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We consider the convex optimization problem minx{f (x) : g j (x) ≤ 0, j = 1, . . . , m} where f is convex, the feasible set K is convex and Slater's condition holds, but the functions g j 's are not necessarily convex. We show that for any representation of K that satisfies a mild nondegeneracy assumption, every minimizer is a Karush-Kuhn-Tucker (KKT) point and conversely every KKT point is a minimizer. That is, the KKT optimality conditions are necessary and sufficient as in convex programming where one assumes that the g j 's are convex. So in convex optimization, and as far as one is concerned with KKT points, what really matters is the geometry of K and not so much its representation.

Introduction

Given differentiable functions f, g j : R n → R, j = 1, . . . , m, consider the following convex optimization problem:

(1.1)

f * := inf x { f (x) : x ∈ K }
where f is convex and the feasible set K ⊂ R n is convex and represented in the form:

(1.2) K = { x ∈ R n : g j (x) ≤ 0, j = 1, . . . , m }.

Convex optimization usually refers to minimizing a convex function over a convex set without precising its representation (see e.g. Ben-Tal and Nemirovsky [1, Definition 5.1.1] or Bertsekas et al. [START_REF] Bertsekas | Convex Analysis and Optimization[END_REF]Chapter 2]), and it is well-known that convexity of the function f and of the set K imply that every local minimum is a global minimum. An elementary proof only uses the geometry of K, not its representation by the defining functions g j ; see e.g. The convex set K may be represented by different choices of the (not necessarily convex) defining functions g j , j = 1, . . . , m. For instance, the set

K := {x ∈ R 2 : 1 -x 1 x 2 ≤ 0; x ≥ 0} is convex but the function x → 1 -x 1 x 2 is not convex on R 2 + .
Of course, depending on the choice of the defining functions (g j ), several properties may or may not hold. In particular, the celebrated Karush-Kuhn-Tucker (KKT) optimality conditions depend on the representation of

K. Recall that x ∈ K is a KKT point if (1.3) ∇f (x) + m j=1
λ j ∇g j (x) = 0 and λ j g j (x) = 0, j = 1, . . . , m, for some nonnegative vector λ ∈ R m . (More precisely (x, λ) is a KKT point.)

Convex programming refers to the situation where f is convex and the defining functions g j of K are also convex. See for instance Ben-Tal and Nemirovsky [1, p. 335 [6, p. 217-218], and Hiriart-Urruty [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF].

A crucial feature of convex programming is that when Slater's condition holds 1 , the KKT optimality conditions (1.3) are necessary and sufficient, which shows that a representation of the convex set K with convex functions (g j ) has some very attractive features.

The purpose of this note is to show that in fact, when K is convex and as far as one is concerned with KKT points, what really matters is the geometry of K and not so much its representation. Indeed, we show that if K is convex and Slater's condition holds then the KKT optimality conditions (1.3) are also necessary and sufficient for all representations of K that satisfy a mild nondegeneracy condition, no matter if the g j 's are convex. So this attractive feature is not specific to representations of K with convex functions.

That a KKT point is a local (hence global) minimizer follows easily from the convexity of K. More delicate is the fact that any local (hence global) minimizer is a KKT point. Various constraint qualifications are usually required to hold at a minimizer, and when the g j 's are convex the simple Slater's condition is enough. Here we show that Slater's condition is also sufficient for all representations of K that satisfy a mild additional nondegeneracy assumption on the boundary of K. Moreover under Slater's condition this mild nondegeneracy assumption is automatically satisfied if the g j 's are convex.

Main result

Let K ⊂ R n be as in (1.2). We first start with the following non degeneracy assumption: Assumption 2.1 (nondegeneracy). For every j = 1, . . . , m, (2.1) ∇g j (x) = 0, whenever x ∈ K and g j (x) = 0.

Observe that under Slater's condition, (2.1) is automatically satisfied if g j is convex. Indeed if g j (x) = 0 and ∇g j (x) = 0 then by convexity 0 is the global minimum of g j on R n . Hence there is no x 0 ∈ K with g j (x 0 ) < 0. We next state the following characterization of convexity. Lemma 2.2. With K ⊂ R n as in (1.2), let Assumption 2.1 and Slater's condition both hold for K. Then K is convex if and only if for every j = 1, . . . , m:

(2.2) ∇g j (x), y -x ≤ 0, ∀ x, y ∈ K with g j (x) = 0.
Proof. Only if part. Assume that K is convex and ∇g j (x), yx > 0 for some j ∈ {1, . . . , m} and some x, y ∈ K with g j (x) = 0. Then g j (x + t(yx)) > 0 for all sufficiently small t, in contradiction with x + t(yx) ∈ K for all 0 ≤ t ≤ 1 (by convexity of K). If part. By (2.2), at every point x on the boundary of K, there exists a supporting hyperplane for K. As K is closed with nonempty interior, by [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF][Th. 1.3.3] the set K is convex 2 .

1 Slater's condition holds for K if for some x 0 ∈ K, g j (x 0 ) < 0 for every j = 1, . . . , m. 2 The author wishes to thank Prof. L. Tuncel for providing him with the reference [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF].

Theorem 2.3. Consider the nonlinear programming problem (1.1) and let Assumption 2.1 and Slater's condition both hold. If f is convex then every minimizer is a KKT point and conversely, every KKT point is a minimizer.

Proof. Let x * ∈ K be a minimizer (hence a global minimizer) with f * = f (x * ). We first prove that x * is a KKT point. The Fritz-John optimality conditions state that λ 0 ∇f (x * ) + m j=1 λ j ∇g j (x * ) = 0; λ j g j (x * ) = 0, j = 1, . . . , m, for some non trivial nonnegative vector 0 = λ ∈ R m+1 . See e.g. Hiriart-Urruty [START_REF] Hiriart-Urruty | Optimisation et Analyse Convexe[END_REF]Th. page 77] or Polyak [START_REF] Polyak | Introduction to Optimization[END_REF]Theor. 1,p. 271]. We next prove that λ 0 = 0. Suppose that λ 0 = 0 and let J := {j ∈ {1, . . . , m} : λ j > 0}. As λ = 0 and λ 0 = 0, the set J is nonempty. Next, as g j (x 0 ) < 0 for every j = 1, . . . , m, there is some ρ > 0 such that B(x 0 , ρ) := {z ∈ R n : zx 0 < ρ} ⊂ K and g j (z) < 0 for all z ∈ B(x 0 , ρ) and all j ∈ J. Therefore we obtain j∈J λ j ∇g j (x * ), zx * = 0 ∀ z ∈ B(x 0 , ρ), which, by Lemma 2.2, implies that ∇g j (x * ), zx * = 0 for every j ∈ J and every z ∈ B(x 0 , ρ). But this clearly implies that ∇g j (x * ) = 0 for every j ∈ J, in contradiction with Assumption 2.1. Hence λ 0 > 0 and we may and will set λ 0 = 1, so that the KKT conditions hold at x * .

Conversely, let x ∈ K be an arbitrary KKT point, i.e., x ∈ K satisfies

∇f (x) + m j=1 λ j ∇g j (x) = 0; λ j g j (x) = 0, j = 1, . . . , m,
for some nonnegative vector λ ∈ R m . Suppose that there exists y ∈ K with f (y) < f (x). Then we obtain the contradiction:

0 > f (y) -f (x) ≥ ∇f (x), y -x [by convexity of f ] = - m j=1 λ j ∇g j (x), y -x ≥ 0
where the last inequality follows from λ ≥ 0 and Lemma 2.2. Hence x is a minimizer.

Hence if K is convex and both Assumption 2.1 and Slater's condition hold, there is a one-to-one correspondence between KKT points and minimizers. That is, the KKT optimality conditions are necessary and sufficient for all representations of K that satisfy Slater's condition and Assumption 2.1.

However there is an important additional property when all the defining functions g j are convex. Dual methods of the type sup

λ∈R m +    inf x f (x) + m j=1 λ j g j (x)    , are well defined because x → f (x) + m j=1 λ j g j (x) is a convex function. In par- ticular, the Lagrangian x → L f (x) := f (x) -f * + m j=1 λ j g j (x), defined from an arbitrary KKT point (x * , λ) ∈ K × R m
+ , is convex and nonnegative on R n , with x * being a global minimizer. If the g j 's are not convex this is not true in general.

Example 1. Let n = 2 and consider the problem

P : f * = min { f (x) : a -x 1 x 2 ≤ 0; Ax ≤ b; x ≥ 0 }, where a > 0, A ∈ R m×n , b ∈ R m ,
and f is convex and differentiable. The set

K := {x ∈ R 2 : a -x 1 x 2 ≤ 0; Ax ≤ b; x ≥ 0 }
is convex and it is straightforward to check that Assumption 2.1 holds. Therefore, by Theorem 2.3, if Slater's condition holds, every KKT point is a global minimizer. However, the Lagrangian

x → f (x) -f * + ψ(a -x 1 x 2 ) + λ, Ax -b -µ, x ,
with nonnegative (ψ, λ, µ) ∈ R × R m × R n , may not be convex whenever ψ = 0 (for instance if f is linear). On the other hand, notice that K has the equivalent convex representation

K := x ∈ R 2 : x 1 √ a √ a x 2 0; Ax ≤ b ,
where for a real symmetric matrix B, the notation B 0 stands for B is positive semidefinite.

A topic of further investigation is concerned with computational efficiency. Can efficient algorithms be devised for some class of convex problems (1.1) where the defining functions g j of K are not necessarily convex?