribution is heavy-tailed and permits to modelize
large claims and catastrophic events as fire losses, wind storm, earthquake, etc. The smaller the
index a and, consequently, the greater the shape parameter £, the heavier the right queue of the
distribution. For this illustration, we set o = 2.5 ({ = 1/2.5) and o = 1. A histogram for the
simulated data is given in Figure 2. The empirical mean and variance are here respectively 1.63130
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and 11.06983.
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Figure 2: Simulation of claim amounts from a GPD

6.2 Phase-type fitting

Our model requires the claim amounts to be phase-type distributed. There are different propositions
that have be done in the literature to fit phase-type distributions to heavy-tailed distribution or
data sets. One could object that this does not allow for heavy tails. However, as we are interested in
ruin probabilities of order 2.5% or 5% (for time horizon 5 years or 10 years), we are not necessarily
in the domain of asymptotic approximation and it is possible to have an appropriate fit of the
claim size distribution up to the required level in our case. If we want to study ruin probabilities
of magnitude 10™#, this method would of course be inappropriate. For example, Feldmann and
Whitt (1998) proposed a heuristic-based approach to fit heavy-tailed distribution functions. But
this necessitates to first fit an heavy-tailed distribution to the data set which introduces additional
errors. The popular expectation-maximization (EM) algorithm permits to fit directly data sets.
Several variants of fitting methods using the EM algorithm to obtain a general or a particular
phase-type distribution have been explored as in Asmussen and Bladt (1996), Khayari et al. (2003)
or Riska et al. (2004). For this application, we use the EM algorithm developed in Lee and Lin
(2009) to fit mixtures of Erlang distributions with common scale parameter to heavy-tailed data
sets. As written in this reference, this class of mixtures of Erlang distributions with common scale
parameter is dense in the space of positive continuous distributions and then can approximate any
positive absolutely continuous distribution to any accuracy. Moreover, this class is closed in mixing,
convolution, compounding and aggregation of data which offers a good tractability for actuarial
purposes. Wang et al. (2006) built an EM fitting algorithm for mixtures of Erlang distributions
with common shape parameter and Thummler et al. (2006) with no required common parameter.
But these two classes does not fulfill the closure properties mentioned above.
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The density of a mixture of k Erlang distributions with common scale parameter 6 > 0 is

rj—le’m/g

k
X
flz) = ;ajerj(rj—l)!’

where r; > 0 and «; > 0 are respectively the shape parameter and the weight of the jth Erlang
distribution. The distribution weights must observe the following constraint Z?:l aj = 1.

Applying the Lee & Lin algorithm to our simulated data set, it results that a density using a
mixture of 14 Erlangs fits the empirical density very satisfactorily. The common scale parameter
is evaluated at 6 = 0.81585 and the shape parameters and weights for every Erlang distributions
of the mixture are presented in Table 2. This table also displays the expected value associated for
each Erlang r.v. Y; of the distribution mixture.

ril o EY;] | j|ri| a E[Y;]

75 | 0.00063 | 61.18865 || 8 | 22 | 0.00122 | 17.94867
59 | 0.00021 | 48.13507 || 9 | 16 | 0.00469 | 13.05358
48 | 0.00012 | 47.31922 || 10 | 15 | 0.00283 | 12.23773
40 | 0.00199 | 32.63395 || 11 | 14 | 0.00166 | 11.42188
39 | 0.00024 | 31.81810 || 12 | 8 | 0.03157 | 6.52679
25 | 0.00078 | 20.39622 | 13 | 4 | 0.14131 | 3.26339
247 0.00122 | 19.58037 | 14 | 1 | 0.81155 | 0.81585

N O U | W N .

Table 2: Parameters of the fitted mixture of Erlang distributions.

To attest to the goodness of fit, a graphical comparison between a relative histogram for the
simulated data and the fitted distribution can be seen in Figure 3, a pp-plot and a qg-plot are
drawn in Figure 4. All these graphical tools already show that the fit is very satisfying even in
the right queue. A Kolmogorov-Smirnov test is used to confirm the high quality of the fit. Indeed,
with a test statistic of 0.00578 and a cutoff value of 0.01917, the p-value is evaluated at 0.99612
and the hypothesis that the data sample comes from the fitted distribution is not rejected.

6.3 Ruin probability approximation

We now use our model to evaluate the ruin probability for a horizon T' = 5 years where the claim
amounts are distributed according to the fitted mixture of Erlang distributions. Let the inter-claim
time random variable W be exponentially distributed with parameter A = 2. So that, the average
time between two claim arrivals is 0.5 year and two claims per year are expected. As for the claim
amounts, we suppose that the inter-claim time r.v. are identically distributed in the two phases of
the cycle. Only the premium income rates differs between the two phases. Indeed, we define the
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Figure 4: pp-plot and qg-plot for the simulated data versus the fitted distribution
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premium rate ¢;, with ¢ = 1 for the soft phase and ¢ = 2 for the hard phase, such as
ci = (1+ pi) x B[S1] = (14 p;) x E[W]E[X1],

where p; is the security loading corresponding to the phase ¢, ./S’\t is the surplus process where the
claim amount random variables X, are i.i.d. with the empirical simulated distribution. Froot (2001)
shows that in the market of large claims and catastrophic events the reinsurance premiums can be
more than seven times the expected loss during a period. Following this idea, we set p; = 30%
and py = 300%. We fix the initial surplus at u = 30 and the claim amount threshold xy > 0 that
provokes the passage from the soft phase to the hard phase at xg = 25. This last value represents
the 99.663% quantile of the empirical cumulative distribution. Over the 5 years horizon with 2
claims per year, this does not seem to have an impact the ruin probability. In Table 3 is displayed
the probability pi; of causing a change from the soft cycle to the hard cycle for the jth Erlang
distribution of the mixture, 7 = 1,...,14, as they are defined in Equation (5).

DP1j J P1j
~1 8 | 0.04326
~1 9 | 0.00138

0.99999 || 10 | 0.00064
0.94060 || 11 | 0.00028
0.91826 || 12 ~ 0
0.13159 || 13 ~0
0.09433 || 14 ~ 0

N[ OO x| W N S,

Table 3: Phase change probabilities of the Erlang distributions of the fitted mixture

We can now construct the required matrices A, R__ and M* and use Equations (6), (8) and
Theorem 1 to approximate the finite-time ruin probability ¢ (u,T"). For comparison issues, Monte-
Carlo (MC) simulations for 1(u,T) are performed using both empirical and fitted distributions for
the claim amounts. The results for the three approximations are given in Table 4 where we used
for our method a number of Erlang stages L = 50.

Method Approximation for ¢ (u,T)
Model 3 2.37199%
MC sim. with fitted distr. 2.35448%
MC sim. with empirical distr. 2.34998%

Table 4: Approximated finite time ruin probabilities

We see on this Table that our approximation is quite accuracy with a relative error of 0.73%
from the Monte-Carlo simulation with the fitted distribution and 0.92% from the Monte-Carlo
simulation with the empirical distribution. The error inserted from the distribution fitting is 0.19%.
The computational time required for our model is here around 100 times less than than the one
needed for the two simulations methods.

The previous example is the reference parametrization that is used in the next subsection.
But, we also give now some results in Table 5 when modifying one parameter. We see that our

18



approximations are sill very closed to the Monte-Carlo simulations with the empirical distribution
for the claim amounts.

Parameter modified | MC simulation | Model 3 | Relative error
zo = 30 2.42243% 2.42480% 0.098%
p2 = 200% 2.38310% 2.40007% 0.707%

Table 5: Approximated finite time ruin probabilities with a modified parameter

6.4 Comparison between model 3 and independent changes of cycle phase

We illustrate now the impact of the dependence of the change of phase from claim amounts. We
compare our model to a so-called independent model in which the change of phase can occur without
any dependence from the claim amounts. For this independent model, we construct an intensity
matrix © for the environment Markov process J; in which the change from the soft phase to the
hard phase can appear at any state of the Erlang horizon time H with probability py € [0,1]. This
is done by modifying the bloc matrix ©__ such that at any state i, ¢ = 1,..., L — 1, of the Erlang
time in the soft cycle phase, the process can go to state ¢ + 1 of the Erlang time in the hard cycle
phase with probability pg. Therefore, the change of phase is independent from the claim amount.

For exponentially distributed inter-claim times with parameter A and for an Erlang time horizon
H ~ Erlang(2,a), the bloc ©__ becomes

-A—a 0 a(l — pp) apo
~ 0 -A—a 0 a
O = 0 0 -A—a 0
0 0 0 -A—a
and can also be written as
~ A__ —al M*
O = < 0 A__—al > ’

where, as in subsection 4.2, M* contains the direct transitions between the phases. This can, of
course, also be extended to a number of Erlang stages L > 2.

In order to compare this independent model to our dependent model, we give to these two
models the same probability to change at least one time from the soft phase to the hard phase.

For the independent model, this probability is Py = 1 — (1 — pg)*. In our dependent model, the
probability to go to the hard phase after each claim is

n
E ajplj-
j=1
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Then the probability to have no change from the soft phase to the hard phase during [0, 7] is
n
E[(1- Z a;jp1;)"]
j=1

where N ~ Poisson(T)). Finally, the probability to change from the soft phase to the hard phase
at least one time during [0, 7] is

P=1-E[1-) aip)"] =Py
i=1

and we obtain

po=1-E[(1-> amp)"V".
i1

We also construct an intermediate model such that the probability to change from the soft phase
to the hard phase at least one time is still the same where the cycle can change either independently
from claim amounts or because of a large claim. This intermediate model permits to observe the
slide between the dependent and independent models and to see the impact of the claim amount
dependence on the finite-time ruin probability. The probability to change from the soft phase to
the hard phase at least one time during [0, 7] for this intermediate model is

(1-— ZQaipi)N] ) =P
=1

where 6 € [0,1] and p(f) represents the part of the phase change probability that is independent
from the claim amounts. Then we obtain

P(6) = 1 — ((1— p(9))") (E

n ~1/L
1-> Gaipi)N] > :
i=1

The bounds p(0) = po and p(1) = 0 correspond respectively to the independent model and the
dependent model.

p(0) =1—(1—po) x (E

For our application, as we use the Richardson extrapolation recalled in Equation (9) for a
number of Erlang stages I = 50, two probabilities pg are evaluated. For L = 50, we obtain
po = 6.63365x 10~ and for L = 51, pg = 6.50362x10~%. Thus, the ruin probability is approximated
at 2.50960% with the independent model versus an evaluation at 2.37199% for our dependent
model. We recall that the MC simulation with the empirical distribution provides a finite-time
ruin probability at 2.34998%. The error from the independent model on our dependent model can
be evaluated at 5.48% and the one on the MC-simulation at 6.36%. We can imagine that this
difference would be quite larger when looking at a greater time horizon but also when including
more phases in a cycle. Figure 5 are drawn the slide of the ruin probability with the intermediate
model and the slide of the underlying error made comparing to our dependent model.
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Figure 5: Comparaison between the model 3 and the independent model

7 Conclusion

This paper provides an extension for the Erlangization method taking into account the reinsurance
cycles in order to evaluate the finite-time ruin probability in the Sparre-Andersen model with phase-
type distributed claim amounts and inter-claim times. We assume the presence of two phases in a
reinsurance cycle, a soft phase and a hard phase. We first propose a naive model with deterministic
changes between the two phases. Then, a more realistic model is developed where the change from
the soft phase to the hard phase depends on the severity of the claim amounts. We illustrate our
model by a consistent application and compare our results to Monte-Carlo simulations and to the
case where the claim amounts have no impact on the phase changes. We show thet this feedback
control may change the ruin probability by 6% in our numerical example.
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APPENDIX

A  Matrix inversion

The Erlangization method used to evaluate the ruin probability or equivalently the probability for
the fluid model to reach 0 before the horizon H requires the inversion of several matrices. As seen in
Theorem 1, the matrix of interest 7 can be approximated by the iteration scheme 7 = lim,,_, 17(”)
where n(® =0 and

n™ ) = (61 + 6~ )™ + 0~ )61 — (0T + 6t )1 (10)
—1
— A & <B(”)> . (11)

Thus, to determine 7"*t1), we need to inverse the matrice B™. The Erlangization method,
according to the specific structure of the intensity matrix of the Erlang horizon H, provides that
the block matrices ©~—, ©~F, O~ and ©1 have all an upper triangular block Toeplitz structure
and that the matrix B(™) takes this form

B™ Bm BM ... BM
o B" BM ... B,
Bm=| o o B™ ... BM,
0 0 0 B{m

Indeed, this structure is stable for addition, multiplication and inversion and (B(”))_l, A

and 7™ also have the form.

Let M be a mn X mn matrix such as

_( My M
M_<M3 M4>

where the m x m block matrix M; and the n x n block matrix My are invertible. Then, we have

Y= ( (My — MaM,; t M3)~t — M My(My — M3My M)t )
— M M3(My — My M M3) ! (My — M3M ' My)~! '

To inverse the matrix B described before, we can split it into four blocks as follows:

M, M-
(n): 1 2
5= (30 )
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where

oy (o
My = ’ Bl Blj_z , My = BIj_l )
0 0 B B
My=(0 0 0) and My = ( B ).

Thus we have

—1 —1 —1
(B(n))—l _ Ml _Ml M%M4 )
0 My

The remaining difficulty stays in the inversion of the block matrix Mj. To this aim, we proceed
algorithmically using the same procedure as for B,

B Initialization for the deterministic phase change instants model

For the computation of the approximation of the ruin probability in the case of deterministic phase
change instants, we have some technical but not stopping constrains on the numbers of states L
for H1 and Lo for Ho. Indeed, we have

Hi ~
Hy ~

Erlang(Lq,a),
Erlang(La, a).

The final horizon time T can be decomposed as T' = 17 + 15 such as
n =
T =

Both T and T3 are fixed and then we have to find appropriate values fora € R}, L1 € Net Lo € N
such that

Ly
Lo
L=1Li+ Lo

= CLTl,
= aly,
= a(T1 + Tg) =alT.

These equalities can be fulfilled by choosing reasonable values for L, L, and Lo knowing that im-
proving this values leads to better approximations.
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