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Abstract

The global sensitivity analysis of a complex numerical model often requires the

estimation of variance-based importance measures, called Sobol’ indices. Metamodel-

based techniques have been developed in order to replace the cpu time expensive

computer code with an inexpensive mathematical function, predicting the com-

puter code output. The common metamodel-based sensitivity analysis methods

are appropriate with computer codes having scalar model output. However, in the

environmental domain, as in many areas of application, numerical models often

give as output a spatial map, which is sometimes a spatio-temporal evolution, of

some interest variables. In this paper, we introduce a novel way to obtain a spatial

map of Sobol’ indices with a minimal number of numerical model computations.

It is based on the functional decomposition of the spatial output onto a wavelet

basis and the metamodeling of the wavelet coefficients by Gaussian process. An

analytical example allows us to clarify the various steps of our methodology. This

technique is then applied to a real case of hydrogeological modeling: for each model

input variable, a spatial map of Sobol’ indices is thus obtained.

Keywords: Computer experiment, Gaussian process, metamodel, functional data, ra-
dionuclide migration.

1 INTRODUCTION

Today, in different environments, sites exist with contaminated groundwater formed as
a result of the inappropriate handling or disposal of hazardous materials or waste. Such
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environmental or sanitary problematic needs the development of treatment or remedi-
ation strategies and in all cases requires robust long-term behaviour prediction. The
indispensable simulation of global fluxes, as water or pollutants, through the different en-
vironmental compartments involves numerous parameters. Numerical modeling of such
sites is an efficient tool for an accurate prediction of contamination plume spreading and
an assessment of environmental risks associated with the site. However, it has been recog-
nized that in such complex numerical models many input variables are highly uncertain,
such as hydrogeological parameters (permeabilities, porosities, etc.) or boundary and
initial conditions (contaminant concentrations, aquifer level, etc.). In fact, systematic
and exhaustive 3D characterization of sites remains impossible.

To deal with all these uncertainties, computer experiment methodologies based on
statistical techniques are useful. For instance, we assume that Y = f(X) is the real-
valued output of a computer code f , whose input variables are random and modeled by
the random vector X = (X1, . . . , Xd) ∈ X , where X is a bounded domain of Rd, with
known distribution. The uncertainty analysis step is used to evaluate statistical param-
eters, confidence intervals or the density probability distribution of the model response
(De Rocquigny et al., 2008), while the global sensitivity analysis step is used to quantify
the influence of the uncertainties of the model input variables (in their whole range of
variations) on the model response (Saltelli et al., 2000). Recent studies have applied dif-
ferent statistical methods of uncertainty and sensitivity analysis to environmental models
(Helton, 1993; Nychka et al., 1998; Fassò et al., 2003; Volkova et al., 2008; Lilburne and
Tarantola, 2009). All these methods have shown their efficiency in providing guidance to
a better understanding of the modeling act.

However, for the purpose of sensitivity analysis, four main difficulties can arise due to
practical problems, especially in the environmental risk domain:

P1) physical models involve rather complex phenomena (non linear and threshold ef-
fects) sometimes with strong interactions between physical variables;

P2) computer codes are often too cpu time expensive to evaluate a model response, from
several minutes to weeks;

P3) numerical models take as inputs a large number of uncertain variables (typically
d > 10);

P4) numerical models give as a result many variables of interest, potentially spatially
and temporally dependent.

The first problem P1 is solved by using variance-based measures, which can deal with
non linear and non monotonic relationships between the inputs and the output (Saltelli
et al., 2000). These measures are based on the functional ANOVA decomposition of any
integrable function f (Efron and Stein, 1981) and determine the share of the variance of
the output resulting from a variable Xi or an interaction between variables (Sobol, 1993):

Si =
Var [E (Y |Xi)]

Var(Y )
, Sij =

Var [E (Y |Xi, Xj)]

Var(Y )
− Si − Sj , Sijk = . . . (1)

The interpretation of these coefficients, namely the Sobol’ indices, is natural as all indices
lie in [0, 1] and their sum is equal to one. The larger the index value, the greater the
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importance of the variable related to this index. To express the overall output sensitivity
to an input Xi, Homma and Saltelli (1996) introduce the total sensitivity index:

STi
= Si +

∑

i<j

Sij +
∑

i<j<k

Sijk + . . . =
∑

l∈#i

Sl = 1− Var [E (Y |X∼i)]

Var(Y )
(2)

where #i represents all the “non-ordered” subsets of indices containing index i and X∼i is
the vector of all inputs except Xi. Thus,

∑
l∈#i Sl is the sum of all the sensitivity indices

having i in their index.
Unfortunately, the traditional or advanced Monte Carlo methods, used to estimate

first order and total Sobol’ indices, require a large number of model evaluations (Saltelli
et al., 2010). To overcome the problem P2 of a too long calculation time in uncertainty
and sensitivity analysis, approaches based on metamodeling have recently been developed
(Koehler and Owen, 1996; Kleijnen and Sargent, 2000; Oakley and O’Hagan, 2002). This
solution consists in replacing the complex computer code by a mathematical approxima-
tion, called a metamodel, which is fitted from only a few experiments and simulates the
behavior of the computer code in the domain of its influential parameters (Sacks et al.,
1989; Fang et al., 2006). Among all the solutions based on metamodels (polynomials,
splines, neural networks, etc.), our attention is focused on the Gaussian process (Gp)
model, which can be viewed as an extension of the kriging method, a spatial data inter-
polation method (Chilès and Delfiner, 1999), to computer code data (Sacks et al., 1989;
Oakley and O’Hagan, 2002). Numerous authors (for example, Welch et al., 1992; Marrel
et al., 2008) have shown how the Gp model can provide a statistical basis for computing
an efficient emulator of code response, even in high dimensional cases (problem P3).

In this paper, we deal with models affected by the four problems (P1, P2, P3 and
P4), which is a common situation in model-based environmental studies. We focus our
attention on the problem P4 of high dimensional model output. In fact, in our application
case, the costly numerical model computes a spatial concentration map. This spatial
output contains several thousands of pixels, each giving a concentration value. This kind
of problem cannot be tuned to a vectorial output problem because of its dimensionality:
the metamodeling of this vectorial output is intractable via the kriging of each scalar value
or via a cokriging technique (Fang et al., 2006). Therefore, we choose to see the model
output as a functional output that we synthesize by its projection on an appropriate
basis. This problem of building a metamodel (based on functional decomposition and
Gp modeling) for a functional output has recently been addressed for one-dimensional
output by Shi et al. (2007) and Bayarri et al. (2007) and for two-dimensional output by
Higdon et al. (2008).

For the sensitivity analysis problem, a functional output is classically treated as a
vectorial output and sensitivity indices of each input are computed for each discretized
value of the output (De Rocquigny et al., 2008). In order to avoid the large amount of
sensitivity index computations by applying such an approach, some authors have applied
various basis decompositions, such as the principal component analysis, on the functional
output (Campbell et al., 2006; Lamboni et al., 2009). In this approach, sensitivity indices
are obtained for the coefficients of the expansion basis.

However, the full functional restitution of Sobol’ indices remains an unexplored chal-
lenge. In this paper, we propose an original complete methodology to compute Sobol’
indices at each location of the spatial output map. Our approach consists in building
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a spatial output metamodel based on wavelet decomposition as in Bayarri et al. (2007)
(restricted to the case of a temporal output). This metamodel is then used to compute
spatial Sobol’ index maps (one map for each input variable). A map of the Sobol’ index
of an input Xi traduces the local and global influences of this input on the output. It
can provide guidance to a better understanding of the computer code and can be used
to reduce the response uncertainties most efficiently. For example, if we want to reduce
the output variability at a specific point of the map, we analyze all the Sobol’ maps and
determine the most influent inputs. Then, we can try to reduce the uncertainty of these
inputs by additional measures. Moreover, the global influence of each input over all the
space can be used to identify areas of influence and areas of non-influence of this input.

In the following section, details of the Gp metamodel are given. In the third section,
our methodology is fully described step by step. An artificial test function is used to
demonstrate the relevance of the choices and the convergence of the algorithms. Section
4 is devoted to the application of this methodology on a real environmental problem
based on a radionuclide groundwater migration modeling. Some discussions conclude
this paper.

2 GAUSSIAN PROCESS METAMODELING

In this section, the Gp metamodel is introduced for the case of a single scalar output.
We consider n realizations of a computer code. Each realization y = f(x) ∈ R of the
computer code output corresponds to a d-dimensional input vector x = (x1, . . . , xd) ∈ X .
The n points corresponding to the code runs are called the experimental design and are
denoted as Xs = (x(1), . . . ,x(n)). The outputs will be denoted as Ys = (y(1), . . . , y(n))
with y(i) = y(x(i)) ∀ i = 1..n. Gp modeling treats the deterministic response y(x) as
a realization of a random function YGp(x), including a regression part and a centered
stochastic process (Sacks et al., 1989). This model can be written as:

YGp(x) = f0(x) + Z(x) . (3)

The deterministic function f0(x) provides the mean approximation of the computer
code. In our study, we use a one-degree polynomial model where f0(x) can be written as
follows:

f0(x) = β0 +
d∑

j=1

βjxj ,

where β = [β0, . . . , βk]
t is the regression parameter vector. It has been shown, for example

in Martin and Simpson (2005) and Marrel et al. (2008), that such a function is sufficient,
and sometimes necessary, to capture the global trend of the computer code.

The stochastic part Z(x) is a Gaussian centered process fully characterized by its
covariance function: Cov(Z(x), Z(u)) = σ2R(x,u), where σ2 denotes the variance of Z
and R is the correlation function that provides interpolation and spatial correlation prop-
erties. To simplify, a stationary process Z(x) is considered, which means that correlation
between Z(x) and Z(u) is a function of the distance between x and u. Our study is
focused on a particular family of correlation functions that can be written as a product
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of one-dimensional correlation functions Rl:

Cov(Z(x), Z(u)) = σ2R(x− u) = σ2

d∏

l=1

Rl(xl − ul).

This form of correlation functions is particularly well adapted to get some simplifications
of integrals in analytical uncertainty and sensitivity analyses (Marrel et al., 2009). More
precisely, we choose to use the generalized exponential correlation function:

Rθ,p(x− u) =
d∏

l=1

exp(−θl|xl − ul|pl),

where θ = [θ1, . . . , θd]
t and p = [p1, . . . , pd]

t are the correlation parameters (also called
hyperparameters) with θl ≥ 0 and 0 < pl ≤ 2 ∀ l = 1..d. This choice is motivated by the
wide spectrum of shapes that such a function offers.

If a new point x∗ = (x∗
1, . . . , x

∗
d) ∈ X is considered, we obtain the predictor and

variance formulas:

E[YGp(x
∗)] = f0(x

∗) + k(x∗)tΣ−1
s (Ys − f(Xs)) , (4)

Var[YGp(x
∗)] = σ2 − k(x∗)tΣ−1

s k(x∗) , (5)

with YGp denoting (Y |Ys, Xs,β, σ, θ,p),

k(x∗) = [Cov(y(1), Y (x∗)), . . . ,Cov(y(n), Y (x∗))]t

= σ2[Rθ,p(x
(1) − x∗), . . . , Rθ,p(x

(n) − x∗))]t

and the covariance matrix

Σs = σ2
(
Rθ,p

(
x(i) − x(j)

)
i=1..n,j=1..n

)
.

Regression and correlation parameters β, σ, θ and p are ordinarily estimated by
maximizing likelihood functions (Fang et al., 2006). This optimization problem can be
badly conditioned and difficult to solve in high dimensional cases (d > 5). Welch et al.
(1992) and Marrel et al. (2008) have developed some algorithms to build Gp metamodel
on outputs that have non linear behaviour with respect to quite a large number of input
variables.

The conditional mean (Eq. (4)) is used as a predictor. The variance formula (Eq. (5))
corresponds to the mean squared error (MSE) of this predictor and is also known as the
kriging variance. This analytical formula for MSE gives a local indicator of the prediction
accuracy. More generally, Gp model provides an analytical formula for the distribution
of the output variable at any arbitrary new point. This distribution formula can be
used to develop analytical formula for uncertainty and sensitivity analyses (Oakley and
O’Hagan, 2002, 2004). On several test functions and one industrial application, Marrel
et al. (2009) have shown that this analytical approach is efficient to compute the first order
Sobol’ indices Si (Eq. (1)), providing in addition confidence intervals for the estimates.
However, the analytical approach does not furnish any direct estimation of the total
Sobol’ indices STi

(Eq. (2)) and is restricted to the case of uncorrelated inputs.
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3 METHODOLOGY FOR A SPATIAL OUPUT

In this section, we describe the methodology that we use to perform spatial Sobol’ index
maps (first proposed in Marrel, 2008). We also apply this methodology to an analytical
function in order to study the convergence of the algorithms.

3.1 General principles

For a given value x∗ of the vector X = (X1, . . . , Xd), the code output is now a deter-
ministic function y(x∗, z) where z denotes a vector of dimension p of spatial coordinates.
In this paper, we consider the case p = 2, the output of the code is therefore a map
corresponding to the values of the function y(x∗, z), when z varies in a grid on a compact
set Dz of R2. The variables X and z are of a completely different nature : the variables
X1, . . . , Xd, corresponding to the inputs of the computer code, are random. They are
different for each simulation of the code and we want to perform a sensitivity analysis
with respect to these variables. The variables z are deterministic and vary on a grid of
size nz corresponding to a discretization of Dz. For each simulation of the code, the grid
is the same and the output corresponds to the nz values y(x

∗, z) for z describing the grid.
For example, MARTHE has d = 20 input variables and provides at each simulation a
map with nz = 64× 64 = 4096 points (see Section 4).

Because of the different nature of the variablesX and z, we model in a different way the
dependency of the output with respect to these two kinds of variables. For a fixed value
of X, we will use a projection of the map z 7→ Y (X, z), onto a wavelet orthonormal basis.
The coefficients of the projection depend on X. We select the coefficients with the largest
variance; and we model these selected coefficients with respect to the d-dimensional input
variable X. In most applications, the dimension of X is quite large and each simulation
of the code is time-expensive. We therefore need a method that is adapted to a situation
where we have a limited number of simulations and quite a large dimension of the input
vector. It is also expected that the relatiionship between the input variables and the
coefficients is highly non linear. We therefore use the Gp metamodel, described in the
previous section, to model the dependency of each selected coefficient with respect to X.

To summarize, given the input design Xs =
(
x(i)

)
i=1..n

, we obtain n simulations of the

map (y(x(i), zj), j = 1, . . . , nz), i = 1, . . . , n. We then have to consider three main steps:

1. Decomposition of the maps z 7→ y(x(i), z) onto a two-dimensional wavelet basis;

2. Selection of the coefficients with the largest variance;

3. Modeling of the coefficients with respect to the input variables using a Gp.

At each step, we will use various criteria to evaluate the performances of our procedures.
We are then able to predict a map (y(x∗, zj), j = 1 . . . , nz) for a new value of the input
vector x∗. Of course, this method of map prediction (which we call a functional metamodel
or also, in our case, a spatial metamodel) has the advantage, compared to the simulation
of the code, to be much less time-expensive.

Finally, our functional metamodel will allow us to produce maps of sensitivity analysis
based on Sobol’ indices by using Monte Carlo methods (see introduction, Eqs. (1) and
(2)). Indeed, as said before, the direct use of the computer code is impossible because
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of the required number of function evaluations. In this study, we are restricted to the
estimation of the first order indices Si(z) and total Sobol’ indices STi

(z) for z ∈ Dz. For
each input, these two indices allow us to quantify respectively its sole influence and its
total influence. Then, its degree of interaction with other inputs can be deduced.

3.2 An analytical test case: The Campbell2D function

The analytical function that we will use in this section to perform various tests is inspired
by Campbell et al. (2006) who use a function with four inputs and a one-dimensional
output. We have modified it to a function with eight inputs (d = 8) and a two-dimensional
output (z = (θ, φ)):

Y = g(X, θ, φ) = X1 exp

[
−(0.8θ + 0.2φ− 10X2)

2

60X2
1

]
+ (X2 +X4) exp

[
(0.5θ + 0.5φ)X1

500

]

+X5(X3 − 2) exp

[
−(0.4θ + 0.6φ− 20X6)

2

40X2
5

]
+ (X6 +X8) exp

[
(0.3θ + 0.7φ)X7

250

]
,

(6)
where (θ, φ) ∈ [−90, 90]2 represent azimuthal and polar spatial coordinates and Xi ∼
U [−1, 5] for i = 1 . . . 8. This function, called the Campbell2D function, gives as output
a spatial map, as shown in Figure 1. The Campbell2D function has been calibrated in
order to give strong spatial heterogeneities, sometimes with sharp boundaries, and very
different spatial repartitions of the output values according the X values.

Figure 1: Three different output maps from the Campbell2D function: x =
(−1,−1,−1,−1,−1,−1,−1,−1) (left); x = (5, 5, 5, 5, 5, 5, 5, 5) (center); x =
(5, 3, 1,−1, 5, 3, 1,−1) (right).

With the Campbell2D function, the analytical calculations of the first order Sobol’
indices Si(θ, φ) are possible. Appendix A gives the results of these integrations. The
obtained analytical expressions (Eqs. (16) to (23)) will serve as the exact solutions of
the first order Sobol’ indices. However, analytical calculations of the total Sobol’ indices
STi

(θ, φ) (Eq. (2)) are not possible. We estimate STi
(θ, φ), i = 1, . . . , 8, by using the

Saltelli’s Monte Carlo algorithm (Saltelli, 2002) with N = 105. This leads to perform
N(d + 2) = 106 computations of the Campbell2D function. The estimated errors with
such large sample sizes are of the order of 5 × 10−3 (standard deviation estimated via
bootstrap). These estimates STi

(θ, φ) will henceforth be called exact total Sobol’ indices.
Figure 2 gives the maps of the total Sobol’ index estimations. Input X5 has no

influence on the output of the Campbell2D function. Input X1 has a small influence on
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the output of the Campbell2D function. Input X3 has a mild influence in a diagonal axis
of the spatial domain. Inputs X4 and X8 have mild influences in a large part of the spatial
domain. Inputs X2, X6 and X7 have strong influences in different parts of the spatial
domain (localized in corners for X2 and X7). Moreover, the first order Sobol’ indices
(maps not shown here) for X3, X5, X6 and X7 are far from the total Sobol’ indices. As
shown by the formula (6) of the Campbell2D function, these four variables have some
strong interactions (interactions between X3, X5 and X6 and between X6 and X7).
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Figure 2: Total Sobol’ indices of the 8 input variables of the Campbell2D function,
estimated by Monte Carlo algorithm.

3.3 Spatial metamodeling

The spatial metamodeling process is composed of 5 internal steps.

Step 0 - Preparation of the learning sample

When dealing with a large input dimension d, the choice of the input design Xs =(
x(i)

)
i=1..n

is is very important, especially when n is small. For scalar computer model
output, numerous authors have shown the strong influence of the input design on the
quality of the Gp modeling (Koehler and Owen, 1996; Fang et al., 2006). For instance,
maximin Latin hypercube samples and low-discrepancy Latin hypercube samples have
shown good results (Marrel, 2008; Iooss et al., 2010). However, building good input
designs for functional output still remains an open question which could be the subject
of future work.

For our tests with the Campbell2D function, we use maximin Latin hypercube sam-
ples. Once the input design has been defined, we obtain n simulations of the map(
y(x(i), z)

)
i=1..n

by running the numerical model.
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Step 1 - Spatial decomposition and selection of coefficients

The spatial decomposition of the output map is made on a basis of orthogonal functions
{φj}j∈N∗

:

Y (X, z) = µ(z) +

∞∑

j=1

αj(X)φj(z) with αj(X) =

∫

Dz

[Y (X, z)− µ(z)]φj(z)dz , (7)

where µ(z) = EX[Y (X, z)]. We define YK(X, z) as the truncated decomposition at the
order K:

YK(X, z) = µ(z) +

K∑

j=1

αj(X)φj(z) . (8)

For the function basis, we can test various wavelet bases (Haar, Daubechies, Symmlet
and Coiflet, see Misiti et al., 2007) in order to optimize the compression of the local and
global information. In our following tests, we use the Daubechies basis which has offered
the best results.

The selection of a small number k of coefficients αj(X) to be modeled with Gp is
essential. For instance, MARTHE maps (see Section 4) and Campbell2D maps contain
nz = 64 × 64 = 4096 pixels which lead to K = 4096 wavelet coefficients. Modeling
such a number of Gp seems intractable because the building process of one Gp is costly
(Marrel et al., 2008). It is therefore necessary to model with Gp only the most informative
coefficients. The retained criterion for the coefficients’ selection process is their variance
with respect to X: priority is given to those coefficients which explain at most the output
map variability. Mathematically, the new order of the coefficients {α1, . . . , αK} is written{
α(1), . . . , α(K)

}
following the inequalities

1

n

n∑

i=1

(
α(1)(x

(i))− α(1)

)2 ≥ . . . ≥ 1

n

n∑

i=1

(
α(K)(x

(i))− α(K)

)2

with αj =
1

n

n∑

i=1

αj(x
(i)) .

(9)
The number k of Gp-modeled coefficients will be discussed in Step 3.

Step 2 - Modeling the coefficients

For j = 1, . . . , K, the model Aj(X) used for the coefficient αj(X) will be one of the
following:

• Model 1: the empirical mean: Aj(X) =
1

n

n∑

i=1

αj

(
x(i)

)
;

• Model 2: the linear regression model:

Aj(X) = β0,j +

d∑

l=1

βl,j Xl (10)

fitted on the learning sample
(
x(i), αj(x

(i))
)
i=1..n

. We use an AIC selection process
to keep only significant terms in (10);
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• Model 3: the Gp model of the form (3) described in Marrel et al. (2008). The
deterministic part f0(X) is a linear regression model as (10) (with an AICC selection
process) and the generalized exponential is used for the correlation function R(·) of
the stochastic part Z(X). The building of this model is rather costly, especially in a
high dimensional context (d > 10) because of the specific variable selection process
proposed by Marrel et al. (2008).

In the following two steps, we compare three different methodologies in order to prove
the benefit of an appropriate metamodel choice:

• Method 1: Model 3 for the k selected coefficients and model 1 for the other coeffi-
cients;

• Method 2: Model 2 for the k selected coefficients and model 1 for the other coeffi-
cients;

• Method 3: Model 3 for the k selected coefficients, model 2 for k′ following coefficients
(k′ ≫ k) and model 1 for the K − k − k′ other coefficients. For the Campbell2D
function, the number k′ = 500 is a heuristic choice based on the observation that,
with 4096 pixels, the information in terms of variability is concentrated into 10%
of coefficients. More generally, a convergence study can be made in order to find a
convenient value for k′.

We define at present ŶK,k(X, z) the approximation of YK(X, z) (Eq. (8)) using one of the
three previous methods.

Several adequacy criteria can be used to measure the discrepancy between the function
Y (X, z) and its approximation ŶK,k(X, z). We use the mean absolute error, the maximal
error and the mean squared error but restrict our presentation to mean squared error
results for the sake of consistency. The mean squared error MSE(X) is written

MSE(X) =

∫

Dz

[
Y (X, z)− ŶK,k(X, z)

]2
dz . (11)

MSE(X) is estimated by integrating over the nz grid. For a fixed value of X, this criterion
measures the restitution quality in the mean of the overall map. We denote by MSE
the expectation (with respect to the variable X) of MSE(X). When it is possible, we
provide new simulations of the map Y (X, z) for randomized values of X, and we use
this test sample to estimate the MSE. For some applications, this is not possible and
cross-validation methods can be used to estimate the MSE (see Section 4).

The MSE can also be obtained by first integrating
[
Y (X, z)− ŶK,k(X, z)

]2
over X

and then by taking the expectation with respect to z. From the MSE, we also define the
predictivity coefficient Q2 which gives us the percentage of the mean explained variance
of the output map:

Q2 = 1− MSE

Ez {VarX [Y (X, z)]} . (12)

The variance is taken with respect to X because we are interested in the variability
induced by the model input vector X. Q2 corresponds to the coefficient of determination
R2 computed in prediction (on a test sample or by cross-validation).
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Step 3 - Choosing k∗, an optimal value for k

We perform simulations using the Campbell2D function and study convergence of MSE
(Eq. (11)) as function of k. Our goal is to compare the three methods proposed in step 2,
then to heuristically find an optimal value k∗ for k. Indeed, there is a trade-off between
keeping k small and minimizing the MSE. The MSE is computed using a test sample of
1000 independent Monte Carlo simulations, giving 1000 output maps.

Figure 3 gives the MSE results as function of k for different values of the learning
sample size n. For each method, the MSE curves regularly turn downward as n increases.
As expected, method 3, which is the richest in terms of model complexity, gives the best
results, especially for small values of k. The usefulness of Gp is proved as we see that
method 2 performs badly. It is certainly caused by the behaviour of the first selected
coefficients, which offer strong and non linear variations: linear models are irrelevant for
modeling these coefficients. For each method, the convergence is reached for k around 20
- 25. We decide to fix the optimal value at k∗ = 30, which is a reasonable number of Gp
models to be built.
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Figure 3: For the Campbell2D function, MSE convergence (as function of
k) for the three methods and for various learning sample sizes (n =
30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 300, 400, 500).

In real applications, this methodology for choosing k∗ can be applied even if the
learning sample size n is limited. For a fixed n, we look for a stabilization of the MSE. If
this convergence is not reached, we use a predefined maximal value for k.

Let us remark that if new model runs are available, the analyst has to repeat the pro-
cess to choose k∗. However, in order to gain some analysis time, we can leave unchanged
the coefficients ordering, which has been obtained with the first set of simulations. In
addition, we can just update the predictor (Eq. (4)) by keeping the initial estimation of
the correlation parameters (which is the most cpu time consuming step). Such choices
have to be made with care.
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Step 4 - Convergence as function of the learning sample size n

Finally, it is important to study the convergence of the adequacy criteria as function of
the learning sample size n. It would allow us to eventually prescribe the need to make new
simulations with the code. For the Campbell2D function, Figure 4 gives the MSE results
as function of n for different values of k. For each method, the MSE curves regularly turn
downward as k increases. In real applications, one can restrict this to the visualization
of the k∗ curves.

Method 2 performs badly and the stabilization of its curves is obtained earlier. Indeed,
adding simulations does not improve the linear models fitted on the k coefficients. For
methods 1 and 3, the curve stabilization is not reached at n = 500. MSE would decrease
for larger values of n, but this decrease becomes slower from n = 200 and MSE results
are rather satisfactory for this value n = 200. In terms of predictivity coefficient (Eq.
(12)), we obtain Q2 = 96.6% for n = 500 and Q2 = 92.9% for n = 200. For methods 1
and 3, increasing k and n leads to a systematic decrease of the MSE. Therefore, one can
argue that MSE tends to zero and that our methodology converges.
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Figure 4: For the Campbell2D function, MSE convergence (as function of n) for the three
methods and for various numbers k of Gp-modeled coefficients.

In real applications, if no additional simulation can be made, this step can be optional.
However, in the opposite case, these curves would help us to decide if our simulation
number is sufficient and which method we have to choose. Moreover, knowing that
method 3 can be costly, we can decide to choose method 1 if their MSEs are similar. In
practical terms, we start from an initial n0 (random selection of n0 simulations among the
n simulations) and randomly add simulations until n. The choice of a low-discrepancy
sequence would also allow to keep the space-filling properties of the design while incresing
n.

In conclusion, by analyzing all these convergence plots, we choose in the next section
to use a learning sample size n = 200 and to model k∗ = 30 Gps using method 3 in order
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to compute Sobol’ indices.

Coarse estimation of the computational time of the different steps

Concerning the computational time needed to carry out all our methodology, the most
costly steps are the construction of each Gp metamodel for the k∗ wavelet coefficients and
the validation step (i.e. computation of MSE or Q2 by cross validation). All the other
steps like the wavelet decomposition, the selection of coefficients or the prediction of the
functional metamodel for any new input value are negligible in terms of computational
time.

So, the first main difficulty is the hyperparameter estimation of the k∗ Gp metamodels.
In the case of 10 inputs for example and few hundreds of simulations, a Gp modeling
usually requires few minutes on a standard PC (Pentium 4, 1.8GHz). So, for few tens of
coefficients to be modeled, the step 2 can take one hour.

The second difficulty is the validation step. To reduce its computational cost, a k-fold
cross-validation is preferable in practice and limits the time required for cross validation
to few hours. Another solution is to leave unchanged the hyperparameters of Gp at each
loop of cross validation. Only the Gp predictor is updated. Then, the cross validation
is a little bit biased but, for a few hundreds of simulations, this bias becomes quickly
negligible.

As a conclusion, only the step of the Gp modeling is computer time expensive. For
instance, in the Campbell2D function study, with d = 8 inputs, nz = 4096 pixels, k

ranging from 10 to 50 Gp models and n = 200 simulations, the metamodeling process from
steps 1 to 3 (without the convergence plot in function of n) has required approximately
one day. For the MARTHE test case, with d = 20, nz = 4096, n = 300, k = 100 and with
a 10-fold cross-validation process, the computation of all the Sobol’ indices has required
approximately two days. These operational cost can appear a little cumbersome but this
process is only made once to obtain a full functional metamodel. Then, any evaluation
of the metamodel will require a negligible computational time compared to a simulation
of the initial MARTHE simulator.

3.4 Global sensitivity analysis

At this stage, we have a functional metamodel allowing us to predict new output concen-
tration maps for any new set of input variables. This metamodel has been obtained with
only n = 200 computations with the Campbell2D function. To estimate Sobol’ indices
of the overall output map of the Campbell2D function, we will then perform thousands
of simulations on our functional metamodel. This method is called in the following the
functional metamodel-based approach.

Note that there is no direct link between the Sobol’ indices for the wavelet coefficients
and the Sobol’ indices for the output. Indeed from (8), we have

YK(X, z) = µ(z) +
K∑

j=1

αj(X)φj(z),

where (αj(X))1≤j≤K denote the wavelet coefficients. The sensitivity map with respect to
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the variable Xi is Si(z) = Var{E[YK(X, z)]|Xi}. Hence,

Si(z) =
K∑

j,l=1

Cov{E[αj(X)|Xi],E[αl(X)|Xi]}φj(z)φl(z).

If the functions (φj(z))1≤j≤K have disjoint supports, all the terms with l 6= j in the
above formula worth zero and Sobol’ indices for the wavelet coefficients could be used
to compute Sobol’ indices for the output. In this paper, this is not the case as we use
the Daubechies basis for these functions. This basis has offered much better results than
bases with disjoint supports functions (as the Haar basis).

Thus, to estimate Sobol’ indices of the overall output map of the Campbell2D func-
tion, we will perform thousands of simulations on our functional metamodel. Because
of constraints of memory allocation (due to the size of the output map and our vecto-
rial programming constraints), it is not possible to use Saltelli’s Monte Carlo algorithm
(Saltelli, 2002). Therefore, we use the following procedure for each of the nz nodes of the
grid:

• For the variance of the conditional expectation of each input variable Xi (i =
1, . . . , 8), we perform 1000 Monte Carlo computations to estimate E(Y |Xi) (integra-
tion over 7 dimensions) and 200 Monte Carlo computations to estimate Var[E(Y |Xi)]
(integration over one dimension).

• For the variance of the conditional expectation of each X∼i (i = 1, . . . , 8), we
perform 100 Monte Carlo computations to estimate E(Y |X∼i) (integration over
one dimension) and 1000 Monte Carlo computations to estimate Var[E(Y |X∼i)]
(integration over 7 dimensions).

• The variance of the output Var(Y ) is obtained using 2×104 simulations (integration
over 8 dimensions).

• Thus, the first order Sobol’ index estimates (noticed SGp

i ) are obtained from Eq.
(1) and the total Sobol’ index estimates (noticed SGp

Ti
) are obtained from Eq. (2).

Finally, we obtain the Sobol’ indices SGp

i (z) and SGp

Ti
(z) for all the nz grid points.

Figure 5 shows the Sobol’ index maps for X2 and X6, which are the most influential
input variables in the Campbell2D function (see Fig. 2). Results for X2 are partic-
ularly convincing: first order and total sensitivity values obtained with the functional
metamodel-based approach are accurate everywhere in the spatial domain Dz. Results
for X6 are rather good for the first order Sobol’ index and less precise for the total Sobol’
index. However, the spatial influence zone of X6 in the upper left corner is well retrieved
by the functional metamodel-based approach. In fact, X2 corresponds to a solely influen-
tial input variable while X6 has important interactions with other input variables (mainly
with X3). Therefore, because of a more difficult Gp fitting process, the Gp models of the
wavelet coefficients of X6 are less precise than the Gp models of the wavelet coefficients
of X2. However, we argue that the important information is present in the spatial Sobol’
map of SGp

T6
(z).
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Figure 5: For the Campbell2D function and variables X2 and X6, comparison between
exact first order and total Sobol’ indices (top) and functional metamodel-based Sobol’
indices (bottom).

For all the input variables, the relative mean absolute errors of the first order Sobol’
indices,

rMAE(Si) =
Ez|SGp

i (z)− Si(z)|
Ez[Si(z)]

, (13)

have been estimated for i = 1, . . . , 8 (see Table 1). The results of Table 1 show that the
estimations of the sensitivity maps for X2 and X6 correspond to one of the most difficult
cases. Figure 5 shows that a mean absolute error of a 15%-order is rather satisfactory in
terms of sensitivity maps. Therefore, all the results for the other input variables show
that our functional metamodel-based approach gives precise results. Note that the rMAE
value for X5 is not given because S5(θ, φ) = 0 ∀(θ, φ) ∈ [−90, 90]2, and the denominator
in Eq (13) is worth zero.

In conclusion, we have shown the efficiency of this new spatial global sensitivity anal-
ysis method for this analytical and relatively complex test function: all sensitivity index
spatial maps have been obtained using only n = 200 computations of the Campbell2D
function.
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Table 1: For the Campbell2D function, relative mean absolute errors (in percent) of the
first order sensitivity indices estimated via the functional metamodel-based approach.

X1 X2 X3 X4 X5 X6 X7 X8

8.75 16.25 16.35 12.8 — 13.17 11.80 9.96

4 APPLICATION

4.1 The environmental problem

In the period between 1943 and 1974 radioactive waste was buried in eleven temporary
repositories built on a specially allocated site at the RRC Kurchatov Institute (KI) in
the Moscow area (Russia). The site used for radioactive waste interim storage has an
area of about 2 hectares and is situated near the KI external perimeter in the immediate
vicinity of the city’s residential area. A radioactive survey of the site and its adjacent area
performed in the late 1980s - early 1990s and in 2002 showed that radioactive contami-
nation is not only present on the surface but has a tendency to spread into groundwater.
The porous media of the site is represented principally by sands alternatively with clays
that form several horizontal superposed aquifers. To analyze radioactive contamination
of groundwater, about a hundred exploration wells were drilled on the site. As a result of
the survey, it was discovered that contamination of groundwater is mainly connected to
90Sr. Since the radiation survey results have demonstrated the necessity to clean up the
site, rehabilitation activities on radwaste removal and liquidation of old repositories were
performed at the site between 2002 and 2006. A network of observation wells is used to
control groundwater conditions of the two upper aquifers. This network consists of twenty
observation wells for the upper moraine aquifer and nine for the second Jurassic aquifer.
It is used for a regular recording of groundwater levels, its chemical and radionuclide
composition (see Velikhov et al., 2007).

A numerical model of 90Sr transport in groundwater was developed for the RRC Kur-
chatov Institute (KI) radwaste disposal site (Volkova et al., 2008). It aimed to provide a
correct prediction of further contamination plume spreading since 2002 (using an interpo-
lated concentration map) and up to the end of the year 2010, to show the risks associated
with contamination and to serve as a basis for engineering decision-making. The numer-
ical model has been constructed using the MARTHE hydrogeological program package
(developed by BRGM, the French Geological Survey). It is a three-dimensional combined
transient flow and transport convection-dispersion model taking into account sorption
and radioactive decay. Three layers were singled out; horizontal, vertical and temporal
meshes were chosen in accordance with the migration characteristics of the sand. Initial
concentration plume in 2002 and spreading prediction made for the year 2010 are shown
on Figure 6. As can be seen, contamination plume predicted for the year 2010 is not
uniform and is more diffused than the initial one. This is due, above all, to the influence
of intensive infiltration assigned to several zones of the model domain that results in local
dispersion of contamination plume.

It has been shown in Volkova et al. (2008) that the form of predicted contamination
plume depends on the model input values (hydraulic conductivity, infiltration parameters,
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Figure 6: Initial (left, 2002) and predicted (right, 2010) 90Sr concentrations (hot colors
represent higher levels of concentration). Initial concentrations range from 0 to 12 Bq/l
while final concentrations range from 0 to 8 Bq/l. The small white rectangles represent
the location of the observation wells.

sorption distribution coefficients, etc.). Indeed, a large part of the model input variables
are exposed to some uncertainty, since their values have been obtained through expert
judgment, model calibration, field experiments and laboratory experiments. These uncer-
tainties lead to uncertainties in model prediction. In order to evaluate the degree of input
influence on the resulting contamination plume form and concentration values predicted
in observation wells, it has been proposed to perform global sensitivity analysis on this
numerical model (called MARTHE in the following sections).

4.2 Global sensitivity analysis on scalar outputs

Probability distributions (uniform and Weibull laws) have been assigned to 20 random
input variables of MARTHE. 300 Monte Carlo simulations, based on Latin hypercube
sampling of the input variables (McKay et al., 1979), have been performed (requiring
four calculation days). For each simulated set of input variables, MARTHE computes
transport equations of 90Sr and predicts the evolution of 90Sr concentration. The 20 un-
certain model parameters are the permeability of different geological layers composing
the simulated field, longitudinal and transverse dispersivity coefficients, and sorption dis-
tribution coefficients. To perform global sensitivity analysis and in particular to compute
Sobol’ indices, previous studies have concentrated on 20 scalar outputs of 90Sr concentra-
tion values, predicted for the year 2010, in 20 piezometers located on the waste repository
site.

Because of the long computing time of MARTHE and of the non linearity of the
relationships between inputs and outputs, Volkova et al. (2008) propose to fit a metamodel
(based on the boosting of regression trees) on each output using the learning sample (300
observations). The boosting trees method consists in a sequential construction of weak
models (here regression trees with low interaction depth), that are then aggregated. This
leads to a relatively efficient metamodel (but difficult to interpret). Then Sobol’ indices
are computed by intensive Monte Carlo simulations using this metamodel. In Marrel et al.
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(2008), each output is modeled by a Gp metamodel: the Gp metamodel outperforms the
linear regression and the boosting regression trees metamodel in terms of predictivity of
the output values.

As a result of these sensitivity analyses, we note that the calculated concentrations at
the piezometric locations are mainly influenced by the distribution coefficient of 90Sr in the
first and second layers of the domain and by the intensity infiltration in the pipe leakage
zones, and to a lesser extent by the hydrodynamic parameters (dispersivity, porosity, etc.).
However, we are aware that spatial information has been lost in these analyses, due to the
limited amount of output values that we have considered (concentrations localized at 20
locations). Our goal is now to compute Sobol’ indices in the whole spatial concentration
map, predicted by the model for 2010.

4.3 Global sensitivity analysis on the output concentration map

The methodology presented in the previous section is now applied to MARTHE. We recall
that this model contains d = 20 input random variables and that the n = 300 simulations
have been performed following a Latin hypercube sample in a previous work. In previous
studies, 20 scalar output variables have been considered and we hope to obtain more
information by using all the spatial information contained in the maps. We will then
use the 300 spatial output maps, discretized in nz = 4096 pixels and predicting the 90Sr
concentration values in 2010.

Figure 7 (a) and (b) shows two output maps and exemplifies the potential variability
between the maps and their contour irregularity. Another output map (Figure 6, right)
confirms this observation. The variance of the 300 maps (Figure 7 (c)) allows us to
illuminate the strong-variability zones (central spot), the mild-variability zones (on the
left and at the top of the central spot) and the zones with no variability where the
concentration values are equal to zero (the major part of the maps). All this corroborates
the need for a non-trivial functional metamodel, such as our wavelet-Gp based metamodel
decribed in Section 3.3.

(a) (b) (c)

Figure 7: (a) and (b): Two final concentration maps of MARTHE (units in Bq/l). (c):
Variance of the 300 concentration maps (colors are in logarithmic scales, ranging from 0
to 10).

As step 0 is already done, we apply the remaining steps of the spatial global sensitivity
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analysis methodology (see Section 3) using our learning sample of size n = 300. From
steps 2 and 3, we retain method 3 with the choice of k∗ = 100 modeled coefficients with
Gp: the stabilization of MSE has been observed for this value of k∗. The number of coef-
ficients modeled with linear models is k′ = 900. Step 4 is not applied to this application
case. Indeed, MARTHE simulations have been performed in a previous study (Volkova
et al., 2008) and the computer code is no longer available. Therefore, no additional point
could be added and step 4 would be useless.

In the MARTHE application, no test basis is available to compute the MSE in pre-
diction. The MSE estimate is obtained via a 10-fold cross-validation technique. The
learning sample is randomly divided into 10 sub-samples. Then, we iterate 10 times the
following process: learning the functional metamodel on 9 sub-samples and estimating
the MSE on the remaining sub-sample. Our final MSE estimate is the mean of the 10
obtained MSE values: MSE= 0.039. In terms of predictivity coefficient (Eq. (12)), we
obtain Q2 = 72.1%. All the details of this study are given in Marrel (2008).

At present, the functional metamodel can be used to estimate first order and total
Sobol’ indices. We use Saltelli’s Monte Carlo algorithm (as for the total Sobol’ indices in
Section 3.2) with N = 103. Indeed, the low computational cost of our metamodel makes
possible the realization of thousands of simulations, but not billions because of memory
allocation problems (see Section 3.4). The final computation cost of Saltelli’s algorithm
is N(d+ 2), which leads to a number of 22000 metamodel-based simulations in our case.
As a final result, we obtain 20 maps of first order Sobol’ indices and 20 maps of total
Sobol’ indices (two maps for each input).

Figure 8 (a), (b) and (c) shows three maps of total Sobol’ indices STi
corresponding

to the three main influent variables. The 17 remaining input variables have no influence
in any zone of the spatial output domain. These results are completely coherent with
previous studies which have detected the predominant influence of these three variables.
Some spatial additional information is now brought by our new results. For example,
we precisely localize the influence zones of the distribution coefficient of the first hydro-
geological layer. Such information is precious for the model engineers. It could help
them to determine according to the spatial localization of large variability zones the kind
of additional information which is needed. Subsequent decisions could be to place new
piezometers in specific geographical zones. The methodological developments highlight
not only the direct involving in post-treatment processes but also allow the proposition
of a new characterization strategy.

Figure 8 (d) gives spatial information about the MARTHE model. It clarifies the
obvious correlation between the MARTHE hydrogeological scenario and our obtained
spatial maps of sensitivity indices: influent kd1 zones correspond to the absence of the
second hydrogeological layer while influent kd2 zones correspond to its presence. In Figure
8 (c), we also retrieve the high infiltration lines of Figure 8 (d) and see their spatial area
of influence.

In our radioactive waste problem, the Sobol’ maps of each uncertain input parameter
clearly provide guidance to a better understanding of the simulator forecast and can be
used to reduce the response uncertainties most efficiently. For example, if we want to
reduce the predicted concentration uncertainty at a specific point of the map, we analyze
all the Sobol’ maps and determine the most influent inputs at this point. Then, we can try
to reduce the uncertainty of these inputs by additional measures. Moreover, spatial maps
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(a) (b)

(c) (d)

Figure 8: Total Sobol’ indices of three input variables of MARTHE: (a) kd1 (distribution
coefficient of the first layer), (b) kd2 (distribution coefficient of the second layer) and (c)
i3 (high infiltration rate). (d): MARTHE hydrogeological model: blue zones (numbered
from 1 to 4) correspond to low conductivity zones (absence of coarse sand in the second
layer); lines present zones of high infiltration rates.

for sensitivity indices can reveal gradient of influence of uncertain parameters, linked to
the physics of the phenomenon (e.g. influence of a parameter varying in function of the
flow direction). The global influence of each input over all the space can also be used
to identify areas of influence and areas of non-influence of this input and can be linked,
as for kd1 and kd2, to a map of a geological parameter. If we consider now the strong
infiltration coefficient denoted as i3 and its sensitivity map, we can deduce that i3 is only
influent around the pipe and its influence is very limited out of the pipe area. The lack
of knowledge on this parameter does not induce a big uncertainty on the concentration
forecast at the site boundary and consequently on the decision relative to the need of a
site rehabilitation.
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5 CONCLUSION

In this paper, a new methodology has been introduced in order to compute spatial maps of
variance-based sensitivity indices (such as the Sobol’ indices) for numerical models giving
a spatial map as output. Such situations are often encountered in environmental modeling
problems. The critical issue of our method is due to the small number of available model
output maps because of the large cpu time cost of the numerical model. A functional
basis decomposition (wavelet basis) linked to a metamodel technique (based on the Gp
model) is proposed and used to solve this problem. The wavelet basis choice is well
adapted in our application cases (analytical and real models) because of strong spatial
heterogeneities and sharp boundaries present in the model output maps. The Gp model
choice is adequate because of strong variations between the output maps for different
inputs, leading to strong and non linear variations of the Gp-modeled wavelet coefficients.
The obtained functional metamodel can serve as a rapid emulator (i.e. with negligible
cpu time) of the computer code. It could be used for uncertainty propagation issues,
optimization problems and, as advocated in this paper, for sensitivity index estimation.

An analytical test function serves to define the different steps, criteria and modeling
choices involved in our methodology. The convergence of our Gp-based functional meta-
model is also shown. Then, a real application illustrates the concrete applicability of the
methodology. We particularly emphasize the relevance of the additional information (in
addition to the expert and model knowledge) brought by the spatial maps of first order
and total sensitivity indices. These kinds of sensitivity maps allow us to spatially detect
the inputs which have the main influence, to find the geographical zones where some
inputs interact with each other and to analyze the spatial zone of influence of each input.

Our methodology can be extended to any computer codes with functional output:
temporal output, other physical dependencies (such as a function of temperature) and
spatio-temporal evolution. In the third case, special attention would be paid to the dis-
tinction between the temporal scale and the spatial scales. It would be interesting in a
future work to apply our method to the MARTHE spatio-temporal evolutions (between
2002 and 2010) of the concentration values. Moreover, improvements of our approach are
possible. For example, the vaguelette-wavelet decomposition (Abramovich and Silver-
man, 1997; Ruiz-Medina et al., 2007) would be an interesting substitute for the wavelet
decomposition. It would allow a simultaneous treatment of all the spatial output maps
and a direct standardization of all the decomposition coefficients. Finally, in order to
disseminate the global sensitivity analysis in environmental modeling communities, deal-
ing with the functional input case remains an important and challenging issue. Iooss
and Ribatet (2009) and Lilburne and Tarantola (2009) have proposed some preliminary
methodologies to take into account the spatially distributed inputs in the computation
of Sobol’ indices.
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APPENDIX A: SOBOL INDICES FOR THE CAMP-

BELL2D FUNCTION

The analytical derivations of the first order Sobol’ indices Si (Eq. (1)) of the Campbell2D
function (6) consists, at first, in obtaining analytical expressions of the conditional ex-
pectations E (Y |Xi) (for i = 1, . . . , 8). The multiple integrations are made following the
uniform distribution on [−1, 5] (we have E(Xi) = 2 and Var(Xi) = 3 ∀ i = 1, . . . , 8). The
terms of these integrals which do not depend on Xi can be directly put to zero (because
these terms will next disappear when the variance over Xi is taken). In the next step, we
take the variance over Xi of the expressions of the conditional expectations (which leads
to simple integrals). In some cases, analytical simplifications can be done but in other
cases, these variances cannot be simplified and the integrals will be evaluated by Monte
Carlo.

We recall that (θ, φ) ∈ [−90, 90]2 and we define the following variable changes:

θ1 = 0.8θ + 0.2φ , θ2 = 0.5θ + 0.5φ , φ1 = 0.4θ + 0.6φ , φ2 = 0.3θ + 0.7φ . (14)

The Campbell2D function is now written

g(X, θ, φ) = X1 exp

[
−(θ1 − 10X2)

2

60X2
1

]
+ (X2 +X4) exp

[
θ2X1

500
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+X5(X3 − 2) exp

[
−(φ1 − 20X6)

2

40X2
5

]
+ (X6 +X8) exp

[
φ2X7

250

]
,

(15)

We also define Φ(x) as the cumulative distribution function of a standardized Gaussian
variable. The first order Sobol’ indices for the 8 input variables is written:

S1(θ, φ) = Var
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[
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, (16)

S2(θ, φ) =





Var

{
250X2

3θ2

[
exp

(
θ2

100

)
− exp

(
− θ2

500

)]
+

∫ 5

−1

x

6
exp

[
−1

2

(
θ1 − 10X2√

30x

)2
]
dx

}

if θ2 6= 0 ,

Var

{
X2 +

∫ 5

−1

x

6
exp

[
−1

2

(
θ1 − 10X2√

30x

)2
]
dx

}
if θ2 = 0 ,

(17)

S3(θ, φ) =
π

120

{∫ 5

−1

x2

6

[
Φ

(
100− φ1√

20x

)
− Φ

(−20− φ1√
20x

)]
dx

}2

, (18)

S4(θ, φ) =





1

3

{
250

θ2

[
exp

(
θ2

100

)
− exp

(
− θ2

500

)]}2

if θ2 6= 0 ,

3 if θ2 = 0 ,

(19)

S5(θ, φ) = 0 , (20)
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S6(θ, φ) =





1

3

{
125

φ2

[
exp

(
φ2

50

)
− exp

(
− φ2

250

)]}2

if φ2 6= 0 ,

3 if φ2 = 0 ,

(21)

S7(θ, φ) =





8

3

125

φ2

[
exp

(
φ2

25

)
− exp

(
− φ2

125

)]
− 4

9

{
250

φ2

[
exp

(
φ2

50

)
− exp

(
− φ2

250

)]}2

if φ2 6= 0 ,

0 if φ2 = 0 ,

(22)

S8(θ, φ) = S6(θ, φ) . (23)
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