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The paper is devoted to the controllability problem for 3D compressible Euler system. The control is a finite-dimensional external force acting only on the velocity equation. We show that the velocity and density of the fluid are simultaneously controllable. In particular, the system is approximately controllable and exactly controllable in projections.
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Introduction

The time evolution of an isentropic ideal gas is described by the compressible Euler system ρ(∂ t u + (u • ∇)u) + ∇p(ρ) = ρf , (1.1)

∂ t ρ + ∇ • (ρu) = 0, (1.2) 
u(0) = u 0 , ρ(0) = ρ 0 , (1.3) 
where u = (u 1 , u 2 , u 3 ) and ρ are unknown velocity field and density of the gas, p is the pressure and f is the external force, u 0 and ρ 0 are the initial conditions. We assume that the space variable x = (x 1 , x 2 , x 3 ) belongs to the 3D torus T 3 = R 3 /2πZ 3 . Problem (1.1)-(1.3) can be reduced by a simple change of variables to a quasi-linear symmetrizable hyperbolic system. Thus local-in-time existence and uniqueness of a smooth solution is well known (for instance, see [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF][START_REF] Taylor | Partial Differential Equations[END_REF]). Moreover, a blow-up criterion holds for the compressible Euler equation (see [START_REF] Taylor | Partial Differential Equations[END_REF]Section 16,Proposition 2.4]).

The aim of this paper is the study of some controllability issues for system (1.1)- (1.3). We suppose that the external force is of the form f = f + η, where f is any given function and η is the control taking values in a finite-dimensional space. Let H k be the Sobolev space of order k on T 3 and let H k be the space of vector functions u = (u 1 , u 2 , u 3 ) with components in H k . For both spaces, we denote by • k the corresponding norms. We denote J T := [0, T ]. The following theorem is our main result.

Main theorem. Let k ≥ 4 and f ∈ C ∞ (J T , H k+2 ). There is a finitedimensional space E ⊂ H k with dim E = 45 such that for any constants T, ε > 0, for any continuous function F : H k × H k → R N admitting a right inverse, for any functions u 0 , û ∈ H k and ρ 0 , ρ ∈ H k with

T 3 ρ 0 dx = T 3 ρdx (1.4)
there is a smooth control η : J T → E such that system (1.1)-(1.3) has a unique regular solution (u, ρ), which verifies

(u(T ), ρ(T )) -( û, ρ) H k ×H k < ε, F (u(T ), ρ(T )) = F ( û, ρ).
See Subsection 3.1 for the exact formulation. We stress that condition (1.4) is essential, because integrating (1.2), we get ρ(•, x)dx = const.

Before turning to the ideas of the proof, let us describe in a few words some previous results on the controllability of Euler and Navier-Stokes systems. Li and Rao [START_REF] Li | Exact boundary controllability for quasi-linear hyperbolic systems[END_REF] proved a local exact boundary controllability property for general 1D first-order quasi-linear hyperbolic equations. Exact boundary controllability problems for weak entropy solutions of 1D compressible Euler system has been established by Glass [START_REF] Glass | On the controllability of the 1-D isentropic Euler equation[END_REF]. Controllability of incompressible Euler and Navier-Stokes systems has been studied by several authors. Coron [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] introduced the return method to show exact boundary controllability of 2D incompressible Euler system. Glass [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] generalized this result for 3D Euler system. Exact controllability of Navier-Stokes systems with control supported by a given domain was studied by Coron and Fursikov [START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF], Fursikov and Imanuvilov [START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF], Imanuvilov [START_REF] Yu | Remarks on exact controllability for the Navier-Stokes equations[END_REF], Fernández-Cara et al. [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF]. Agrachev and Sarychev [START_REF] Agrachev | Navier-Stokes equations controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF] proved controllability of 2D Navier-Stokes and 2D Euler equations with finite-dimensional external control. Rodrigues [START_REF] Rodrigues | Navier-Stokes equation on the rectangle: controllability by means of low mode forcing[END_REF] used Agrachev-Sarychev method to prove controllability of the 2D Navier-Stokes equation on the rectangle with Lions boundary condition. Shirikyan [START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF][START_REF] Shirikyan | Exact controllability in projections for three-dimensional Navier-Stokes equations[END_REF] generalized this method to the case of 3D Navier-Stokes equation. Furthermore, he shows [START_REF] Shirikyan | Euler equations are not exactly controllable by a finitedimensional external force[END_REF] that 2D Euler equation is not not exactly controllable by a finite-dimensional external force. In [START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF], we show that in the case of 3D Euler equation, the velocity and pressure are exactly controllable in projections.

One of the main difficulties of the proof of Main theorem is the fact that the control η acts only on the first equation. We combine the Agrachev-Sarychev method with a perturbative result for compressible Euler equations and a property of the transport equation to prove that the velocity u and the density ρ can be controlled simultaneously with the help of a finite-dimensional external force η. The Agrachev-Sarychev method is based on construction of an increasing sequence of finite-dimensional spaces E n ⊂ H k , n ≥ 0 such that (i) The system is controllable with E N -valued controls for some N ≥ 1.

(ii) Controllability of the system with η ∈ E n is equivalent to that with η ∈ E n+1 .

As in the case of incompressible Euler and Navier-Stokes systems, the proof of property (i) is deduced from the hypothesis that E ∞ := ∪ ∞ n=0 E n is dense in H k and from the fact that for any functions V 0 , V 1 there is a control (not necessarily E-valued) which steers the system from V 0 to V 1 . As the control acts only on the first equation, along with (1.1)-(1.2) we need to consider the control system

ρ(∂ t u + ((u + ξ) • ∇)(u + ξ)) + ∇p(ρ) = ρ( f + η), (1.5) ∂ t ρ + ∇ • (ρ(u + ξ)) = 0. (1.6)
For any V 0 and V 1 we find controls ξ, η such that the solution of (1.5)-(1.6) links V 0 and V 1 . Now to prove (i), it suffices to show that the control systems (1.1)-(1.2) and (1.5)-(1.6) are equivalent. This can be done by a simple change of the variable v = u + ξ. To establish property (ii), we first show that the controllability of (1.1)-(1.2) with η ∈ E n+1 is equivalent to that of the system

ρ(∂ t u + ((u + ξ) • ∇)(u + ξ)) + ∇p(ρ) = ρ( f + η), (1.7) ∂ t ρ + ∇ • (ρu) = 0 (1.8)
with η ∈ E n and ξ ∈ E n . Here we use the ideas from [START_REF] Agrachev | Navier-Stokes equations controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF][START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF][START_REF] Shirikyan | Exact controllability in projections for three-dimensional Navier-Stokes equations[END_REF][START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF]. Then using a continuity property of the resolving operator of compressible Euler system (see Theorem 2.3), we show that control systems (1.7)-(1.8) and (1.5)-(1.6) are also equivalent. We refer the reader to Section 4.2 for a detailed proof of this property.

Acknowledgments. The author would like to express deep gratitude to Armen Shirikyan for drawing his attention to this problem and for many valuable discussions and to the referees for their detailed comments and suggestions which have helped to improve the paper.

Notation. We use bold characters to denote vector functions. Let X be a Banach space endowed with the norm • X . For 1 ≤ p < ∞ let L p (J T , X) be the space of measurable functions u : J T → X such that

u L p (JT ,X) := T 0 u p X ds 1 p < ∞.
The space of continuous functions u : J T → X is denoted by C(J T , X). We denote by C a constant whose value may change from line to line. We write f (x)dx instead of T 3 f (x)dx. Let δ i,j be the Kronecker delta, i.e, δ i,j = 0 if i = j and δ i,i = 1.

Preliminaries on 3D compressible Euler system 2.1 Symmetrizable hyperbolic systems

In this subsection, we recall some results on local existence of symmetrizable hyperbolic systems. Let us consider the system

∂ t v + n i=1 A i (t, x, v)∂ i v + G(t, x, v) = 0, v(0) = v 0 . (2.1) 
We say that (2.1) is a quasi-linear symmetric hyperbolic system if matrices A i are symmetric, i.e., A i = A * i . If functions A i , G are smooth and system (2.1) is symmetric hyperbolic, then for any v 0 ∈ H k , k > n/2 + 1 there exists T > 0 such that system (2.1) has a solution v ∈ C(J T , H k ) (see [START_REF] Kato | The Cauchy problem for quasi-linear symmetric hyperbolic systems[END_REF] or [START_REF] Taylor | Partial Differential Equations[END_REF]Chapter 16] for an exact statement). Now consider a more general case:

∂ t u + n i=1 B i (t, x, u)∂ i u + H(t, x, u) = 0, u(0) = u 0 , (2.2) 
where B i are such that there exists a positive definite matrix B 0 such that B 0 • B i are symmetric. These systems are called quasi-linear symmetrizable hyperbolic systems. As it is remarked in [START_REF] Taylor | Partial Differential Equations[END_REF]Chapter 16,p. 366], we have the following local well-posedness of this system.

Theorem 2.1. Let u 0 ∈ H k , k > n/2 + 1 and B i , H ∈ L 2 (J T , H k × H k ).
Then there exists T 0 > 0, which depends on

u 0 k + B i L 2 (JT ,H k ×H k ) + H L 2 (JT ,H k ×H k ) ,
such that system (2.1) has a unique solution u ∈ C(J T0 , H k ).

Well-posedness of the Euler equations

Let us consider the compressible Euler system

ρ(∂ t u + (u • ∇)u) + ∇p(ρ) = ρf , ∂ t ρ + ∇ • (ρu) = 0, u(0) = u 0 , ρ(0) = ρ 0 .
We study the case in which there is no vacuum, so that the initial density is separated from zero. Let us show that in this case the above problem can be reduced to a quasi-linear symmetrizable hyperbolic system. Setting g = log ρ and h(s) = p ′ (e s ), the above system takes the equivalent form

∂ t u + (u • ∇)u + h(g)∇g = f , (2.3) 
(∂ t + u • ∇)g + ∇ • u = 0, (2.4) u(0) = u 0 , g(0) = g 0 . (2.5)
In what follows, we shall deal with the more general system

∂ t u + ((u + ζ) • ∇)(u + ζ) + h(g)∇g = f , (2.6) (∂ t + (u + ξ) • ∇)g + ∇ • (u + ξ) = 0, (2.7 
)

u(0) = u 0 , g(0) = g 0 . (2.8) 
We set U = (u 0 , g 0 , ζ, ξ, f ),

Y k = C(J T , H k ) × C(J T , H k ), X k = H k × H k × L 2 (J T , H k+1 ) × L 2 (J T , H k+1 ) × L 2 (J T , H k ),
and endow these spaces with natural norms. Standard arguments show that if k ≥ 4, then for any U ∈ X k problem (2.6)-(2.8) has at most one solution (u, g) ∈ Y k . The following theorem establishes a perturbative result on the existence of solution and some continuity properties of the resolving operator.

Theorem 2.2. Let T > 0, k ≥ 4 and h ∈ C k (R) be such that 0 < h(s) for any s ∈ R. Suppose that for some function U 1 ∈ X k problem (2.6)-(2.8) has a solution (u 1 , g 1 ) ∈ Y k .
Then there are constants δ > 0 and C > 0 depending only on h and U 1 X k such that the following assertions hold.

(i) If U 2 ∈ X k satisfies the inequality U 1 -U 2 X k < δ, (2.9 
)

then problem (2.6)-(2.8) has a unique solution (u 2 , g 2 ) ∈ Y k . (ii) Let R :X k → Y k
be the operator that takes a function U 2 satisfying (2.9) to the solution

(u 2 , g 2 ) ∈ Y k of problem (2.6)-(2.8). Then R(U 1 ) -R(U 2 ) Y k-1 ≤ C U 1 -U 2 X k-1 . (iii) The operator R : X k → Y k is continuous at U 1 .
We emphasize the fact that the constants δ and C depend only on the norm of U 1 . This observation will be important in Section 4, where we construct a solution of (2.6)-(2.8) with the help of a perturbative argument.

Proof. We seek a solution of (2.6)-(2.8) in the form (u 2 , g 2 ) := (u 1 , g 1 ) + (w, ϕ). Substituting this into (2.6)-(2.8) and performing some transformations, we obtain the following problem:

∂ t w + ((u 1 + ζ 1 ) • ∇)(w + η) + ((w + η) • ∇)(u 1 + ζ 1 ) + ((w + η) • ∇)(w + η) + h(g 1 + ϕ)∇(g 1 + ϕ) -h(g 1 )∇g 1 = q, (2.10) ∂ t ϕ + ((u 1 + ξ 1 ) • ∇)ϕ + ((w + σ) • ∇)g 1 + ((w + σ) • ∇)ϕ + ∇ • (w + σ) = 0, (2.11) (w, ϕ)(0) = (w 0 , ϕ 0 ), (2.12) 
where

η = ζ 2 -ζ 1 , σ = ξ 2 -ξ 1 , q = f 2 -f 1 , w 0 = u 20 -u 10 and ϕ 0 = g 20 - g 10 . Problem (2.10)-(2.
12) is a quasi-linear symmetrizable hyperbolic system.

Indeed, setting V = w ϕ and a k i = h(g 1 + ϕ)δ i,k , system (2.10)-(2.12) can be rewritten in the form

∂ t V + 3 i=1 A i (t, x, V )∂ i V + G(t, x, V ) = 0, V (0) = (w 0 , ϕ 0 ), (2.13) 
where

A i =       (u 1 + ζ 1 + w + η) i 0 0 a i 1 0 (u 1 + ζ 1 + w + η) i 0 a i 2 0 0 (u 1 + ζ 1 + w + η) i a i 3 δ i 1 δ i 2 δ i 3 (u 1 + ζ 1 + w + σ) i       , G(t, x, V ) = ((u 1 + ζ 1 ) • ∇)η + ((w + η) • ∇)(u 1 + ζ 1 ) + (h(g 1 + ϕ) -h(g 1 ))∇g 1 -q ((w + σ) • ∇)g 1 + ∇σ .
Now note that (2.13) is symmetrizable hyperbolic system, since [START_REF] Li | Exact boundary controllability for quasi-linear hyperbolic systems[END_REF]) for some T 0 ≤ T . Now we prove that T 0 = T . First, let us rewrite system (2.10), (2.11) in the form

A 0 (t, x, V ) =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 h(g 1 + ϕ)     (2.14) is positive definite and A 0 • A i , i = 1, 2, 3 are symmetric. By Theorem 2.1, there is a solution V ∈ C(J T0 , H k ) × C(J T0 , H k ) of (2.
∂ t w + ((u 1 + ζ 1 ) • ∇)(w + η) + ((w + η) • ∇)(u 2 + ζ 2 ) + h(g 1 )∇ϕ + (h(g 2 ) -h(g 1 ))∇g 2 = q, (2.15) ∂ t ϕ + ((u 1 + ξ 1 ) • ∇)ϕ + ((w + σ) • ∇)g 2 + ∇ • (w + σ) = 0.
(2.16)

Taking the ∂ α := ∂ α ∂x α , |α| ≤ k -1 derivative of (2.15
) and multiplying the resulting equation by ∂ α w, we get

1 2 d dt ∂ α w 2 0 + ∂ α ((u 1 + ζ 1 ) • ∇)w • ∂ α wdx + ∂ α (w • ∇)(u 2 + ζ 2 ) • ∂ α wdx + ∂ α h(g 1 )∇ϕ • ∂ α wdx + ∂ α (h(g 2 ) -h(g 1 ))∇g 2 • ∂ α wdx ≤ C w k-1 ( η k + q k-1 ). (2.17) 
Integrating by parts, we see that

∂ α ((u 1 + ζ 1 ) • ∇)w • ∂ α wdx ≤ ((u 1 + ζ 1 ) • ∇)∂ α w • ∂ α wdx + C w 2 k-1 = - 1 2 (∇ • (u 1 + ζ 1 ))|∂ α w| 2 dx + C w 2 k-1 . (2.18)
Inequalities (2.17), (2.18) and the fact that

H k ֒→ L ∞ for k > 3 2 imply that 1 2 d dt ∂ α w 2 0 + h(g 1 )∇∂ α ϕ • ∂ α wdx ≤C w k-1 ( w k-1 + ϕ k-1 + η k + q k-1 ). (2.19)
On the other hand, applying ∂ α to (2.16), multiplying the resulting equation by h(g 1 )∂ α ϕ and integrating over T 3 , we obtain

1 2 d dt h(g 1 )(∂ α ϕ) 2 dx - 1 2 ∂ t h(g 1 )(∂ α ϕ) 2 dx + ∂ α ((u 1 + ξ 1 ) • ∇ϕ)h(g 1 )∂ α ϕdx + ∂ α (w • ∇g 2 )h(g 1 )∂ α ϕdx + ∂ α (∇ • w)h(g 1 )∂ α ϕdx ≤ C ϕ k-1 σ k .
As g 1 ∈ C(J T , H k ) and h ∈ C k (R), integration by parts in the third term on the left-hand side implies (cf. (2.18))

1 2 d dt h(g 1 )(∂ α ϕ) 2 dx + ∂ α (∇ • w)h(g 1 )∂ α ϕdx ≤C ϕ k-1 ( ϕ k-1 + w k-1 + σ k ).
(2.20) Adding (2. [START_REF] Taylor | Partial Differential Equations[END_REF]) and (2.20) and using the facts that h(s) > 0 for any s ∈ R

∂ α (∇ • w)h(g 1 )∂ α ϕdx + h(g 1 )∇∂ α ϕ • ∂ α wdx = -∂ α ϕ(∇h(g 1 )) • ∂ α wdx, we get d dt ∂ α w 2 0 + d dt (∂ α ϕ) 2 dx ≤C( w 2 k-1 + ϕ 2 k-1 + σ 2 k + η 2 k + q 2 k-1 ).
Taking the sum over all α, |α| ≤ k -1 and applying the Gronwall inequality, we obtain

w 2 k-1 + ϕ 2 k-1 ≤C( σ 2 L 2 (JT ,H k ) + η 2 L 2 (JT ,H k ) + q 2 L 2 (JT ,H k-1 ) ). (2.21)
Thus we have that T 0 = T. Moreover, (2.21) completes also the proof of (ii). Assertion (iii) can be proved by repeating the arguments of the proof of Theorem 1.4 in [START_REF] Beirão | Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible Euler equations[END_REF] for Sobolev spaces H k .

Continuity property of the resolving operator

In this subsection, we establish another property of resolving operator, which will play an essential role in Section 4.2.

Theorem 2.3. Let ζ n and ξ n be bounded sequences in C(J T , H k+2 ) and ξ n be such that

t0 0 ξ n (t) • χ n (t)dt → 0 in H k (2.22)
for any t 0 ∈ J T and for any uniformly equicontinuous sequence χ n :

J T → H k . Suppose that for U n = (u 0 , g 0 , ζ n , ξ n , f ) ∈ X k+1 problem (2.6)-(2.8) has a solution (u n , g n ) ∈ Y k+1 . Then for sufficiently large n ≥ 1 there exists a solution R(V n ) ∈ Y k+1 with V n = (u 0 , g 0 , ζ n , 0, f ), which verifies R(U n ) -R(V n ) → 0 in Y k .
Proof. As V n ∈ X k+1 , a blow-up criterion for quasi-linear symmetrizable hyperbolic systems [19, Section 16, Proposition 2.4] implies that, if we have the existence of

R(V n ) in Y k , then R(V n ) ∈ Y k+1 . We seek the solution R(V n ) in the form (w n + u n , ϕ n + g n ).
For (w n , ϕ n ) we have the following problem (cf.

(2.10)-(2.12)) 

∂ t w n + ((u n + ζ n ) • ∇)w n + (w n • ∇)(u n + ζ n ) + (w n • ∇)w n + h(g n + ϕ n )∇(g n + ϕ n ) -h(g n )∇g n = 0, (2.23) ∂ t ϕ n + (u n • ∇)ϕ n + (w n • ∇)g n + (w n • ∇)ϕ n -ξ n • ∇g n + ∇ • (w n -ξ n ) = 0, (2.24) (w n , ϕ n )(0) = (0, 0). (2.25) As ξ n • ∇g n k + ∇ • ξ n k is not
u n 2 k + g n 2 k ≤C( ζ n 2 L 2 (JT ,H k+1 ) + ξ n 2 L 2 (JT ,H k+1 ) + f 2 L 2 (JT ,H k ) ) ≤ C 1 . Thus R(U n ) Y k is
bounded and solutions (w n , ϕ n ) are defined on the same interval J T0 . A simple iterative argument shows that, to complete the proof, it suffices to prove that w n C(T0,H k ) + ϕ n C(T0,H k ) < ν for sufficiently large n. To this end, let us argue as in the proof of Theorem 2.2. Taking the ∂ α , |α| ≤ k derivative of (2.23) and multiplying the resulting equation by

∂ α w n in L 2 , we get (cf. (2.19)) 1 2 d dt ∂ α w n 2 0 + h(g n )∇∂ α ϕ n • ∂ α w n dx ≤C w n k ( w n k + ϕ n k ). (2.26)
Then, applying ∂ α , |α| ≤ k to (2.24) and multiplying the obtained equation by h(g n )∂ α ϕ n , we derive

1 2 d dt h(g n )(∂ α ϕ n ) 2 dx + ∂ α (∇ • w n )h(g n )∂ α ϕ n dx ≤ h(g n )∂ α ϕ n ∂ α (ξ n • ∇g n + ∇ • ξ n )dx + C ϕ n k ( ϕ n k + w n k ).
(2.27)

Combining (2.26), (2.27) and the fact that

T0 0 h(g n )∂ α ϕ n ∂ α (ξ n • ∇g n + ∇ • ξ n )ds → 0 in L 2 (T 3 ), we get that w n C(T0,H k ) + ϕ n C(T0,H k ) < ν for sufficiently large n. Thus R(V n ) ∈ Y k and R(U n ) -R(V n ) Y k → 0.
3 Main results

Controllability of Euler system

Let us consider the controlled system associated with the compressible Euler problem:

∂ t u + (u • ∇)u + h(g)∇g = f + η, (3.1) 
(∂ t + u • ∇)g + ∇ • u = 0, (3.2) u(0) = u 0 , g(0) = g 0 , (3.3) 
where f ∈ C ∞ ([0, ∞), H k+2 ), u 0 ∈ H k and g 0 ∈ H k are given functions, and η is the control taking values in a finite-dimensional subspace E ⊂ H k+2 . We denote by Θ(u 0 , g 0 , f ) the set of functions η ∈ L 2 (J T , H k ) for which problem (3.1)-( 3.3) has a solution in Y k . For any α > 0 and k ∈ N let us define the set

G k α = {g ∈ H k : e g(x) dx = α}.
Recall that R is the resolving operator of (2.6)-(2.8). We denote by R t (•) the restriction of R(•) to the time t. Let X ⊂ L 2 (J T , H k ) be an arbitrary vector subspace. We endow G k α with the metric defined by the norm of H k and X by the norm of L 2 (J T , H k ). Recall that for a function f : R m → R n a point x ∈ R m is said to be regular point if the differential Df (x) is surjective. Then, by the inverse function theorem, there exists a neighborhood of f (x) such that a right inverse of f is well defined. Now we give a generalization of the notion of a regular point for a continuous function F :

H k × G k α → R N . Definition 3.1. A point (u 1 , g 1
) is said to be regular for F if there is a nondegenerate closed ball B ⊂ R N centred at y 1 = F (u 1 , g 1 ) and a continuous function G : B → H k × G k α such that G(y 1 ) = (u 1 , g 1 ) and F (G(y)) = y for any y ∈ B. Definition 3.2. System (3.1), (3.2) with η ∈ X is said to be controllable at time T > 0 if for any constants ε, α > 0, for any continuous function

F : H k × G k α → R N , for any initial data (u 0 , g 0 ) ∈ H k × G k α and for any regular point (u 1 , g 1 ) for F there is a control η ∈ Θ(u 0 , g 0 , f ) ∩ X such that R T (u 0 , g 0 , 0, 0, η) -(u 1 , g 1 ) H k ×H k < ε, F (R T (u 0 , g 0 , 0, 0, η)) = F (u 1 , g 1 ).
Let us note that this concept of controllability is stronger than the approximate controllability and is weaker than the exact controllability. In the following example the constructed function admits a right inverse. Then for any nonzero elements z 1 ∈ H k and z 2 ∈ G k α the point z = (z 1 , z 2 ) is regular for F .

For any finite-dimensional subspace E ⊂ H k+2 , we denote by F (E) the largest vector space F ⊂ H k+2 such that for any η 1 ∈ F there are vectors η, ζ 1 , . . . , ζ n ∈ E satisfying the relation

η 1 = η - n i=1 (ζ i • ∇)ζ i .
We define E k by the rule

E 0 = E, E n = F (E n-1 ) for n ≥ 1, E ∞ = ∞ n=1 E n .
The following theorem is the main result of this section.

Theorem 3.4. Suppose f ∈ C ∞ ([0, ∞), H k+2 ). If E ⊂ H k+2 is a finite- dimensional subspace such that E ∞ is dense in H k+1 , then system (3.1), (3.2) with η ∈ C ∞ (J T , E) is controllable at time T > 0.
This theorem will be established in Section 3.2. We now construct an example of a subspace E for which the hypothesis of Theorem 3.4 is satisfied.

Let us introduce the functions

c i m (x) = e i cos m, x , s i m (x) = e i sin m, x , i = 1, 2, 3,
where m ∈ Z 3 and {e i } is the standard basis in R 3 .

Lemma 3.5.

If E = span{c i m , s i m , 0 ≤ m j ≤ 1, i, j = 1, 2, 3}, then the vector space E ∞ is dense in H k for any k ≥ 0.
It is straightforward to see that dim E = 45.

Proof of Lemma 3.5. It suffices to show that span{c i m , s i m , |m| ≤ 2 j } ⊂ E j+1 for all j ≥ 0, (3.4) where

|m| = |m 1 | + |m 2 | + |m 3 |.
We prove (3.4) by induction. The case j = 0 is clear. We shall prove (3.4) for j ≥ 1 assuming that it is true for any j ′ < j.

If n i = 0, then it is easy to see

s i 2n (x) = - 2 n i c i n (x) • ∇c i n (x), -s i 2n (x) = - 2 n i s i n (x) • ∇s i n (x), c i 2n (x) = - 1 n i (s i n (x) -c i n (x)) • ∇(s i n (x) -c i n (x)), -c i 2n (x) = - 1 n i (s i n (x) + c i n (x)) • ∇(s i n (x) + c i n (x)).
Thus s i 2n (x), c i 2n (x) ∈ E j+1 for any |n| ≤ 2 j-1 , n i = 0. If n i = 0, without loss of generality, we can assume n 1 = 0, then

s 1 2n (x) + s i 2n (x) = - 2 n 1 (c 1 n (x) + c i n (x)) • ∇(c 1 n (x) + c i n (x)), (3.5) -s 1 2n (x) -s i 2n (x) = - 2 n 1 (s 1 n (x) + s i n (x)) • ∇(s 1 n (x) + s i n (x)). (3.6)
As ±s 1 2n (x) ∈ E j+1 and the right-hand sides of (3.5), (3.6) are in are in E j+1 , we get s i 2n (x) ∈ E j+1 for any |n| ≤ 2 j-1 , i = 1, 2, 3. In the same way, we can show that c i 2n (x) ∈ E j+1 . Now take l ∈ Z 3 , |l| ≤ 2 j and let us choose

n ∈ Z 3 , |n| ≤ 2 j-1 and m ∈ Z 3 , |m| ≤ 2 j-1 such that l = n + m and c i n-m , s i n-m ∈ E 1 .
For example, if l = (l 1 , l 2 , l 3 ) and l 1 is even, we can take

n = ( l 1 2 , l 2 2 , l 3 - l 3 2 ) and m = ( l 1 2 , l 2 - l 2 2 , l 3 2 ). 
A similar representation holds if l 2 or l 3 is even. On the other hand, if all l i are odd, then necessarily l i ≤ 2 j -1, and we can take

n = (l 1 - l 1 2 , l 2 2 , l 3 - l 3 2 ) and m = ( l 1 2 , l 2 - l 2 2 , l 3 2 ). 
Using the identities

(s i n (x) ± s i m (x)) • ∇(s i n (x) ± s i m (x)) = n i 2 s i 2n (x) + m i 2 s i 2m (x) ± l i 2 s i l (x) ± n i -m i 2 s i n-m (x), (s i n (x) ± c i m (x)) • ∇(s i n (x) ± c i m (x)) = n i 2 s i 2n (x) - m i 2 s i 2m (x) ± l i 2 c i l (x) ± n i -m i 2 c i n-m (x),
we obtain that if l i = 0, then s i l (x), c i l (x) ∈ E j+1 for any |l| ≤ 2 j , i = 1, 2, 3. Arguing as above, we can easily prove that also in the case l i = 0 we have

s i l (x), c i l (x) ∈ E j+1 .

Proof of Theorem 3.4

We shall need the concept of (ε, u 0 , g 0 , K)-controllability of the system. Let us fix constants ε, α > 0, an initial point (u

0 , g 0 ) ∈ H k × G k α , a compact set K ⊂ H k × G k
α and a vector space X ⊂ L 2 (J T , H k ). Definition 3.6. We say that system (3.1), (3.2) with η ∈ X is (ε, u 0 , g 0 , K)controllable at time T > 0 if there is a continuous mapping

Ψ : K → Θ(u 0 , g 0 , f ) ∩ X such that sup ( û,ĝ)∈K R T (u 0 , g 0 , 0, 0, Ψ( û, ĝ)) -( û, ĝ) H k ×H k < ε, where Θ(u 0 , g 0 , f ) ∩ X is endowed with the norm of L 2 (J T , H k ).
The proof of Theorem 3.4 is deduced from the following result.

Theorem 3.7. If E ⊂ H k+2 , k ≥ 4 is a finite-dimensional subspace such that E ∞ is dense in H k+1 , then for any ε > 0, (u 0 , g 0 ) ∈ H k ×G k α and K ⊂ H k ×G k α system (3.1), (3.2) with η ∈ C ∞ (J T , E) is (ε, u 0 , g 0 , K)-controllable at time T > 0.
Taking this assertion for granted, let us complete the proof of Theorem 3.4. Suppose ε and α are positive constants, F :

H k × G k α → R N is
a continuous function and (u 1 , g 1 ) is a regular point for F . Thus, there is a closed ball B ⊂ R N centred at y 1 = F (u 1 , g 1 ) of radius r > 0 and a continuous function

G : B → H k × G k α such that G(u 1 , g 1 ) = (u 1 , g 1 )
and F (G(y)) = y for any y ∈ B. Without loss of generality, we can assume that B is such that

sup y∈B G(y) -(u 1 , g 1 ) H k ×H k ≤ ε 2 . (3.7) 
Let us choose a constant 0 < ε 0 < ε such that

F ( ŷ) -F ( ỹ) R N < r for any ŷ, ỹ ∈ B, ŷ -ỹ H k ×H k ≤ ε 0 2 . (3.8) 
Since

K := G(B) is a compact subset of H k × G k α , Theorem 3.7 implies that there is a continuous mapping Ψ : K → Θ(u 0 , g 0 , f ) ∩ X such that sup ( û,ĝ)∈K R T (u 0 , g 0 , 0, 0, Ψ(û, ĝ)) -( û, ĝ) H k ×H k < ε 0 2 . ( 3.9) 
Therefore, the continuous mapping

Φ : B → R N , y → F R T (u 0 , g 0 , 0, 0, Ψ • G(y))
satisfies the inequality

sup y∈B Φ(y) -y R N = sup y∈B F R T (u 0 , g 0 , 0, 0, Ψ • G(y)) -F (G(y)) R N < r.
Applying the Brouwer theorem, we see that the mapping y → y 1 + y -Φ(y) from B to B has a fixed point y ∈ B. Thus

F (R T (u 0 , g 0 , 0, 0, Ψ • G(y))) = F (u 1 , g 1 ).
Using (3.7) and (3.9), we obtain

R T (u 0 , g 0 , 0, 0, Ψ(G(y))) -(u 1 , g 1 ) H k ×H k ≤ R T (u 0 , g 0 , 0, 0, Ψ(G(y))) -G(y) H k ×H k + G(y) -(u 1 , g 1 ) H k ×H k < ε.
This completes the proof. 

, g 0 , K)-controllable with η ∈ C ∞ (J T , E 1 ) if and only if it is (ε, u 0 , g 0 , K)-controllable with η ∈ C ∞ (J T , E).
Proof of Theorem 3.7. In view of Proposition 4.1, it suffices to prove that there is an integer N ≥ 1, depending only on ε, u 0 , g 0 and K, such that (3.1), (3.2) with η ∈ C ∞ (J T , E N ) is (ε, u 0 , g 0 , K)-controllable at time T . For any µ > 0 and ( û, ĝ) ∈ K let us define

u µ (t; û) = T -1 (te -µ∆ û + (T -t)e -µ∆ u 0 ), (4.1) 
g µ (t; ĝ) = ln(T -1 (te ϕµ(ĝ) + (T -t)e ϕµ(g0) )), (4.2) 
where ϕ µ (g) ∈ G k+1 α is such that ϕ µ (g) → g as µ → 0 for all g ∈ G k α . For example, we can take ϕ µ (g) = ln( α exp(e -µ∆ g(x))dx

) + e -µ∆ g.

Step 1. In this step, we show that there are controls η µ ∈ C ∞ (J T , H k ) and ξ µ ∈ C ∞ (J T , H k+1 ) satisfying R(e -µ∆ u 0 , ϕ µ (g 0 ), ξ µ , ξ µ , η µ ) = (u µ , g µ ).

(4.3)

We first construct ξ µ ∈ C ∞ (J T , H k+1 ) such that Proof of Lemma 4.2.

∂ t g µ + ((u µ + ξ µ ) • ∇)g µ + ∇ • (u µ + ξ µ ) = 0. ( 4 
Step 1. We shall need the following lemma, which can be proved by literal repetition of the arguments of the proof of [START_REF] Shirikyan | Exact controllability in projections for three-dimensional Navier-Stokes equations[END_REF]Lemma 3.5].

Lemma 4.3. For any continuous mapping

Ψ 1 : K → Θ(u 0 , g 0 , f ) ∩ L 2 (J T , E 1 )
there is a set A = {η l 1 , l = 1, . . . , m} ⊂ E 1 an integer s ≥ 1 and a mapping

Ψ s : K → Θ(u 0 , g 0 , f ) ∩ L 2 (J T , E 1 ) such that Ψ s ( û, ĝ) = m l=1 s-1 r=0 c l,r ( û, ĝ)I r,s (t)η l 1 ,
where c l,r are non-negative functions such that m l=1 c l,r = 1, I r,s is the indicator function of the interval [t r , t r+1 ) with t r = rT /s and sup

( û,ĝ)∈K R T (u 0 , g 0 , 0, 0, Ψ 1 ( û, ĝ)) -R T (u 0 , g 0 , 0, 0, Ψ s ( û, ĝ)) H k ×H k < ε.
Let Ψ s be the function constructed in Lemma 4.3:

Ψ s ( û, ĝ) = m l=1 ϕ l (t, û, ĝ)η l 1 .
We claim that there are vectors ζ l,1 , . . . , ζ l,2n , η l ∈ E and positive constants λ l,1 , . . . , λ l,2n whose sum is equal to 1 such that

ζ i = -ζ i+n for i = 1, . . . , n, (u • ∇)u -η l 1 = 2n j=1 λ l,j ((u + ζ l,j ) • ∇)(u + ζ l,j ) -η l for any u ∈ H 1 . (4.16)
Indeed, by the definition of F (E), for any η l 1 ∈ F (E) there are ξ l,1 , . . . , ξ l,n , η l ∈ E such that

η l 1 = η l - n i=1 (ξ l,i • ∇ξ l,i ).
Let us set

λ l,i = λ l,i+n = 1 2n , ζ l,i = -ζ l,i+n = √ nξ i , i = 1, . . . , n.
Then (4.16) holds for any u ∈ H 1 . Let (u 1 , g 1 ) = R(u 0 , g 0 , 0, 0, Ψ s ( û, ĝ)). It follows from (4.16) that (u 1 , g 1 ) satisfies the problem

u1 + 2n j=1 m l=1 λ l,j ϕ l (t, û, ĝ)((u 1 + ζ l,j ) • ∇)(u 1 + ζ l,j ) + h(g 1 )∇g 1 = f (t) + m l=1 ϕ l (t, û, ĝ)η l , (4.17) 
(∂ t + u 1 • ∇)g 1 + ∇ • u 1 = 0.
Taking q = m • n, {ζ i } q i=1 := {ζ l,j } m l=1 , n j=1 , ζ i+q := -ζ i , i = 1, . . . , q, we rewrite (4.17) in the form

u1 + 2q i=1 ψ i (t, û, ĝ)((u 1 + ζ i ) • ∇)(u 1 + ζ i ) + h(g 1 )∇g 1 = f (t) + η(t, û, ĝ), (4.18) where η(t, û, ĝ) = m l=1 ϕ l (t, û, ĝ)η l , ψ i (t, û, ĝ) = s-1 r=0 d i,r ( û, ĝ)I r,s (t), (4.19) 
and d i,r ∈ C(K) are some non-negative functions such that

q i=1 d i,r = 2q i=q+1 d i,r = 1 2 .
Step 2. Let us show that it suffices to consider the case s = 1. Indeed, let us assume that for any constant ε 0 > 0 and for any interval I r := [t r-1 , t r ] there exists a continuous mapping Ψ r ε0 :

K → Θ r (u 1 (t r-1 ), g 1 (t r-1 )) ∩ C ∞ (J T , E) such that sup ( û,ĝ)∈K R tr-tr-1 (u 1 (t r-1 ), g 1 (t r-1 ), 0, 0, Ψ r ε0 (û, ĝ)) -(u 1 (t r ), g 1 (t r )) H k ×H k < ε 0 .
Here Θ r (u 1 (t r-1 ), g 1 (t r-1 )) is the set of functions η ∈ L 2 (I r , H k ) for which problem (3.1)-(3.2) has a solution in C(I r , H k ) × C(I r , H k ) satisfying the initial condition u(t r-1 ) = u 1 (t r-1 ), g(t r-1 ) = g 1 (t r-1 ).

In view of Theorem 2.2, there is δ s > 0 such that for any ( ũ0 , g0 ) ∈ H k+2 ×H k+2 with ( ũ0 , g0 ) -(u 1 (t s-1 ), g 1 (t s-1 )) H k ×H k < δ s we have the inequality sup

( û,ĝ)∈K R T -ts-1 ( ũ0 , g0 , 0, 0, Ψ s ε (û, ĝ)) -(u 1 (T ), g 1 (T )) H k ×H k < ε.
Similarly, we can find δ r > 0, r = s -1, . . . , 1 such that sup

( û,ĝ)∈K R tr+1-tr ( ũ0 , g0 , 0, 0, Ψ r δr+1 (û, ĝ)) -(u 1 (t r+1 ), g 1 (t r+1 )) H k ×H k < δ r+1 for any ( ũ0 , g0 ) ∈ H k+2 × H k+2 satisfying ( ũ0 , g0 ) -(u 1 (t r ), g 1 (t r )) H k ×H k < δ r .
Let us denote by Ψ : K → L 2 (J T , E) the continuous operator defined by the relations

Ψ(û, ĝ)(t) = Ψ r δr+1 (û, ĝ)(t) for t ∈ I r , where δ s+1 = ε. Then sup ( û,ĝ)∈K R T ( ũ0 , g0 , 0, 0, Ψ(û, ĝ)) -(u 1 (T ), g 1 (T )) H k ×H k < ε.
To complete the proof, it suffices to approximate Ψ in L 2 (J T , H k ) by a continuous mapping Ψ : K → Θ(u 0 , g 0 ) ∩ C ∞ (J T , E).

Step 3. We now assume that s = 1. Then (4.18) takes the form u1 + Note that ζ(t, û, ĝ) = -ζ(t - We want to apply Theorem 2.3 to the above system. To this end, let χ n : J T → H k be a uniformly equicontinuous sequence and let t 0 ∈ J T . Then 

Example 3 . 3 .

 33 For any functionz ∈ H k × G k α we set F (z) := |z(x)| 2 dx.

. 4 )

 4 To this end, let us multiply(4.4) by e gµ and perform some simple transformations. We get ∇ • (e gµ ξ µ ) = -∂ t e gµ -∇ • (e gµ u µ ). (4.5) We seek a solution of this equation in the form e gµ ξ µ = ∇ψ µ . Substituting this into (4.5), we get ∆ψ µ = -∂ t e gµ -∇ • (e gµ u µ ). This equation has a solution ψ µ ∈ C ∞ (J T , H k+2 ) if and only if the integral of the right-hand side over T 3 is zero. The definitions of u µ , g µ imply that (∂ t e gµ + ∇ • (e gµ u µ ))dx = ∂ t e gµ dx = ∂ t α = 0. Combining (4.14) and (4.15), we complete the proof of Proposition 4.1.

  2q i=1 d i ( û, ĝ)((u 1 + ζ i ) • ∇)(u 1 + ζ i ) + h(g 1 )∇g 1 = f (t) + η( û, ĝ),(4.20) whered i ∈ C(K) and η ∈ C(K, E). For any n ∈ N, let ζ n (t, û, ĝ) = ζ( nt T , û, ĝ), where ζ(t, û, ĝ) is a 1-periodic function such that ζ(s, û, ĝ) = ζ j for 0 ≤ s -(d 1 ( û, ĝ) + . . .+ d j-1 ( û, ĝ)) < d j ( û,ĝ), j = 1, . . . , q.

t0 0 ζ

 0 n (t) • χ n (t)dt = χ n is uniformly equicontinuous and ζ is bounded, we have sup t∈[0,n] ζ(t) • χ n ( tT n )χ n ( tT n + T 2n ) k → 0, n → ∞.The boundedness of ζ • χ n implies that the second term of the right-hand side of (4.23) goes to zero. Thus

t0 0 ζ

 0 n (t) • χ n (t)dt → 0 in H k .Using Theorem 2.3 and limits (4.21), (4.22), we get sup( û,ĝ)∈K R T (u 0 , g 0 , 0, 0, ζ n , ζ n , η( û, ĝ)) -(u 1 (T, û, ĝ), g 1 (T, û, ĝ)) H k ×H k < ε

  necessarily small, we cannot immediately conclude the existence of a solution (w n , ϕ n ) ∈ Y k . However, from the theory of the local existence of solutions for quasi-linear symmetrizable hyperbolic systems we have that for any constant ν > 0 there is a time T 0,n > 0 such that if wn (0) k + φn (0) k < ν, then problem (2.23)-(2.24) with initial data ( wn (0), φn (0)) has a solution (w n , ϕ n ) ∈ Y k on the interval [0, T 0,n ]. Here time T 0,n > 0 depends only on R(U n ) Y k and ν. Using estimation (2.21) and the fact that ζ n and ξ n are bounded sequences in C(J T , H k+1 ), we get

  Then v n = u 1 -Kf n is a solution of the problem vn + ((v n + ζ n (t, û, ĝ) + Kf n (t, û, ĝ)) • ∇)(v n + ζ n (t, û,ĝ) + Kf n (t, û, ĝ)) +h(g 1 )∇g 1 = f (t) + η(t, û, ĝ), (∂ t + (v n + Kf n (t, û, ĝ)) • ∇)g 1 + ∇ • (v n + Kf n (t, û, ĝ)) = 0, v n = u 0 .Kf n (t, û, ĝ) C(JT ,H k+1 ) → 0, (e.g. see[START_REF] Jurdjevic | Geometric control theory[END_REF] Chapter 3] or[START_REF] Nersisyan | Controllability of 3D incompressible Euler equations by a finite-dimensional external force[END_REF] Section 6]). Thusv nu 1 C(JT ,H k+1 ) → 0 as n → ∞. (4.21)On the other hand, Theorem 2.2 implies that(v n , g 1 ) -( ũn , gn ) Y k → 0 as n → ∞,(4.22)where ( ũn , gn ) satisfies the problem∂ t ũn + (( ũn + ζ n (t, û, ĝ)) • ∇)( ũn + ζ n (t, û, ĝ)) + h(g n )∇g n = f (t) + η(t, û, ĝ),(∂ t + ũn • ∇)g n + ∇ • ũn = 0, ũn (0) = ũ0 , gn (0) = g0 .

	Let us define	t	
	Kf n (t) =	0	f n (s)ds.
	It is straightforward to see that		
	sup		
	( û,ĝ)∈K		

1 

2 , û, ĝ) for t ∈ ( 1 2 , 1). Eq. (4.20) is equivalent to

u1 + ((u 1 + ζ n (t, û, ĝ)) • ∇)(u 1 + ζ n (t, û, ĝ)) + h(g 1 )∇g 1 = f + η(t, û, ĝ) + f n (t, û, ĝ),

where

f n (t, û, ĝ) = ((u 1 + ζ n (t, û, ĝ)) • ∇)(u 1 + ζ n (t, û, ĝ)) -2q i=1 d i ( û, ĝ)((u 1 + ζ i ) • ∇)(u 1 + ζ i ).

Thus (4.5) has a solution ξ µ ∈ C ∞ (J T , H k+1 ). Since e -µ∆ u 0 k+1 , ϕ µ (g 0 ) k+1 are bounded with respect to µ ∈ (0, 1), the constructions of u µ and g µ imply that ∂ t e gµ -∇ • (e gµ u µ ) k is also bounded. Thus ψ µ k+2 is bounded, which implies the boundedness of ξ µ k+1 . If we define

then η µ ∈ C ∞ (J T , H k ) and (4.3) holds.

Step 2. Let us take some functions

Using the constructions of ξ µ , η µ and the fact that

we have

On the other hand,

Then, by Theorem 2.2, (4.8) and (4.9), we obtain

Since ξ µ k+1 is bounded uniformly with respect to µ ∈ (0, 1), equation (4.6) implies that η µ k is also bounded. Taking time derivative of (4.5), we can show the boundedness of ∂ t ξ µ k . Thus (e -µ∆ u 0 , ϕ µ (g 0 ), 0, 0, η µ -∂ t ξ δ µ ) X k is bounded uniformly with respect to µ ∈ (0, 1). Hence, by Theorem 2.2 and relations (4.10)-(4.12), a solution R(u 0 , g 0 , 0, 0, P EN (η µ ( û, ĝ))) ∈ Y k exists for sufficiently large N ≥ 1 and sufficiently small δ, µ > 0. Moreover, sup

From (4.5) and the constructions of u µ (û), g µ (ĝ), we have

are continuous from K to L 2 (J T , H k+1 ). Then (4.6) implies that mapping

Proof of Proposition 4.1

The proof of Proposition 4.1 is inspired by ideas from [START_REF] Agrachev | Navier-Stokes equations controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF][START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF][START_REF] Shirikyan | Exact controllability in projections for three-dimensional Navier-Stokes equations[END_REF]. Let us admit for the moment the following lemma. Lemma 4.2. For any (u 0 , g 0 ) ∈ H k+2 × H k+2 , for any ε > 0 and for any continuous mapping

there is a constant ν > 0 and a continuous mapping

Take any sequence (

0 , g n 0 , f ) for sufficiently large n. By Lemma 4.2, there is a continuous mapping

Choosing n sufficiently large and using the fact that R uniformly continuous on the compact set Ψ(K) ∪ Ψ 1 (K), we get sup R T (u 0 , g 0 , 0, 0, Ψ 1 (û, ĝ)) -R T (u 0 , g 0 , 0, 0, Ψ(û, ĝ)) H k ×H k < ε, which completes the proof.