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Abstract

The global sensitivity analysis of a complex numerical model often calls for the es-

timation of variance-based importance measures, named Sobol’ indices. Metamodel-

based techniques have been developed in order to replace the cpu time-expensive

computer code with an inexpensive mathematical function, which predicts the com-

puter code output. The common metamodel-based sensitivity analysis methods are

well-suited for computer codes with scalar outputs. However, in the environmental

domain, as in many areas of application, the numerical model outputs are often

spatial maps, which may also vary with time. In this paper, we introduce an inno-

vative method to obtain a spatial map of Sobol’ indices with a minimal number of

numerical model computations. It is based upon the functional decomposition of the

spatial output onto a wavelet basis and the metamodeling of the wavelet coefficients

by the Gaussian process. An analytical example is presented to clarify the various

steps of our methodology. This technique is then applied to a real hydrogeological

case: for each model input variable, a spatial map of Sobol’ indices is thus obtained.

Keywords: Computer experiment, Gaussian process, metamodel, functional data, ra-
dionuclide migration.
Short title: Spatial global sensitivity analysis
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1 INTRODUCTION

Today, in different environments, there are sites with groundwater contaminated because
of an inappropriate handling or disposal of hazardous materials or waste. Such environ-
mental or sanitary issues require the development of treatment or remediation strategies
and, in all cases, a robust long-term behaviour prediction. The indispensable simulation
of global fluxes, such as water or pollutants, through the different environmental compart-
ments involves many parameters. Numerical modeling is an efficient tool for an accurate
prediction of the spreading of the contamination plume and an assessment of environmen-
tal risks associated to the site. However, it is well known that many input variables, such
as hydrogeological parameters (permeabilities, porosities, etc.) or boundary and initial
conditions (contaminant concentrations, aquifer level, etc.), are highly uncertain in the
complex numerical models. A systematic and exhaustive 3D characterization of sites is
still impossible.

To deal with all these uncertainties, computer experiment methodologies based upon
statistical techniques are useful. For instance, we assume that Y = f(X) is the real-valued
output of a computer code f . Its input variables are random and modeled by the random
vector X = (X1, . . . , Xd) ∈ X , X being a bounded domain of Rd, of known distribution.
The uncertainty analysis step is used to evaluate statistical parameters, confidence inter-
vals or the density probability distribution of the model response (De Rocquigny et al.,
2008), while the global sensitivity analysis step is used to quantify the influence of the
uncertainties of the model input variables (in their whole range of variations) on model
responses (Saltelli et al., 2000). Recent studies have applied different statistical methods
of uncertainty and sensitivity analysis to environmental models (Helton, 1993; Nychka
et al., 1998; Fassò et al., 2003; Volkova et al., 2008; Lilburne and Tarantola, 2009). All
these methods have shown their efficiency in providing guidance to a better understanding
of the modeling.

However, for the purpose of sensitivity analysis, four main difficulties can arise due to
practical problems, especially when focusing on environmental risks:

P1) physical models involve rather complex phenomena (they are non linear and sub-
mitted to threshold effects) sometimes with strong interactions between physical
variables

P2) computer codes are often too cpu time expensive to evaluate a model response, from
several minutes to weeks

P3) numerical models take as inputs a large number of uncertain variables (typically
d > 10)

P4) the outputs of these numerical encompass many variables of interest, that can vary
in space and time.

The first P1 problem is solved using variance-based measures. These ones can handle
non-linear and non-monotonic relationships between inputs and output (Saltelli et al.,
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2000). These measures are based upon the functional ANOVA decomposition of any
integrable function f (Efron and Stein, 1981) and determine how to share of the variance
of the output resulting from a variable Xi or an interaction between variables (Sobol,
1993):

Si =
Var [E (Y |Xi)]

Var(Y )
, Sij =

Var [E (Y |Xi, Xj)]

Var(Y )
− Si − Sj , Sijk = . . . (1)

The interpretation of these coefficients, namely the Sobol’ indices, is natural as all indices
lie in [0, 1] and their sum is one in the case of independant input variables. The larger the
index value, the greater the importance of the variable related to this index. To express
the overall output sensitivity to an input Xi, Homma and Saltelli (1996) introduce the
total sensitivity index:

STi
= Si +

∑

i<j

Sij +
∑

i<j<k

Sijk + . . . =
∑

l∈#i

Sl = 1− Var [E (Y |X∼i)]

Var(Y )
(2)

where #i represents all the “non-ordered” subsets of indices containing index i and X∼i is
the vector of all inputs except Xi. Thus,

∑
l∈#i Sl is the sum of all the sensitivity indices

with index containing i.
Unfortunately, the traditional or advanced Monte Carlo methods, which are used to

estimate first order and total Sobol’ indices, require a large number of model evalua-
tions (Saltelli et al., 2010). To overcome problem P2 of a too long calculation time and
make uncertainty and sensitivity analysis tractable, various approaches based upon meta-
modeling were recently proposed (Koehler and Owen, 1996; Kleijnen and Sargent, 2000;
Oakley and O’Hagan, 2002). The key point consists of replacing the complex computer
code by a mathematical approximation, called a metamodel, which is fitted from only a
few experiments. The metamodel reproduces the behavior of the computer code in the
domain of its influential parameters (Sacks et al., 1989; Fang et al., 2006). Among all
the metamodel-based solutions (polynomials, splines, neural networks, etc.), we focus our
attention on the Gaussian process (Gp) model. It can be viewed as an extension of the
kriging method, which is used for interpolating data in space (Chilès and Delfiner, 1999),
to computer code data (Sacks et al., 1989; Oakley and O’Hagan, 2002). Many authors
(e.g. Welch et al., 1992; Marrel et al., 2008) have shown how the Gp model can be used
as an efficient emulator of code responses, even in high dimensional cases (problem P3).

In this paper, we consider models submitted to the four problems together (P1, P2,
P3 and P4), which is an usual cas in model-based environmental studies. We mainly pay
attention to problem P4, that is the possible high dimension of model outputs. In the
application case studied in this paper, the costly numerical model yields spatial concentra-
tion maps. These spatial outputs encompass several thousands of grid blocks, each with a
concentration value. This kind of problem cannot be tuned to a vectorial output problem
because of its dimensionality: the metamodeling of this vectorial output cannot be solved
referring to kriging or cokriging techniques (Fang et al., 2006). Therefore, we consider
the model output as a functional output synthesized by its projection on an appropriate
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basis. This problem of building a metamodel (based upon functional decomposition and
Gp modeling) for a functional output has recently been addressed for one-dimensional
outputs by Shi et al. (2007) and Bayarri et al. (2007) and for two-dimensional outputs by
Higdon et al. (2008).

In the case of sensitivity analysis, a functional output is usually considered as a vecto-
rial output and sensitivity indices relative to each input are computed for each discretized
value of the output (De Rocquigny et al., 2008). To avoid the large amount of sensitivity
index computations when applying such an approach, a few authors referred to various
basis decompositions on the functional output, such as the principal component analysis
(Campbell et al., 2006; Lamboni et al., 2009). Then, sensitivity indices are obtained for
the coefficients of the expansion basis.

However, the full functional restitution of Sobol’ indices remains an unexplored chal-
lenge. In this paper, we propose an original and complete methodology to compute Sobol’
indices at each location of the spatial output map. Our approach consists of building a
metamodel based upon wavelet decomposition as in Bayarri et al. (2007) (restricted to the
case of a temporal output). This metamodel is then used to compute spatial Sobol’ index
maps (one map per input variable). A map of the Sobol’ index of an input Xi traduces the
local and global influences of this input on the output. It can help to better understand
the computer code results and can used to reduce more efficiently the uncertainties in the
responses. Thus, to reduce the output variability at a given point of the map, we analyze
all Sobol’ maps and determine the most influential inputs. Then, we can try to reduce
the uncertainty of these inputs by accounting for additional measures. In addition, the
global influence of each input over the whole space can be investigated to identify areas
of influence and non-influence for this input.

Details about the Gp metamodel are given in the following section. Then, a step by
step description of our methodology is given in Section 3. A synthetic test function is used
to evidence the relevance of our choices and estimate the convergence of the algorithms.
Section 4 presents how our methodology is applied to a real environmental problem, which
calls for the modeling of radionuclide groundwater migration (MARTHE code). Then, a
few points are discussed at the end of this paper.

2 GAUSSIAN PROCESS METAMODELING

This section introduces the Gp metamodel for the case of a single scalar output. We
consider n realizations of a computer code. Each realization y = f(x) ∈ R is an output of
the computer code and corresponds to a d-dimensional input vector x = (x1, . . . , xd) ∈ X .
The n points corresponding to the code runs are called the experimental design and
are denoted as Xs = (x(1), . . . ,x(n)). The outputs are denoted as Ys = (y(1), . . . , y(n))
with y(i) = y(x(i)) ∀ i = 1..n. Gp modeling treats the deterministic response y(x) as a
realization of a random function YGp(x). This includes a regression part and a centered
stochastic process (Sacks et al., 1989). It can be written as:

YGp(x) = f0(x) + Z(x) . (3)
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The deterministic function f0(x) provides the mean approximation of the computer
code. In our study, we use a one-degree polynomial model with f0(x) written as:

f0(x) = β0 +
d∑

j=1

βjxj ,

where β = [β0, . . . , βk]
t is the regression parameter vector. It has been shown, for example

in Martin and Simpson (2005) and Marrel et al. (2008), that such a function is sufficient,
and sometimes necessary, to capture the global trend of the computer code.

The stochastic part Z(x) is a Gaussian centered process fully characterized by its
covariance function: Cov(Z(x), Z(u)) = σ2R(x,u), where σ2 is the variance of Z and
R the correlation function. For simplicity, we consider a stationary process Z(x), which
means that correlation between Z(x) and Z(u) is a function of the distance between x and
u. Our study focuses on a particular family of correlation functions that can be written
as a product of one-dimensional correlation functions Rl:

Cov(Z(x), Z(u)) = σ2R(x− u) = σ2
d∏

l=1

Rl(xl − ul).

This form of correlation function is particularly well-suited to simplify mathematical de-
velopments in analytical uncertainty and sensitivity analyses (Marrel et al., 2009). More
precisely, we use the generalized exponential correlation function:

Rθ,p(x− u) =
d∏

l=1

exp(−θl|xl − ul|pl),

where θ = [θ1, . . . , θd]
t and p = [p1, . . . , pd]

t are the correlation parameters (also called
hyperparameters) with θl ≥ 0 and 0 < pl ≤ 2 ∀ l = 1..d. This choice is motivated by the
wide spectrum of shapes that such a function offers.

If a new point x∗ = (x∗
1, . . . , x

∗
d) ∈ X is considered, we obtain the following predictor

and variance formulas:

E[YGp(x
∗)] = f0(x

∗) + k(x∗)tΣ−1
s (Ys − f(Xs)) , (4)

Var[YGp(x
∗)] = σ2 − k(x∗)tΣ−1

s k(x∗) , (5)

with YGp denoting (Y |Ys, Xs,β, σ, θ,p),

k(x∗) = [Cov(y(1), Y (x∗)), . . . ,Cov(y(n), Y (x∗))]t

= σ2[Rθ,p(x
(1) − x∗), . . . , Rθ,p(x

(n) − x∗))]t

and the covariance matrix

Σs = σ2
(
Rθ,p

(
x(i) − x(j)

)
i=1..n,j=1..n

)
.

5



Regression and correlation parameters β, σ, θ and p are usually estimated by maxi-
mizing likelihood functions (Fang et al., 2006). This optimization problem can be badly
conditioned and difficult to solve in high dimensional cases (d > 5). Welch et al. (1992)
and Marrel et al. (2008) developed algorithms to build Gp metamodels on outputs that
have a non-linearity depending on quite a large number of input variables.

The conditional mean (Eq. (4)) is used as a predictor. The variance formula (Eq.
(5)) corresponds to the mean squared error (MSE) of this predictor and is also known
as the kriging variance. This analytical formula for MSE gives a local indicator of the
prediction accuracy. More generally, the Gp model provides an analytical formula for the
distribution of the output variable at any arbitrary new point. This distribution formula
can be used to develop analytical formula for uncertainty and sensitivity analyses (Oakley
and O’Hagan, 2002, 2004). Studying several test functions and one industrial application,
Marrel et al. (2009) showed that this analytical approach is efficient to compute the first
order Sobol’ indices Si (Eq. (1)). In addition, it provides confidence intervals for the
estimates. However, the analytical approach does not yield any direct estimation of the
total Sobol’ indices STi

(Eq. (2)) and deals only with uncorrelated inputs.

3 METHODOLOGY FOR A SPATIAL OUPUT

In this section, we describe the methodology that we use to compute spatial Sobol’ index
maps (first proposed in Marrel, 2008). We also apply this methodology to an analytical
function in order to study the convergence of the algorithms.

3.1 General principles

For a given x∗ value of vector X = (X1, . . . , Xd), the code output is now a deterministic
function y(x∗, z) where z denotes a vector of dimension p of spatial coordinates. In this
paper, we focus on two-dimensional cases. Thus, the target outputs are two-dimensional
maps. Thus, z varies in a grid on a compact set Dz of R2 and corresponds to an index
for the outputs. Variables X and z are of very distinct natures: variables X1, . . . , Xd

which correspond to the inputs of the computer code, are random. They are different
for each simulation of the code. Our objective is to perform a sensitivity analysis with
respect to these variables. Variables z are deterministic and vary on a grid of size nz

which corresponds to a discretization of Dz. The grid is the same for each simulation of
the code and the output corresponds to the nz values y(x∗, z) for z describing the grid.
For example, the MARTHE model described in Section 4 has d = 20 input variables and
yields at each simulation a map with nz = 64× 64 = 4096 points.

Because of the different natures of variables X and z, the dependency of the output
with respect to these two variables is represented from two different ways. For a fixed
value of X, we use a projection of map z 7→ Y (X, z), onto an orthonormal wavelet basis.
The coefficients of the projection depend on X. We select the coefficients with the largest
variance and model these coefficients with respect to the d-dimensional input variable X.
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In most applications, the dimension of X is quite large and each simulation of the code
is time-expensive. Therefore, we need a method able to deal with a limited number of
simulations and imput vectors of large dimension. In addition, the relationship between
the input variables and the coefficients is expected to be highly non-linear. We therefore
use the Gp metamodel, described in the previous section, to model the dependency of
each selected coefficient with respect to X.

Therefore, for a given input design Xs =
(
x(i)

)
i=1..n

and the n corresponding simu-

lations of the map (y(x(i), zj), j = 1, . . . , nz), i = 1, . . . , n, the three main steps of the
method are:

1. Decomposition of the maps z 7→ y(x(i), z) onto a two-dimensional wavelet basis

2. Selection of the coefficients with the largest variance

3. Modeling of the coefficients with respect to the input variables using a Gp.

At each step, we use various criteria to evaluate the performance of our procedures. We
are then able to predict a map (y(x∗, zj), j = 1 . . . , nz) for a new value of the input vector
x∗. Of course, this method of map prediction (which we call a functional metamodel or
also, in our case, a spatial metamodel) has the advantage, compared to the simulation of
the code, to be much less time-expensive.

Finally, our functional metamodel allows us to produce maps of sensitivity analysis
based upon Sobol’ indices by using Monte Carlo methods (see introduction, Eqs. (1) and
(2)). As mentioned previously, the direct use of the computer code is impossible because
of the required number of function evaluations. This study is restricted to the estimation
of the first order indices Si(z) and total Sobol’ indices STi

(z) for z ∈ Dz. These two
indices allow us to quantify the individual and total influence for each input. Then, the
degree of interaction with other inputs can then be deduced.

3.2 An analytical test case: The Campbell2D function

The analytical function used in this section to perform various tests is inspired by Camp-
bell et al. (2006) who considered a function with four inputs and a one-dimensional output.
It was converted to a function with eight inputs (d = 8) and a two-dimensional output
(z = (z1, z2)):

Y = g(X, z1, z2) = X1 exp

[
−(0.8z1 + 0.2z2 − 10X2)

2

60X2
1

]
+ (X2 +X4) exp

[
(0.5z1 + 0.5z2)X1

500

]

+X5(X3 − 2) exp

[
−(0.4z1 + 0.6z2 − 20X6)

2

40X2
5

]
+ (X6 +X8) exp

[
(0.3z1 + 0.7z2)X7

250

]
,

(6)
where (z1, z2) ∈ [−90, 90]2 represent azimuthal and polar spatial coordinates and Xi ∼
U [−1, 5] for i = 1 . . . 8. This function, called the Campbell2D function, gives a spatial
map as output (Figure 1). The Campbell2D function has been calibrated in order to
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Figure 1: Three different output maps from the Campbell2D function: x =
(−1,−1,−1,−1,−1,−1,−1,−1) (left); x = (5, 5, 5, 5, 5, 5, 5, 5) (center); x =
(5, 3, 1,−1, 5, 3, 1,−1) (right).

give strong spatial heterogeneities, sometimes with sharp boundaries, and very different
spatial distributions of the output values according to the X values.

For the Campbell2D function, it is possible to calculate the first order Sobol’ indices
Si(z1, z2). Appendix A gives the results of these integrations. The resulting analytical
expressions (Eqs. (16) to (23)) provide the exact solutions of the first order Sobol’ indices.
However, analytical calculations of the total Sobol’ indices STi

(z1, z2) (Eq. (2)) are not
possible. We estimate STi

(z1, z2), i = 1, . . . , 8, by using Saltelli’s Monte Carlo algorithm
(Saltelli, 2002) with N = 105. Thus, the Campbell2D function was computed N(d+2) =
106 times. The estimated errors with such large sample sizes are of the order of 5× 10−3

(standard deviation estimated via bootstrap). These estimates STi
(z1, z2) are henceforth

called exact total Sobol’ indices.
Figure 2 gives the maps of the total Sobol’ index estimations. InputX5 has no influence

on the output of the Campbell2D function. Input X1 has a small influence on the output
of the Campbell2D function. Input X3 has a mild influence in a diagonal axis of the
spatial domain. Inputs X4 and X8 have mild influences in a large part of the spatial
domain. Inputs X2, X6 and X7 have strong influences in different parts of the spatial
domain (located in corners for X2 and X7). Moreover, the first order Sobol’ indices (maps
not shown here) for X3, X5, X6 and X7 are far from the total Sobol’ indices. As shown
by formula (6), these four variables have some strong interactions (interactions between
X3, X5 and X6 and between X6 and X7).

3.3 Spatial metamodeling

The spatial metamodeling process is composed of 5 internal steps.

Step 0 - Preparation of the learning sample
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Figure 2: Total Sobol’ indices of the 8 input variables of the Campbell2D function, esti-
mated by Monte Carlo algorithm. The color scales are the same for all the plots.

When dealing with a large input dimension d, the choice of the input design Xs =(
x(i)

)
i=1..n

is very important, especially when n is small. For scalar computer model
output, numerous authors stressed the strong influence of the input design on the quality
of the Gp modeling (Koehler and Owen, 1996; Fang et al., 2006). For instance, maximin
Latin hypercube samples and low-discrepancy Latin hypercube samples were shown to
provide good results (Marrel, 2008; Iooss et al., 2010). However, building good input
designs for functional output still remains an open question which could be the subject
of future work.

For our tests with the Campbell2D function, we use maximin Latin hypercube samples.
Once the input design is defined, we obtain n simulations of the map

(
y(x(i), z)

)
i=1..n

by
running the numerical model.

Step 1 - Spatial decomposition and selection of coefficients

The spatial decomposition of the output map is made on a basis of orthogonal functions
{φj}j∈N∗

:

Y (X, z) = µ(z) +

∞∑

j=1

αj(X)φj(z) with αj(X) =

∫

Dz

[Y (X, z)− µ(z)]φj(z)dz , (7)

where µ(z) = EX[Y (X, z)]. We define YK(X, z) as the truncated decomposition at order
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K:

YK(X, z) = µ(z) +

K∑

j=1

αj(X)φj(z) . (8)

For the function basis, various wavelet bases can be considered (Haar, Daubechies, Symm-
let and Coiflet, see Misiti et al., 2007) in order to optimize the compression of the local
and global information. In the following tests, we use the Daubechies basis which offered
the best results.

The selection of a small number k of coefficients αj(X) to be modeled with Gp is
essential. For instance, MARTHE maps (see Section 4) and Campbell2D maps contain
nz = 64 × 64 = 4096 pixels, which leads to K = 4096 wavelet coefficients. Modeling
such a number of Gp seems intractable because the building process of one Gp is CPU
time consuming (Marrel et al., 2008). It is therefore necessary to model with Gp only
the most informative coefficients. The criterion considered for selecting the coefficients
involves their variance with respect to X: priority is given to coefficients which explain
at most the output map variability. Mathematically, the new order of the coefficients
{α1, . . . , αK} is written

{
α(1), . . . , α(K)

}
following the inequalities

1

n

n∑

i=1

(
α(1)(x

(i))− α(1)

)2 ≥ . . . ≥ 1

n

n∑

i=1

(
α(K)(x

(i))− α(K)

)2

with αj =
1

n

n∑

i=1

αj(x
(i)) .

(9)
The number k of Gp-modeled coefficients will be discussed in Step 3.

Step 2 - Modeling the coefficients

For j = 1, . . . , K, the model Aj(X) used for approximating the coefficient αj(X) is one of
the following models listed below:

• Model 1: the empirical mean: Aj(X) =
1

n

n∑

i=1

αj

(
x(i)

)
;

• Model 2: the linear regression model:

Aj(X) = β0,j +
d∑

l=1

βl,j Xl (10)

fitted on the learning sample
(
x(i), αj(x

(i))
)
i=1..n

. We use an AIC selection process
to keep only the significant terms in (10);

• Model 3: the Gp model of form (3) as described in Marrel et al. (2008). The deter-
ministic part f0(X) is a linear regression model as in (10) (with an AICC selection
process) and the generalized exponential is used for the correlation function R(·) of
the stochastic part Z(X). The building of this model is rather costly, especially in a
high dimensional context (d > 10) because of the specific variable selection process
proposed by Marrel et al. (2008).
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In the following two steps, we compare three different methodologies in order to stress
the benefit of an appropriate metamodel choice:

• Method 1: Model 3 for the k selected coefficients and model 1 for the other coeffi-
cients

• Method 2: Model 2 for the k selected coefficients and model 1 for the other coeffi-
cients

• Method 3: Model 3 for the k selected coefficients, model 2 for the k′ following
coefficients (k′ ≫ k) and model 1 for the K − k − k′ other coefficients. For the
Campbell2D function, setting k′ to 500 is a heuristic choice based upon the obser-
vation that, in the case studied, the information in terms of variability is explained
by 10% of coefficients. More generally, a convergence study can be made in order
to find a suitable value for k′.

We now define ŶK,k(X, z) the approximation of YK(X, z) (Eq. (8)) using one of the three
previous methods.

Several adequacy criteria can be used to measure the discrepancy between the function
Y (X, z) and its approximation ŶK,k(X, z). We use the mean absolute error, the maximal
error and the mean squared error but restrict our presentation to mean squared error
results for the sake of consistency. The mean squared error MSE(X) is written

MSE(X) =

∫

Dz

[
Y (X, z)− ŶK,k(X, z)

]2
dz . (11)

MSE(X) is estimated by integrating over the nz grid. For a fixed value of X, this criterion
measures the restitution quality in the mean of the overall map. We denote by MSE
the expectation (with respect to the variable X) of MSE(X). When it is possible, we
provide new simulations of the map Y (X, z) for randomized values of X, and we use
this test sample to estimate the MSE. For some applications, this is not possible and
cross-validation methods can be used to estimate the MSE (see Section 4).

The MSE can also be obtained by first integrating
[
Y (X, z)− ŶK,k(X, z)

]2
over X

and then by taking the expectation with respect to z. From the MSE, we also define the
predictivity coefficient Q2 which gives us the percentage of the mean explained variance
of the output map:

Q2 = 1− MSE

Ez {VarX [Y (X, z)]} . (12)

The variance is taken with respect to X because we are interested in the variability
induced by the model input vector X. Q2 corresponds to the coefficient of determination
R2 computed in prediction (on a test sample or by cross-validation).

Step 3 - Choosing k∗, an optimal value for k

We perform simulations using the Campbell2D function and study convergence of MSE
(Eq. (11)) as function of k. Our goal is to compare the three methods proposed in step 2,
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then to heuristically find an optimal value k∗ for k. Indeed, there is a trade-off between
keeping k small and minimizing the MSE. The MSE is computed using a test sample of
1000 independent Monte Carlo simulations, giving 1000 output maps.

Figure 3 gives the MSE results as function of k for different values of the learning
sample size n. For each method, the MSE curves regularly turn downward as n increases.
As expected, method 3, which is the richest in terms of model complexity, gives the best
results, especially for small values of k. The usefulness of Gp is proved as we see that
method 2 performs badly. It is certainly caused by the behavior of the first selected
coefficients, which offer strong and non-linear variations: linear models are irrelevant for
modeling these coefficients. For each method, the convergence is reached for k around 20
- 25. We decided to fix the optimal value at k∗ = 30, which is a reasonable number of Gp
models to be built.
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Figure 3: For the Campbell2D function, MSE convergence (as function
of k) for the three methods and for various learning sample sizes (n =
30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 300, 400, 500).

In real applications, this methodology for choosing k∗ can be applied even if the
learning sample size n is limited. For a fixed n, we look for a stabilization of the MSE. If
this convergence is not reached, we use a predefined maximal value for k.

It should be noted that if new model runs are available, the analyst has to repeat the
process to choose k∗. However, in order to gain some analysis time, we can leave unchanged
the ordering of coefficients, which has been obtained with the first set of simulations. In
addition, we can just update the predictor (Eq. (4)) by keeping the initial estimation of
the correlation parameters (which is the most cpu time consuming step). Such choices
have to be made with care.
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Step 4 - Convergence as function of the learning sample size n

Finally, it is important to study the convergence of the adequacy criteria as function of
the learning sample size n. It would allow us to eventually prescribe the need to make new
simulations with the code. For the Campbell2D function, Figure 4 gives the MSE results
as function of n for different values of k. For each method, the MSE curves regularly turn
downward as k increases. In real applications, one can restrict this to the visualization of
the k∗ curves.

Method 2 performs badly and the stabilization of its curves is obtained earlier. Indeed,
adding simulations does not improve the linear models fitted on the k coefficients. For
methods 1 and 3, the curve stabilization is not reached at n = 500. MSE would decrease
for larger values of n, but this decrease becomes slower from n = 200 and MSE results are
rather satisfactory for this value n = 200. In terms of predictivity coefficient (Eq. (12)),
we obtain Q2 = 96.6% for n = 500 and Q2 = 92.9% for n = 200. For methods 1 and 3,
increasing k and n leads to a systematic decrease of the MSE. It can therefore be argued
that MSE tends to zero and that our methodology converges.
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Figure 4: For the Campbell2D function, MSE convergence (as function of n) for the three
methods and for various numbers k of Gp-modeled coefficients.

In real applications, if no additional simulation can be made, this step can be optional.
However, in the opposite case, these curves would help us to decide if our simulation num-
ber is sufficient and which method we have to choose. Moreover, knowing that method 3
can be costly, we can decide to choose method 1 if their MSEs are similar. In practical
terms, we start from an initial n0 (random selection of n0 simulations among the n simu-
lations) and randomly add simulations until n. The choice of a low-discrepancy sequence
would also allow the space-filling properties of the design to be kept while increasing n.
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In conclusion, by analyzing all these convergence plots, we choose in the next section
to use a learning sample size n = 200 and to model k∗ = 30 Gps using method 3 in order
to compute Sobol’ indices.

Coarse estimation of the computational time of the different steps

Concerning the computational time needed to carry out all our methodology, the most
costly steps are the construction of each Gp metamodel for the k∗ wavelet coefficients and
the validation step (i.e. computation of MSE or Q2 by cross validation). All the other
steps such as the wavelet decomposition, the selection of coefficients or the prediction of
the functional metamodel for any new input value are negligible in terms of computational
time.

So, the first main difficulty is the hyperparameter estimation of the k∗ Gp metamodels.
Indeed, each computation of the likelihood requires the inversion of correlation matrix and
consequently, the maximum likelihood estimation can be CPU time consuming. In the
case of 10 inputs for example and a few hundreds of simulations, a Gp modeling usually
requires several minutes on a standard PC (Pentium 4, 1.8GHz). So, for tens of coefficients
to be modeled, the step 2 can take one hour.

The second difficulty is the validation step, also because of the time required by
the maximum likelihood estimation. To reduce its computational cost, a k-fold cross-
validation is preferable in practice and limits the time required for cross validation to
just a few hours. Another solution is to leave unchanged the hyperparameters of Gp at
each loop of cross validation. Only the Gp predictor is updated. The cross validation is
then a little bit biased but, for a few hundreds of simulations, this bias becomes quickly
negligible.

As a conclusion, only the step of the Gp modeling is computer time expensive. For
instance, in the Campbell2D function study, with d = 8 inputs, nz = 4096 pixels, k

ranging from 10 to 50 Gp models and n = 200 simulations, the metamodeling process
from steps 1 to 3 (without the convergence plot in function of n) required approximately
one day. For the MARTHE test case, with d = 20, nz = 4096, n = 300, k = 100 and with
a 10-fold cross-validation process, the computation of all the Sobol’ indices has required
approximately two days. These operational cost may appear to be high but this process
is only made once to obtain a full functional metamodel. Afterwards, any evaluation of
the metamodel will require a negligible computational time compared to a simulation of
the initial MARTHE simulator.

3.4 Global sensitivity analysis

At this stage, we have a functional metamodel allowing us to predict new output concen-
tration maps for any new set of input variables. This metamodel has been obtained with
only n = 200 computations with the Campbell2D function. To estimate Sobol’ indices
of the overall output map of the Campbell2D function, we then perform thousands of
simulations on our functional metamodel. This method is called hereafter the functional
metamodel-based approach.
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Note that there is no direct link between the Sobol’ indices for the wavelet coefficients
and the Sobol’ indices for the output. Indeed from (8), we have

YK(X, z) = µ(z) +

K∑

j=1

αj(X)φj(z),

where (αj(X))1≤j≤K denote the wavelet coefficients. The sensitivity map with respect to

the variable Xi is Si(z) =
Var{E[YK(X, z)]|Xi}

Var[YK(X, z)]
. Hence,

Si(z) =

∑K

j,l=1Cov{E[αj(X)|Xi],E[αl(X)|Xi]}φj(z)φl(z)

Var[YK(X, z)]
.

If the functions (φj(z))1≤j≤K have disjoint supports, all the terms with l 6= j in the
above formula worth zero and Sobol’ indices for the wavelet coefficients could be used to
compute Sobol’ indices for the output. In this paper, this is not the case as we use the
Daubechies basis for these functions. This basis gave much better results than bases with
disjoint supports functions (such as the Haar basis).

Thus, to estimate Sobol’ indices of the overall output map of the Campbell2D function,
we perform thousands of simulations on our functional metamodel. Because of constraints
of memory allocation (due to the size of the output map and our vectorial programming
constraints), it is not possible to use Saltelli’s Monte Carlo algorithm (Saltelli, 2002).
Therefore, we use the following procedure for each of the nz nodes of the grid:

• For the variance of the conditional expectation of each input variable Xi (i =
1, . . . , 8), we perform 1000 Monte Carlo computations to estimate E(Y |Xi) (integra-
tion over 7 dimensions) and 200 Monte Carlo computations to estimate Var[E(Y |Xi)]
(integration over one dimension).

• For the variance of the conditional expectation of eachX∼i (i = 1, . . . , 8), we perform
100 Monte Carlo computations to estimate E(Y |X∼i) (integration over one dimen-
sion) and 1000 Monte Carlo computations to estimate Var[E(Y |X∼i)] (integration
over 7 dimensions).

• The variance of the output Var(Y ) is obtained using 2×104 simulations (integration
over 8 dimensions).

• Thus, the first order Sobol’ index estimates (noticed SGp

i ) are obtained from Eq. (1)
and the total Sobol’ index estimates (noticed SGp

Ti
) are obtained from Eq. (2).

Finally, we obtain the Sobol’ indices SGp

i (z) and SGp

Ti
(z) for all the nz grid points.

Figure 5 shows the Sobol’ index maps for X2 and X6, which are the most influential
input variables in the Campbell2D function (see Fig. 2). Results for X2 are partic-
ularly convincing: first order and total sensitivity values obtained with the functional
metamodel-based approach are accurate everywhere in the spatial domain Dz. Results
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for X6 are fairly good for the first order Sobol’ index and less precise for the total Sobol’
index. However, the spatial influence zone of X6 in the upper left corner is well retrieved
by the functional metamodel-based approach. In fact, X2 corresponds to a solely influen-
tial input variable while X6 has significant interactions with other input variables (mainly
with X3). Therefore, because of a more difficult Gp fitting process, the Gp models of the
wavelet coefficients of X6 are less precise than the Gp models of the wavelet coefficients
of X2. However, we argue that the important information is present in the spatial Sobol’
map of SGp

T6
(z).

−50 0 50

−5
0

0
50

S2

θ

φ

0.05

0.10

0.15

0.20

0.25

0.30

−50 0 50

−5
0

0
50

ST2

θ

φ

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−50 0 50

−5
0

0
50

S6

θ

φ

0.12

0.14

0.16

0.18

0.20

0.22

−50 0 50

−5
0

0
50

ST6

θ

φ

0.20

0.25

0.30

0.35

−50 0 50

−5
0

0
50

S2

θ

φ

0.10

0.15

0.20

0.25

0.30

0.35

−50 0 50

−5
0

0
50

ST2

θ

φ

0.1

0.2

0.3

−50 0 50

−5
0

0
50

S6

θ

φ

0.15

0.20

0.25

0.30

−50 0 50

−5
0

0
50

ST6

θ

φ

0.10

0.15

0.20

0.25

0.30

0.35

Figure 5: For the Campbell2D function and variables X2 and X6, comparison between
exact first order and total Sobol’ indices (top) and functional metamodel-based Sobol’
indices (bottom). The color scales are the same for all the plots.

For all the input variables, the relative mean absolute errors of the first order Sobol’
indices,

rMAE(Si) =
Ez|SGp

i (z)− Si(z)|
Ez[Si(z)]

, (13)

were estimated for i = 1, . . . , 8 (see Table 1). The results of Table 1 show that the
estimations of the sensitivity maps for X2 and X6 correspond to one of the most difficult
cases. Figure 5 shows that a mean absolute error of a 15%-order is quite satisfactory in
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Table 1: For the Campbell2D function, relative mean absolute errors (in percent) of the
first order sensitivity indices estimated via the functional metamodel-based approach.

X1 X2 X3 X4 X5 X6 X7 X8

8.75 16.25 16.35 12.8 — 13.17 11.80 9.96

terms of sensitivity maps. Therefore, all the results for the other input variables show that
our functional metamodel-based approach gives precise results. Note that the rMAE value
for X5 is not given because S5(z1, z2) = 0 ∀(z1, z2) ∈ [−90, 90]2, and the denominator in
Eq (13) is worth zero.

In conclusion, we have shown the efficiency of this new spatial global sensitivity anal-
ysis method for this analytical and relatively complex test function: all sensitivity index
spatial maps have been obtained using only n = 200 computations of the Campbell2D
function.

4 APPLICATION

4.1 The environmental problem

In the period between 1943 and 1974 radioactive waste was buried in eleven temporary
repositories built on a specially allocated site at the RRC Kurchatov Institute (KI) in the
Moscow area (Russia). The site used for radioactive waste interim storage covers an area of
about 2 hectares and is situated near the KI external perimeter in the immediate vicinity of
the city’s residential area. A radioactive survey of the site and its adjacent area performed
in the late 1980s - early 1990s and in 2002 showed that radioactive contamination is not
only present on the surface but has a tendency to spread into the groundwater. The
porous media of the site is represented principally by sands alternatively with clays that
form several horizontal superposed aquifers. To analyze radioactive contamination of
groundwater, about a hundred exploration wells were drilled on the site. As a result of the
survey, it was discovered that contamination of groundwater concerns mainly connected
to 90Sr. Since the radiation survey results have demonstrated the necessity to clean up the
site, rehabilitation activities on radwaste removal and liquidation of old repositories were
performed at the site between 2002 and 2006. A network of observation wells is used to
control groundwater conditions of the two upper aquifers. This network consists of twenty
observation wells for the upper moraine aquifer and nine for the second Jurassic aquifer.
It is used for a regular recording of groundwater levels, its chemical and radionuclide
composition (see Velikhov et al., 2007).

A numerical model of 90Sr transport in groundwater was developed for the RRC Kur-
chatov Institute (KI) radwaste disposal site (Volkova et al., 2008). It aimed to provide a
correct prediction of further contamination plume spreading since 2002 (using an interpo-
lated concentration map) and up to the end of the year 2010, to show the risks associated
with contamination and to serve as a basis for engineering decision-making. The numerical
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model was constructed using the MARTHE hydrogeological program package (developed
by BRGM, the French Geological Survey). It is a three-dimensional combined transient
flow and transport convection-dispersion model taking into account sorption and radioac-
tive decay. Three layers were singled out; horizontal, vertical and temporal meshes were
chosen in accordance with the migration characteristics of the sand. Initial concentration
plume in 2002 and spreading prediction made for the year 2010 are shown in Figure 6.
As can be seen, contamination plume predicted for the year 2010 is not uniform and is
more diffused than the initial one. This is due, above all, to the influence of intensive
infiltration assigned to several zones of the model domain that results in local dispersion
of the contamination plume.

Figure 6: Initial (left, 2002) and predicted (right, 2010) 90Sr concentrations (hot colors
represent higher levels of concentration). Initial concentrations range from 0 to 12 Bq/l
while final concentrations range from 0 to 8 Bq/l. The small white rectangles represent
the location of the observation wells.

It has been shown in Volkova et al. (2008) that the shape of the predicted contami-
nation plume depends on the model input values (hydraulic conductivity, infiltration pa-
rameters, sorption distribution coefficients, etc.). Indeed, a large part of the model input
variables are exposed to some uncertainty, since their values have been obtained through
expert judgment, model calibration, field experiments and laboratory experiments. These
uncertainties lead to uncertainties in model prediction. In order to evaluate the degree
of input influence on the resulting contamination plume shape and concentration values
predicted in observation wells, it was proposed to perform global sensitivity analysis on
this numerical model (called MARTHE in the following sections).
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4.2 Global sensitivity analysis on scalar outputs

From expert judgment and laboratory experiments, probability distributions (uniform and
Weibull laws) were assigned to 20 random input variables of MARTHE. 300 Monte Carlo
simulations, based upon Latin hypercube sampling of the input variables (McKay et al.,
1979), were performed (requiring four calculation days). For each simulated set of input
variables, MARTHE computes transport equations of 90Sr and predicts the evolution of
90Sr concentration. The 20 uncertain model parameters are the permeability of different
geological layers composing the simulated field, longitudinal and transverse dispersivity
coefficients, and sorption distribution coefficients. To perform global sensitivity analysis
and in particular to compute Sobol’ indices, previous studies have concentrated on 20
scalar outputs of 90Sr concentration values, predicted for the year 2010, in 20 piezometers
located on the waste repository site.

Because of the long computing time of MARTHE and of the non-linearity of the rela-
tionships between inputs and outputs, Volkova et al. (2008) proposed to fit a metamodel
(based upon the boosting of regression trees) on each output using the learning sample
(300 observations). The boosting trees method consists of a sequential construction of
weak models (here regression trees with low interaction depth), that are then aggregated.
This leads to a relatively efficient metamodel (but difficult to interpret). Then Sobol’
indices were computed by intensive Monte Carlo simulations using this metamodel. In
Marrel et al. (2008), each output was modeled by a Gp metamodel. The Gp metamodel
outperforms the linear regression and the boosting regression trees metamodel in terms
of predictivity of the output values.

As a result of these sensitivity analyses, we note that the calculated concentrations at
the piezometric locations are mainly influenced by the distribution coefficient of 90Sr in the
first and second layers of the domain and by the intensity infiltration in the pipe leakage
zones, and to a lesser extent by the hydrodynamic parameters (dispersivity, porosity, etc.).
However, we are aware that spatial information has been lost in these analyses, due to the
limited amount of output values that we have considered (concentrations located at 20
locations). Our goal was then to compute Sobol’ indices in the whole spatial concentration
map, predicted by the model for 2010.

4.3 Global sensitivity analysis on the output concentration map

The methodology presented in the previous section was then applied to MARTHE. Re-
member that this model contains d = 20 input random variables and that the n = 300
simulations have been performed following a Latin hypercube sample in a previous work.
In previous studies, 20 scalar output variables had been considered and we hoped to ob-
tain more information by using all the spatial information contained in the maps. We
used the 300 spatial output maps, discretized in nz = 4096 pixels and predicting the 90Sr
concentration values in 2010.

Figure 7 (a) and (b) shows two output maps and exemplifies the potential variability
between the maps and their contour irregularity. Another output map (Figure 6, right)
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confirms this observation. The variance of the 300 maps (Figure 7 (c)) allows us to
illuminate the strong-variability zones (central spot), the mild-variability zones (on the
left and at the top of the central spot) and the zones with no variability where the
concentration values are equal to zero (the major part of the maps). All this corroborates
the need for a non-trivial functional metamodel, such as our wavelet-Gp based metamodel
decribed in Section 3.3.

(a) (b) (c)

Figure 7: (a) and (b): Two final concentration maps of MARTHE (units in Bq/l). (c):
Variance of the 300 concentration maps (colors are in logarithmic scales, ranging from 0
to 10).

As step 0 was already done, we applied the remaining steps of the spatial global
sensitivity analysis methodology (see Section 3) using our learning sample of size n =
300. From steps 2 and 3, we retained method 3 with the choice of k∗ = 100 modeled
coefficients with Gp: the stabilization of MSE was observed for this value of k∗. The
number of coefficients modeled with linear models is k′ = 900. Step 4 was not applied to
this application case. Indeed, MARTHE simulations have been performed in a previous
study (Volkova et al., 2008) and the computer code is no longer available. Therefore, no
additional point could be added and step 4 would be useless.

In the MARTHE application, no test basis was available to compute the MSE in
prediction. The MSE estimate was obtained via a 10-fold cross-validation technique. The
learning sample was randomly divided into 10 sub-samples. Then, we iterated 10 times
the following process: learning the functional metamodel on 9 sub-samples and estimating
the MSE on the remaining sub-sample. Our final MSE estimate is the mean of the 10
obtained MSE values: MSE= 0.039. In terms of predictivity coefficient (Eq. (12)), we
obtain Q2 = 72.1%. All the details of this study are given in Marrel (2008).

At present, the functional metamodel can be used to estimate first order and total
Sobol’ indices. We used Saltelli’s Monte Carlo algorithm (as for the total Sobol’ indices in
Section 3.2) with N = 103. Indeed, the low computational cost of our metamodel makes it
possible to carry thousands of simulations, but not billions because of memory allocation
problems (see Section 3.4). The final computation cost of Saltelli’s algorithm is N(d+2),
which leads to a number of 22000 metamodel-based simulations in our case. As a final
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result, we obtain 20 maps of first order Sobol’ indices and 20 maps of total Sobol’ indices
(two maps for each input).

Figure 8 (a), (b) and (c) shows three maps of total Sobol’ indices STi
corresponding to

the three main influential variables. The 17 remaining input variables have no influence
in any zone of the spatial output domain. These results are completely coherent with pre-
vious studies which have detected the predominant influence of these three variables. Our
new results have provided some additional spatial information. For example, we locate
more precisely the influence zones of the distribution coefficient of the first hydrogeological
layer. Such information is precious for model engineers. It could help them to determine
according to the spatial location of large variability zones the kind of additional informa-
tion which is needed. Subsequent decisions could be to place new piezometers in specific
geographical zones. The methodological developments highlight not only the direct appli-
cation to post-treatment processes but also enable us to propose a new characterization
strategy.

Figure 8 (d) gives spatial information about the MARTHE model. It clarifies the
obvious correlation between the MARTHE hydrogeological scenario and our obtained
spatial maps of sensitivity indices: influential kd1 zones correspond to the absence of
the second hydrogeological layer while influential kd2 zones correspond to its presence.
In Figure 8 (c), we also retrieve the high infiltration lines of Figure 8 (d) and see their
spatial area of influence.

In our radioactive waste problem, the Sobol’ maps of each uncertain input parameter
clearly provide guidance to a better understanding of the simulator forecast and can be
used to reduce the response uncertainties most efficiently. For example, if we want to
reduce the predicted concentration uncertainty at a specific point of the map, we analyze
all the Sobol’ maps and determine the most influential inputs at this point. Then, we can
try to reduce the uncertainty of these inputs by additional measures. Moreover, spatial
maps for sensitivity indices can reveal gradient of influence of uncertain parameters, linked
to the physics of the phenomenon (e.g. influence of a parameter varying in function of the
flow direction). The global influence of each input over the whole space can also be used
to identify areas of influence and areas of non-influence of this input and can be linked,
as for kd1 and kd2, to a map of a geological parameter. If we now consider the strong
infiltration coefficient denoted as i3 and its sensitivity map, we can deduce that i3 is only
influential around the pipe and its influence is very limited outside the pipe area. The lack
of knowledge on this parameter does not induce a big uncertainty on the concentration
forecast at the site boundary and consequently on the decision relative to the need of a
site rehabilitation.

5 CONCLUSION

In this paper, a new methodology was introduced to compute spatial maps of variance-
based sensitivity indices (such as the Sobol’ indices) for numerical models giving spatial
maps as outputs. Such situations often occur in environmental modeling problems. One
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(a) (b)

(c) (d)

Figure 8: Total Sobol’ indices of three input variables of MARTHE: (a) kd1 (distribution
coefficient of the first layer), (b) kd2 (distribution coefficient of the second layer) and (c)
i3 (high infiltration rate). (d): MARTHE hydrogeological model: blue zones (numbered
from 1 to 4) correspond to low conductivity zones (absence of coarse sand in the second
layer); lines present zones of high infiltration rates.

critical issue with our method is due to the reduced number of model output maps available
because of the high cpu time cost of the numerical model. A functional basis decompo-
sition (wavelet basis) linked to a metamodel technique (based upon the Gp model) is
proposed and used to solve this problem. Choosing a wavelet basis is well-suited for our
application cases (analytical and real models) because strong spatial heterogeneities and
sharp boundaries are observed in the model output maps. In addition,the Gp model is ap-
propriate for handling the large differences between the output maps obtained for various
inputs. This induces strong non-linear variations in the Gp-modeled wavelet coefficients.
The resulting functional metamodel is a fast emulator (i.e. with negligible cpu time) of the
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computer code. It can be used for uncertainty propagation issues, optimization problems
and, as advocated in this paper, for sensitivity index estimation.

An analytical test function was presented to explain the different steps, criteria and
modeling choices of our methodology. The convergence of our Gp-based functional meta-
model was also investigated. Then, our methodology was applied to a real case to stress
its concrete applicability. We particularly emphasized the relevance of the additional in-
formation (in addition to the expert and model knowledge) brought by the spatial maps
of first order and total sensitivity indices. These sensitivity maps allow us for spatially
identifying the most influential inputs, for detecting zones with input interactions and for
determining the zone of influence for each input.

Our methodology can be extended to any computer codes with functional outputs:
codes with outputs depending on time, codes depending on other physical processes (such
as a function of temperature), codes with outputs varying in space and time. In the third
case, the temporal and the spatial scales must be carefully distinguished. It would be
interesting in a future work to apply our method to the MARTHE spatio-temporal evo-
lutions of the concentration values (between 2002 and 2010). In addition, improvements
could be proposed. For example, the vaguelette-wavelet decomposition (Abramovich and
Silverman, 1997; Ruiz-Medina et al., 2007) would be an interesting substitute to the
wavelet decomposition. It would allow a simultaneous treatment of all the spatial output
maps and a direct standardization of all decomposition coefficients. Last, dealing with
the functional input case remains an important and challenging issue to disseminate the
global sensitivity analysis into environmental modeling communities. Iooss and Ribatet
(2009) and Lilburne and Tarantola (2009) proposed some preliminary methodologies to
account for the spatially distributed inputs when computing Sobol’ indices.
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APPENDIX A: SOBOL INDICES FOR THE CAMP-

BELL2D FUNCTION

The analytical derivations of the first order Sobol’ indices Si (Eq. (1)) of the Campbell2D
function (6) consists, first of all, in obtaining analytical expressions of the conditional
expectations E (Y |Xi) (for i = 1, . . . , 8). The multiple integrations are made following the
uniform distribution on [−1, 5] (we have E(Xi) = 2 and Var(Xi) = 3 ∀ i = 1, . . . , 8). The
terms of these integrals which do not depend on Xi can be directly put to zero (because
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these terms disappear when the variance over Xi is taken). In the next step, we take the
variance over Xi of the expressions of the conditional expectations (which leads to simple
integrals). In some cases, analytical simplifications can be made but in other cases, these
variances cannot be simplified and the integrals are evaluated by Monte Carlo.

We recall that (z1, z2) ∈ [−90, 90]2 and we define the following variable changes:

θ1 = 0.8z1 + 0.2z2 , θ2 = 0.5z1 + 0.5z2 , φ1 = 0.4z1 + 0.6z2 , φ2 = 0.3z1 + 0.7z2 . (14)

The Campbell2D function is now written

g(X, z1, z2) = X1 exp

[
−(θ1 − 10X2)

2

60X2
1

]
+ (X2 +X4) exp

[
θ2X1

500

]

+X5(X3 − 2) exp

[
−(φ1 − 20X6)

2

40X2
5

]
+ (X6 +X8) exp

[
φ2X7

250

]
,

(15)

We also define Φ(x) as the cumulative distribution function of a standardized Gaussian
variable. The first order Sobol’ indices for the 8 input variables are written:

S1(z1, z2) = Var

{√
π

60
X2

1

[
Φ

(
50− θ1√
30X1

)
− Φ

(
−10 + θ1√

30X1

)]
+ 4 exp

(
θ2X1

500

)}
, (16)

S2(z1, z2) =





Var

{
250X2

3θ2

[
exp

(
θ2

100

)
− exp

(
− θ2

500

)]
+

∫ 5

−1

x

6
exp

[
−1

2

(
θ1 − 10X2√

30x

)2
]
dx

}

if θ2 6= 0 ,

Var

{
X2 +

∫ 5

−1

x

6
exp

[
−1

2

(
θ1 − 10X2√

30x

)2
]
dx

}
if θ2 = 0 ,

(17)

S3(z1, z2) =
π

120

{∫ 5

−1

x2

6

[
Φ

(
100− φ1√

20x

)
− Φ

(−20− φ1√
20x

)]
dx

}2

, (18)

S4(z1, z2) =





1

3

{
250

θ2

[
exp

(
θ2

100

)
− exp

(
− θ2

500

)]}2

if θ2 6= 0 ,

3 if θ2 = 0 ,

(19)

S5(z1, z2) = 0 , (20)

S6(z1, z2) =





1

3

{
125

φ2

[
exp

(
φ2

50

)
− exp

(
− φ2

250

)]}2

if φ2 6= 0 ,

3 if φ2 = 0 ,

(21)

24



S7(z1, z2) =





8

3

125

φ2

[
exp

(
φ2

25

)
− exp

(
− φ2

125

)]
− 4

9

{
250

φ2

[
exp

(
φ2

50

)
− exp

(
− φ2

250

)]}2

if φ2 6= 0 ,

0 if φ2 = 0 ,

(22)

S8(z1, z2) = S6(z1, z2) . (23)
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