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Ga-ACTIONS OF FIBER TYPE ON AFFINE T-VARIETIES

ALVARO LIENDO

Abstract. Let X be a normal affine T-variety, where T stands for the algebraic torus.
We classify Ga-actions on X arising from homogeneous locally nilpotent derivations of fiber
type. We deduce that any variety with trivial Makar-Limanov (ML) invariant is birationally
decomposable as Y × P2, for some Y . Conversely, given a variety Y , there exists an affine
variety X with trivial ML invariant birational to Y × P2.

Finally, we introduce a new version of the ML invariant, called the FML invariant. Ac-
cording to our conjecture, the triviality of the FML invariant implies rationality. This
conjecture holds in dimension at most 3.

Introduction

The main result of the paper consists in a birational characterization of normal affine
algebraic varieties with trivial Makar-Limanov invariant. Let us introduce the necessary
notation and definitions.

We let k be an algebraically closed field of characteristic 0, M be a lattice of rank n, and
T = Speck[M ] ≃ (k∗)n be the algebraic torus over k. A T-variety X is a variety endowed
with an algebraic action of T. For an affine variety X = SpecA, introducing a T-action
on X is the same as to equipe A with an M -grading. There are well known combinatorial
descriptions of normal T-varieties. We send the reader to [Dem70] and [KKMS73, Ch. 1] for
the case of toric varieties, to [KKMS73, Ch. 2 and 4] and [Tim08] for the complexity 1 case
i.e., dim X = dimT + 1, and to [AH06, AHS08] for the general case.

We let N = Hom(M, Z), and NQ = N ⊗ Q. Any affine toric variety can be described
via a polyhedral cone σ ⊆ NQ. Similarly, the description of normal affine T-varieties due to
Altmann and Hausen [AH06] deals with a polyhedral cone σ ⊆ NQ, a normal variety Y , and
a divisor D on Y whose coefficients are polyhedra in NQ invariant by translation in σ.

To introduce a Ga-action on an affine variety X is equivalent to fix a locally nilpotent
derivation (LND) on its structure ring A [Fre06, §1.5]. Any LND on A can be extended to a
derivation on K = Frac A by the Leibniz rule. If an LND of A is homogeneous with respect
to the M -grading on A we say that the associated Ga-action on X is compatible with the
T-action. Furthermore, we say that a homogeneous LND ∂ (or, equivalently, the associated
Ga-action) is of fiber type if ∂(KT) = 0 and of horizontal type otherwise [FZ05, Lie08].

In [FZ05] Flenner and Zaidenberg gave a classification of compatible Ga-actions on normal
affine k∗-surfaces. Generalizing this construction, in [Lie08] a classification of Ga-actions on
normal affine T-varieties of complexity 1 was given. In Theorem 2.4 below, we extend this
classification to Ga-actions of fiber type on normal affine T-varieties of arbitrary complexity.

The Makar-Limanov (ML) invariant [KML97] showed to be an important tool for affine
geometry. In particular, it allows to distinguish certain varieties from the affine space. For
an algebra A, this invariant is defined as the intersection of the kernels of all locally nilpotent
derivations on A. Nevertheless, this invariant is far form being optimal. Indeed, many non-
rational varieties share the same ML invariant as that of the affine space [Lie08]. The latter
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2 ALVARO LIENDO

invariant is trivial i.e., ML(An) = k. In Theorem 4.1 we give a birational characterization of
normal affine varieties with trivial ML invariant.

To avoid such a pathology, we introduce the FML invariant which is defined as as the
intersection of the fields of fractions of the kernel of all locally nilpotent derivations on A.
For an affine variety X, we conjecture that FML(X) = k implies that X is rational. In
Theorem 5.6 we prove this conjecture in dimension at most 3.

The content of the paper is as follows. In Section 1 we recall some generalities on T-actions
and Ga-actions. In Section 2 we obtain our classification of LNDs of fiber type. In Section 3
we introduce the homogeneous ML invariant and show some of its limitations. In Section 4 we
establish our principal result concerning the birational characterization. Finally, in Section 5
we introduce and study the FML invariant.

In the entire paper k is an algebraically closed field of characteristic 0, except in Section
1.3, where k can be non algebraically closed.

The author is grateful to Mikhail Zaidenberg for posing the problem and permanent en-
couragement, and to Pierre-Marie Poloni for useful discussions.

1. Preliminaries

1.1. Combinatorial description of T-varieties. Let N be a lattice of rank n and M =
Hom(N, Z) be its dual lattice. We also let NQ = N ⊗ Q, MQ = M ⊗ Q, and we consider the
natural duality pairing MQ × NQ → Q, (m, p) 7→ 〈m, p〉.

Let T = Speck[M ] be the n-dimensional algebraic torus associated to M and let X =
Spec A be an affine T-variety. It is well known that the comorphism A → A ⊗ k[M ] induces
an M -grading on A and, conversely, every M -grading on A arises in this way. Furthermore,
a T-action is effective if an only if the corresponding M -grading is effective.

In [AH06], a combinatorial description of affine T-varieties is given. In what follows we
recall the main features of this description. Let σ be a pointed polyhedral cone in NQ.
We define Polσ(NQ) to be the set of all polyhedra in NQ which can be decomposed as the
Minkowski sum of a compact polyhedron and σ.

To any polyhedron ∆ ∈ Polσ(NQ) we associate its support function h∆ : σ∨ → Q defined
by h∆(m) = min〈m,∆〉. Clearly the support function h∆ is piecewise linear. Furthermore,
h∆ is concave and positively homogeneous, i.e.

h∆(m + m′) ≥ h∆(m) + h∆(m′), and h∆(λm) = λh∆(m),∀m,m′ ∈ σ∨, ∀λ ∈ Q≥0 .

Definition 1.1. A variety Y is called semiprojective if it is projective over an affine variety.
A σ-polyhedral divisor on Y is a formal sum D =

∑
H ∆H · H, where H runs over prime

divisors on Y , ∆H ∈ Polσ(NQ), and ∆H = σ for all but finitely many values of H. For
m ∈ σ∨ we can evaluate D in m by letting D(m) be the Q-divisor

D(m) =
∑

H∈Y

hH(m) · H .

where hH = h∆H
. A σ-polyhedral divisor D is called proper if the following hold

(i) D(m) is semiample1 and Q-Cartier for all m ∈ σ∨
M , and

(ii) D(m) is big for all m ∈ rel. int(σ∨).

The following theorem gives a combinatorial description of T-varieties analogous to the
classical combinatorial description of toric varieties.

Theorem 1.2 ([AH06]). To any proper σ-polyhedral divisor D on a semiprojective variety
Y one can associate a normal finitely generated effectively M -graded domain of dimension

1Recall that a divisor D is semiample if OY (rD) is globally generated for some r > 0.
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rankM + dim Y given by2

A[Y,D] =
⊕

m∈σ∨

M

Amχm, where Am = H0(Y,OY (D(m)) ⊆ K(Y ) .

Conversely, any normal finitely generated effectively M -graded domain is isomorphic to
A[Y,D] for some semiprojective variety Y and some proper σ-polyhedral divisor D on Y .

1.2. Locally nilpotent derivations and Ga-actions. Let X = Spec A be an affine variety.
A derivation on A is called locally nilpotent (LND for short) if for every a ∈ A there exists
n ∈ Z≥0 such that ∂n(a) = 0. Given an LND ∂ on A, the map φ∂ : Ga × A → A, φ∂(t, f) =
et∂f defines a Ga-action on X, and any Ga-action arises in this way.

In the following lemma we collect some well known facts about LNDs over a field of
characteristic 0 (not necessarily algebraically closed), see e.g., [Fre06].

Lemma 1.3. Let A be a finitely generated normal domain over a field of characteristic 0.
For any two LNDs ∂ and ∂′ on A, the following hold.

(i) ker ∂ is a normal subdomain of codimension 1.
(ii) ker ∂ is factorially closed i.e., ab ∈ ker ∂ ⇒ a, b ∈ ker ∂.
(iii) If a ∈ A is invertible, then a ∈ ker ∂.
(iv) If ker ∂ = ker ∂′, then there exist a, a′ ∈ ker ∂ such that a∂ = a′∂′.
(v) If a ∈ ker ∂, then a∂ is again an LND.
(vi) If ∂(a) ∈ (a) for some a ∈ A, then a ∈ ker ∂.
(vii) The field extension Frac(ker ∂) ⊆ Frac A is purely transcendental of degree 1.

Definition 1.4. We say that two LNDs ∂ and ∂′ on A are equivalent if ker ∂ = ker ∂′.

Let D be a proper σ-polyhedral divisor on a semiprojective variety Y , and let A = A[Y,D]
be the corresponding M -graded domain. A derivation ∂ on A is called homogeneous if it
sends homogeneous elements into homogeneous elements. Given a homogeneous LND ∂, we
define its degree as deg ∂ = deg ∂(f) − deg f for any homogeneous f ∈ A \ ker ∂.

Let KY = K(Y ). A homogeneous LND ∂ on A extends to a derivation on Frac A = KY (M),
where KY (M) is the field of fractions of KY [M ]. The LND ∂ is said to be of fiber type if
∂(KY ) = 0 and of horizontal type otherwise. Let X = Spec A. Geometrically speaking,
∂ is of fiber type if and only if the general orbits of the corresponding Ga-action on X are
contained in the closures of general orbits of the T-action given by the M -grading.

1.3. Locally nilpotent derivations on toric varieties. In this section we recall the clas-
sification of homogeneous LND given in [Lie08] for toric varieties defined over a field k of
characteristic 0 (not necessarily algebraically closed).

Given dual bases {ν1, · · · , νn} and {µ1, · · · , µn} for N and M , respectively, we define the
partial derivative ∂νi

with respect to νi as the homogeneous derivation on k[M ] given by
∂νi

(χµj ) = 〈µj , νi〉 = δij .
For a pointed polyhedral cone σ in the vector space NQ, we let

A = k[σ∨
M ] =

⊕

m∈σ∨

M

kχm

be the affine semigroup algebra of the corresponding affine toric variety Xσ = Spec A.
If σ = {0}, then A is spanned by the characters which are invertible functions. By Lemma

1.3 (iii) any LND on A is trivial. In the following, we fix a ray ρ of σ, and we let τ be the
codimension 1 face of σ∨ dual to ρ. Furthermore, letting ρ0 ∈ M be the primitive vector of
ρ we consider µ ∈ M such that 〈µ, ρ0〉 = 1 and H = ρ⊥0 ⊆ MQ.

2For a Q-divisor D, we let OY (D) = OY (⌊D⌋), where ⌊D⌋ is the integral part of D.



4 ALVARO LIENDO

Definition 1.5. We define

Sρ = σ∨
1 ∩ (H − µ) ∩ M ,

where σ1 is the cone spanned by the rays of σ except ρ. We have Sρ 6= ∅. Furthermore,
e + m ∈ Sρ whenever e ∈ Sρ and m ∈ τM .

The following theorem gives a classification of the homogeneous LND of fiber type on A.

Theorem 1.6. To any pair (ρ, e), where ρ is a ray of σ and e ∈ Sρ, we can associate a
homogeneous LND ∂ρ,e on A = k[σ∨

M ] of degree e with kernel ker ∂ρ,e = k[τM ]. Conversely, If
∂ 6= 0 is a homogeneous LND on A, then ∂ = λ∂ρ,e for some ray ρ ⊆ σ, some lattice vector
e ∈ Sρ, and some λ ∈ k∗.

Proof. The first assertion is Lemma 2.6 in [Lie08] and the second one follows from Theorem
2.7 in loc. cit. �

2. Locally nilpotent derivations of fiber type

In this section we give a complete classification of homogeneous LNDs on T-varieties over
an algebraically closed field k of characteristic 0. The particular case of complexity 1 is done
in [Lie08, Section 3.1].

We fix a smooth semiprojective variety Y and a proper σ-polyhedral divisor

D =
∑

H

∆H · H on Y .

Letting KY be the field of rational functions on Y , we consider the affine variety X = Spec A,
where

A = A[Y,D] =
⊕

m∈σ∨

M

Amχm, with Am = H0 (Y,O(D(m))) ⊆ KY .

We denote by hH the support function of ∆H so that D(m) =
∑

H∈Y hH(m) ·H. We also
fix a homogeneous LND ∂ of fiber type on A.

We let Ā = KY [σ∨
M ] be the affine semigroup algebra over KY with cone σ ∈ NQ. By Lemma

Lemma 1.13 in [Lie08] ∂ can be extended to a homogeneous locally nilpotent KY -derivation
∂̄ on Ā.

If σ has no ray i.e., σ = {0}, then ∂̄ = 0 by Theorem 1.6 and so ∂ is trivial. In the sequel
we assume that σ has at least one ray, say ρ. Let τ be its dual codimension 1 face, and let
Sρ be as defined in Lemma 1.5.

Definition 2.1. For any e ∈ Sρ, we let De be the Q-divisor on Y defined by3

De :=
∑

H

max
m∈σ∨

M
\τM

(hH(m) − hH(m + e)) · H .

Remark 2.2. An alternative description of De is as follows. Since the function hH is concave
and piecewise linear on σ∨, the above maximum is achieved by one of the linear pieces of hH

i.e., by one of the maximal cones in the normal quasifan Λ(hH).
For every prime divisor H on Y , we let {δ1,H , · · · , δℓH ,H} be the set of all maximal cones

in Λ(hH ) and gr,H , r ∈ {1, · · · , ℓH} be the linear extension of hH |δr,H
to MQ. Since the

maximum is achieved on one of the linear pieces we have

max
m∈σ∨

M
\τM

(hH(m) − hH(m + e)) = max
r∈{1,··· ,ℓH}

(−gr,H(e)) = − min
r∈{1,··· ,ℓH}

gr,H(e) .

3cf. Lemma 3.3 in [Lie08]
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Since τ is a codimension 1 face of σ∨, it is contained as a face in one and only one maximal
cone δr,H . We may assume that τ ⊆ δ1,H . By the concavity of hH we have g1,H(e) ≤ gr,H(e)
∀r and so

De = −
∑

H

g1,H(e) · H .

We need the following lemma.

Lemma 2.3. For any e ∈ Sρ we define Φe = H0(Y,OY (−De)). If ϕ ∈ KY then ϕ ∈ Φe if
and only if ϕAm ⊆ Am+e for any m ∈ σ∨

M \ τM .

Proof. If ϕ ∈ Φe, then for every m ∈ σ∨
M \ τM ,

div(ϕ) ≥ De ≥
∑

H

(hz(m) − hz(m + e)) · H = D(m) − D(m + e) .

If f ∈ ϕAm then div(f)+D(m) ≥ div(ϕ) and so div(f)+D(m+ e) ≥ 0. Thus ϕAm ⊆ Am+e.
To prove the converse, we let ϕ ∈ KY be such that ϕAm ⊆ Am+e for any m ∈ σ∨

M \ τM .
With the notation of Remark 2.2, we let m ∈ M be a lattice vector such that D(m) is an
integral divisor, and m and m + e belong to rel. int(δ1,H), for any prime divisor H.

For every H ∈ SuppD, we let fH ∈ Am be a rational function such that

ordH(fH) = −hH(m) = −g1,H(m) .

By our assumption ϕfH ∈ Am+e and so

ordH(ϕfH) ≥ −hH(m + e) = −g1,H(m + e) .

This yields ordH(ϕ) ≥ −g1,H(m + e) + g1,H(m) = −g1,H(e) and so ϕ ∈ Φe. This proves
the lemma. �

The following theorem gives a classification of LNDs of fiber type on normal affine T-
varieties. We let Φ∗

e = Φe \ {0}.

Theorem 2.4. To any triple (ρ, e, ϕ), where ρ is a ray of σ, e ∈ Sρ, and ϕ ∈ Φ∗
e, we can

associate a homogeneous LND ∂ρ,e,ϕ of fiber type on A = A[Y,D] of degree e with kernel

ker ∂ρ,e,ϕ =
⊕

m∈τM

Amχm .

Conversely, every non-trivial homogeneous LND ∂ of fiber type on A is of the form ∂ =
∂ρ,e,ϕ for some ray ρ ⊆ σ, some lattice vector e ∈ Sρ, and some function ϕ ∈ Φ∗

e.

Proof. Letting Ā = KY [σ∨
M ], we consider the KY -LND ∂ρ,e on Ā as in Theorem 1.6. Since

ϕ ∈ K∗
Y , ϕ∂ρ,e is again a KY -LND on Ā.

We claim that ϕ∂ρ,e stabilizes A ⊆ Ā. Indeed, let f ∈ Am ⊆ KY be a homogeneous
element. If m ∈ τM , then ϕ∂ρ,e(fχm) = 0. If m ∈ σ∨

M \ τM , then

ϕ∂ρ,e(fχm) = ϕf∂ρ,e(χ
m) = m0ϕfχm+e ,

where m0 := 〈m,ρ0〉 ∈ Z>0 for the primitive vector ρ0 of the ray ρ. By Lemma 2.3,
m0ϕfχm+e ∈ Am+e, proving the claim.

Finally ∂ρ,e,ϕ := ϕ∂ρ,e|A is a homogeneous LND on A with kernel

ker ∂ρ,e,ϕ = A ∩ ker ∂ρ,e =
⊕

m∈τM

(Am ∩ KY )χm =
⊕

m∈τM

Amχm ,

as desired.
To prove the converse, we let ∂ be a homogeneous LND on A of fiber type. Since ∂ is of

fiber type, ∂|KY
= 0 and so ∂ can be extended to a KY -LND ∂̄ on the affine semigroup algebra

Ā = KY [σ∨
M ]. By Theorem 1.6 we have ∂̄ = ϕ∂ρ,e for some ray ρ of σ, some e ∈ Sρ and some

ϕ ∈ K∗
Y . Since A is stable under ϕ∂ρ,e, by Lemma 2.3 ϕ ∈ Φ∗

e and so ∂ = ϕ∂ρ,e|A = ∂ρ,e,ϕ. �



6 ALVARO LIENDO

Corollary 2.5. Let A be a normal finitely generated effectively M -graded domain, where M
is a lattice of finite rank, and let ∂ be a homogeneous LND on A. If ∂ is of fiber type, then
ker ∂ is finitely generated.

Proof. Let A = A[Y,D], where D is a proper σ-polyhedral divisor on a semiprojective variety
Y . In the notation of Theorem 2.4 we have ∂ = ∂ρ,e,ϕ, where ρ is a ray of σ. Letting τ ⊆ σ∨

be the codimension 1 face dual to ρ, by Theorem 2.4 we have ker ∂ =
⊕

m∈τM
Amχm.

Let a1, . . . , ar be a set of homogeneous generators of A. Without loss of generality, we
may assume further that deg ai ∈ τM if and only if 1 ≤ i ≤ s < r. We claim that a1, . . . , as

generate ker ∂. Indeed, let P be any polynomial such that P (a1, . . . , ar) ∈ ker ∂. Since τ ⊆ σ∨

is a face,
∑

mi ∈ τM for mi ∈ σ∨
M implies that mi ∈ τ ∀i. Hence all the monomials composing

P (a1, . . . , ar) are monomials in a1, . . . , as, proving the claim. �

Corollary 2.6. Let as before ∂ be a homogeneous LND of fiber type on A = A[Y,D], and let
fχm ∈ A \ ker ∂ be a homogeneous element. Then ∂ is completely determined by the image
gχm+e := ∂(fχm) ∈ Am+eχ

m+e.

Proof. By the previous theorem ∂ = ∂ρ,e,ϕ for some ray ρ, some e ∈ Sρ, and some ϕ ∈ Φe,
where e = deg ∂ and ρ is uniquely determined by e, see Corollary 2.8 in [Lie08].

In the course of the proof of Lemma 2.4 it was shown that ∂ρ,e,ϕ(fχm) = m0ϕfχm+e. Thus
ϕ = g

m0f
∈ K0 is also uniquely determined by our data. �

It might happen that Φ∗
e as above is empty. Given a ray ρ ⊆ σ, in the following lemma we

give a criterion for the existence of e ∈ Sρ such that Φ∗
e is non-empty.

Theorem 2.7. Let A = A[Y,D], and let ρ ⊆ σ be the ray dual to a codimension one face
τ ⊆ σ∨. There exists e ∈ Sρ such that dim Φe is positive if and only if the divisor D(m) is
big for all lattice vectors m ∈ rel. int(τ).

Proof. Assuming that D(m) is big for all lattice vector m ∈ rel. int(τ), we consider the linear
map

G : MQ → DivQ(Y ), m 7→
∑

H

g1,H(m) · H ,

so that G(m) = D(m) for all m ∈ τ and De = −G(e) for all e ∈ Sρ. Choosing m ∈
rel. int(τ) ∩ (Sρ + µ) and r ∈ Z>0, we let j = m − 1

r
· µ. We consider the divisor

G(j) = G(m) − 1
r
· G(µ) = D(m) − 1

r
· G(µ) .

Since D(m) is big and the big cone is open in DivR(Y ) (see [Laz04, Def. 2.2.25]), by
choosing r big enough, we may assume that G(j) is big. Furthermore, possible increasing r,
we may assume that G(r · j) has a section. Now, r · j = r · m − µ = (r − 1) · m + (m − µ).
Since (r − 1) · m ∈ τM and m − µ ∈ Sρ, we have r · j ∈ Sρ. Letting e = r · j ∈ Sρ we obtain
De = −G(e) and so dim H0(Y,OY (−De)) is positive.

Assume now that there is m ∈ rel. int(τ) such that D(m) is not big. Since the set of big
divisors is and open and convex subset in DivR(Y ), the divisor D(m) is not big whatever is
m ∈ τ . We let B be the algebra

B =
⊕

m∈τM

Amχm .

Under our assumption dimB < n + k − 1. Since dimA = n + k, by Lemma 1.3 (i) B cannot
be the kernel of an LND on A. The latter implies, by Theorem 2.4 that there is no e ∈ Sρ

such that dimΦe is positive. �

Finally, we deduce the following corollary.
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Corollary 2.8. Two homogeneous LNDs of fiber type ∂ = ∂ρ,e,ϕ and ∂′ = ∂ρ′,e′,ϕ′ on
A = A[Y,D] are equivalent if and only if ρ = ρ′. Furthermore, the equivalence classes of
homogeneous LNDs of fiber type on A are in one to one correspondence with the rays ρ ⊆ σ
such that D(m) is big ∀m ∈ rel. int(τ), where τ is the codimension 1 face dual to ρ.

Proof. The first assertion follows from the description of ker ∂ρ,e,ϕ in Lemma 2.4. The second
follows from the first one due to Theorem 2.7. �

3. Homogeneous Makar Limanov invariant

Let X = SpecA, where A is a finitely generated normal domain, and let LND(A) be the
set of all LNDs on A. The Makar-Limanov invariant (ML invariant for short) of A (or of
X = SpecA) is defined as

ML(A) =
⋂

∂∈LND(A)

ker ∂ .

In the case where A is effectively M -graded we let LNDh(A) be the set of all homogeneous
LNDs on A and LNDfib(A) be the set of all homogeneous LNDs of fiber type on A. Following
[Lie08], we define

MLh(A) =
⋂

∂∈LNDh(A)

ker ∂ and MLfib(A) =
⋂

∂∈LNDfib(A)

ker ∂ .

Clearly ML(A) ⊆ MLh(A) ⊆ MLfib(A).
In this section we provide examples showing that, in general, these inclusions are strict

and so, the homogeneous LNDs are not enough to compute the ML invariant.

Example 3.1. Let A = k[x, y] with the grading given by deg x = 0 and deg y = 1. In this
case, both partial derivatives ∂x = ∂/∂x and ∂y = ∂/∂y are homogeneous. Since ker ∂x = k[y]
and ker ∂y = k[x] we have MLh = k. Furthermore, it is easy to see that there is only one
equivalence class of LNDs of fiber type. A representative of this class is ∂y (see Corollary
2.8). This yields MLfib(A) = k[x]. Thus MLh(A) ( MLfib(A) in this case.

Example 3.2. To provide an example where ML(A) ( MLh(A) we consider the Koras-
Russell threefold X = SpecA, where

A = k[x, y, z, t]/(x + x2y + z2 + t3) .

The ML invariant was first introduced in [KML97] to prove that X 6≃ A3. In fact ML(A) =
k[x] while ML(A3) = k. In the recent paper [Dub09] Dubouloz shows that the cylinder over
the Koras-Russell threefold has trivial ML invariant i.e., ML(A[w]) = k, where w is a new
variable.

Let A[w] be graded by deg A = 0 and deg w = 1, and let ∂ be a homogeneous LND on
A[w]. If e := deg ∂ ≤ −1 then ∂(A) = 0 and by Lemma 1.3 (i) we have that ker ∂ = A and
∂ is equivalent to the partial derivative ∂/∂w.

If e ≥ 0 then ∂(w) = awe+1, where a ∈ A and so, by Lemma 1.3 (vi) w ∈ ker ∂. Fur-
thermore, for any a ∈ A we have ∂(a) = bwe, for a unique b ∈ A. We define a derivation
∂̄ : A → A by ∂̄(a) = b. Since ∂r(a) = ∂̄r(a)wre the derivation ∂̄ is LND. This yields
MLh(A[w]) = ML(A) = k[x] while ML(A[w]) = k.

4. Birational equivalence classes of varieties with

trivial ML invariant

In this section we establish the following birational characterization of normal affine vari-
eties with trivial ML invariant. Let k be an algebraically closed field of characteristic 0.
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Theorem 4.1. Let X = SpecA be an affine variety of dimension n ≥ 2 over k. If ML(X) =
k then X ≃bir Y × P2 for some variety Y . Conversely, in any birational class Y × P2 there
is an affine variety X with ML(X) = k.

Proof. Let K = Frac A be the field of rational functions on X so that tr.degk(K) = n. As
usual tr.degk(K) denotes the transcendence degree of the field extension k ⊆ K.

Since ML(X) = k, there exists at least 2 non-equivalent LNDs ∂1, ∂2 : A → A. We let
Li = Frac(ker ∂i) ⊆ K, for i = 1, 2. By Lemma 1.3 (vii), Li ⊆ K is a purely transcendental
extension of degree 1, for i = 1, 2.

We let L = L1 ∩L2. By an inclusion-exclusion argument we have tr.degL(K) = 2. We let
Ā be the 2-dimensional algebra over L

Ā = A ⊗k L .

Since Frac Ā = Frac A = K and L ⊆ ker ∂i for i = 1, 2, the LND ∂i extends to a locally
nilpotent L-derivation ∂̄i by setting

∂̄i(a ⊗ l) = ∂i(a) ⊗ l, where a ∈ A, and l ∈ L .

Furthermore, ker ∂̄i = Ā ∩ Li, for i = 1, 2 and so

ker ∂̄1 ∩ ker ∂̄2 = Ā ∩ L1 ∩ L2 = L .

Thus the Makar-Limanov invariant of the 2-dimensional L-algebra Ā is trivial.
By the theorem in [ML, p. 41], Ā is isomorphic to an L-subalgebra of L[x1, x2], where

x1, x2 are new variables. Thus

K ≃ L(x1, x2), and so X ≃bir Y × P2 ,

where Y is any variety with L as the field of rational functions.
The second assertion follows from Lemma 4.2 bellow. This completes the proof. �

The following lemma provides examples of affine varieties with trivial ML invariant in any
birational class Y ×Pn, n ≥ 2. It is a generalization of Section 4.3 in [Lie08]. Let us introduce
some notation.

As before, we let N be a lattice of rank n ≥ 2 and M be its dual lattice. We let σ ⊆ NQ

be a pointed polyhedral cone of full dimension. We fix p ∈ rel. int(σ)∩M . We let ∆ = p + σ
and h = h∆ so that

h(m) = 〈p,m〉 > 0, for all m ∈ σ∨ \ {0} .

Furthermore, letting Y be a projective variety and H be a semiample and big Cartier
Z-divisor on Y , we let A = A[Y,D], where D is the proper σ-polyhedral divisor D = ∆ · H,
so that

D(m) = 〈p,m〉 · H, for all m ∈ σ∨ .

Recall that Frac A = KY (M) so that SpecA ≃bir Y × Pn.

Lemma 4.2. With the above notation, the affine variety X = SpecA[Y,D] has trivial ML
invariant.

Proof. Let {ρi}i be the set of all rays of σ and {τi}i the set of the corresponding dual
codimension 1 faces of σ∨. Since rH is big for all r > 0, Theorem 2.7 shows that there exists
ei ∈ Sρi

such that dimΦei
is positive, and so we can chose a non-zero ϕi ∈ Φei

. In this case,
Theorem 2.4 shows that there exists a non-trivial locally nilpotent derivation ∂ρi,ei,ϕi

, with

ker ∂ρi,ei,ϕi
=

⊕

m∈τi∩M

Amχm .
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Since the cone σ is pointed and has full dimension, the same holds for σ∨. Thus, the
intersection of all codimension 1 faces reduces to one point

⋂
i τi = {0} and so

⋂

i

ker ∂ρi,ei,ϕi
⊆ A0 = H0(Y,OY ) = k .

This yields

ML(A) = MLh(A) = MLfib(A) = k .

�

With the notation as in the proof of Lemma 4.2, we can provide yet another explicit
construction. We fix isomorphisms M ≃ Zn and N ≃ Zn such that the standard bases
{µ1, · · · , µn} and {ν1, · · · , νn} for MQ and NQ, respectively, are mutually dual. We let σ be
the first quadrant in NQ, and p =

∑
i νi, so that

h(m) =
∑

i

mi, and D(m) =
∑

i

mi · H, where m = (m1, · · · ,mn), and mi ∈ Q≥0 .

We let ρi ⊆ σ be the ray spanned by the vector νi, and let τi be its dual codimension 1
face. In this setting, Sρi

= (τi − µi) ∩M . Furthermore, letting ei,j = −µi + µj (where j 6= i)
yields

h(m) = h(m + ei,j), so that Dei,j
= 0, and Φei,j

= H0(Y,OY ) = k .

Choosing ϕi,j = 1 ∈ Φei,j
we obtain4

∂i,j := ∂ρi,ei,j ,ϕi,j
= χµj∂νi

, where i, j ∈ {1, · · · , n}, i 6= j

is a homogeneous LND on A = A[Y,D] with degree ei,j and kernel

ker ∂i,j =
⊕

τi∩M

Amχm .

As in the proof of Lemma 4.2 the intersection
⋂

i,j

ker ∂i,j = k, and so ML(X) = k .

We can give a geometrical description of X. Consider the OY -algebra

Ã =
⊕

m∈σ∨

M

OY (D(m))χm, so that A = H0(Y, Ã) .

In this case, we have

Ã =
∞⊕

r=0

⊕
P

mi=r, mi≥0

OY (rH)χm ≃ Sym

(
n⊕

i=1

OY (H)

)
.

And so X̃ = SpecY Ã is the vector bundle associated to the locally free sheaf
⊕n

i=1 OY (H)

(see Ch. II Ex. 5.18 in [Har77]). We let π : X̃ → Y be the corresponding affine morphism.

The morphism ϕ : X̃ → X induced by taking global sections corresponds to the contraction
of the zero section to a point 0̄. We let θ := π ◦ϕ−1 : X \ {0̄} → Y . The point 0̄ corresponds
to the augmentation ideal A \ k. It is the only attractive fixed point of the T-action. The

orbit closures of the T-action on X are Θy := θ−1(y) = θ−1(y) ∪ {0}, ∀y ∈ Y . Let χµi = ui.
Θy is equivariantly isomorphic to Speck[σ∨

M ] = Speck[u1, · · · , un] ≃ An.

4Recall that ∂νi
is the partial derivatives defined in Section 1.3.
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The Ga-action φi,j : Ga × X → X induced by the homogeneous LND ∂i,j restricts to a
Ga-action on Θy given by

φi,j |ΘY
: Ga × An → An, where ui 7→ ui + tuj , ur 7→ ur, ∀r 6= i .

Moreover, the unique fixed point 0̄ is singular unless Y is a projective space and there is
no other singular point. By Theorem 2.9 in [Lie09] X has rational singularities if and only if
OY and OY (H) are acyclic. The latter assumption can be fulfilled by taking, for instance, Y
toric or Y a rational surface, and H a large enough multiple of an ample divisor.

5. FML invariant

The main application of the ML invariant is to distinguish some varieties from the affine
space. Nevertheless, this invariant is far from being optimal as we have seen in the previous
section. Indeed, there is a large class of non-rational normal affine varieties with trivial ML
invariant. To eliminate such a pathology, we propose below a generalization of the classical
ML invariant.

Let A be a finitely generated normal domain. We define the FML invariant of A as the
subfield of K = Frac A given by

FML(A) =
⋂

∂∈LND(A)

Frac(ker ∂) .

In the case where A is M -graded we define FMLh and FMLfib in the analogous way.

Remark 5.1. Let A = k[x1, · · · , xn] so that K = k(x1, · · · , xn). For the partial derivative
∂i = ∂/∂xi we have Frac(ker ∂i) = k(x1, · · · , x̂i, · · · , xn), where x̂i means that xi is omitted.
This yields

FML(A) ⊆
n⋂

i=1

Frac(ker ∂i) = k ,

and so FML(A) = k. Thus, the FML invariant of the affine space is trivial.

For any finitely generated normal domain A there is an inclusion ML(A) ⊆ FML(A). A
priori, since FML(An) = k the FML invariant is stronger than the classical one in the sense
that it can distinguish more varieties form the affine space that the classical one. In the
next proposition we show that the classical ML invariant can be recovered from the FML
invariant.

Proposition 5.2. Let A be a finitely generated normal domain, then

ML(A) = FML(A) ∩ A .

Proof. We must show that for any LND ∂ on A,

ker ∂ = Frac(ker ∂) ∩ A .

The inclusion “⊆” is trivial. To prove the converse inclusion, we fix a ∈ Frac(ker ∂) ∩ A.
Letting b, c ∈ ker ∂ be such that ac = b, Lemma 1.3 (ii) shows that a ∈ ker ∂. �

Let A = A[Y,D] for some proper σ-polyhedral divisor D on a normal semiprojective variety
Y . In this case K = Frac A = KY (M), where KY (M) corresponds to the field of fractions
of the semigroup algebra KY [M ]. It is a purely transcendental extension of KY of degree
rankM .

Let ∂ be a homogeneous LND of fiber type on A. By definition, KY ⊆ Frac(ker ∂) and so,
KY ⊆ FMLfib(A). This shows that the pathological examples as in Lemma 4.2 cannot occur.
Let us formulate the following conjecture.

Conjecture 5.3. Let X be an affine variety. If FML(X) = k then X is rational.
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The following lemma proves Conjecture 5.3 in the particular case where X ≃bir C × Pn,
with C a curve.

Lemma 5.4. Let X = SpecA be an affine variety such that X ≃bir C×Pn, where C is a curve
with field rational functions L. If C has positive genus then FML(X) ⊇ L. In particular, if
FML(X) = k then C is rational.

Proof. Assume that C has positive genus. We have K = Frac A = L(x1, . . . , xn), where
x1, . . . , xn are new variables.

We claim that L ⊆ FML(A). Indeed, let ∂ be an LND on A and let f, g ∈ L \ k. Since
tr.degk(L) = 1, there exists a polynomial P ∈ k[x, y] \ k such that P (f, g) = 0. Applying
the derivation ∂ : K → K to P (f, g) we obtain

∂P

∂x
(f, g) · ∂(f) +

∂P

∂y
(f, g) · ∂(g) = 0 .

Since f and g are not constant we may suppose that ∂P
∂x

(f, g) 6= 0 and ∂P
∂y

(f, g) 6= 0. Hence

∂(f) = 0 if and only if ∂(g) = 0. This shows that one of the two following possibilities occurs:

L ⊆ Frac(ker ∂) or L ∩ Frac(ker ∂) = k .

Assume first that L∩Frac(ker ∂) = k. Then, by Lemma 1.3 (i) Frac(ker ∂) = k(x1, . . . , xn)
and so the field extension Frac(ker ∂) ⊆ K is not purely transcendental. This contradits
Lemma 1.3 (vii). Thus L ⊆ Frac(ker ∂) proving the claim and the lemma. �

Remark 5.5. We can apply Lemma 5.4 to show that the FML invariant carries more infor-
mation than usual ML invariant. Indeed, let, in the notation of Lemma 4.2, Y be a smooth
projective curve of positive genus. Lemma 4.2 shows that ML(A[Y,D]) = k. While by Lemma
5.4, FML(A[Y,D]) ⊇ KY .

In the following theorem we prove Conjecture 5.3 in dimension at most 3.

Theorem 5.6. Let X be an affine variety of dimension dimX ≤ 3. If FML(X) = k then X
is rational.

Proof. Since FML(X) is trivial, the same holds for ML(X). If dimX ≤ 2 then ML(X) = k

implies X rational (see e.g., [ML, p. 41]). Assume that dimX = 3. Lemma 4.1 implies that
X ≃bir C × P2 for some curve C. While by Lemma 5.4, C is a rational curve. �
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