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SPIN-QUANTIZATION COMMUTES WITH REDUCTION

PAUL-EMILE PARADAN

Abstract. In this paper, we prove that the “quantization commutes with
reduction” phenomenon of Guillemin-Sternberg [10] applies in the context of
the metaplectic correction.
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1. Introduction

An Hamiltonian K-manifold (M, ω, Φ) is Spin-prequantized if M carries an equi-
variant Spinc structure P with determinant line bundle being a Kostant-Souriau
line bundle over (M, 2ω, 2Φ). Let DP be the Spinc Dirac operator attached to P ,
where M is oriented by its symplectic form. The Spin quantization of (M, ω, Φ)
corresponds to the equivariant index of the elliptic operator DP , and is denoted

QK
spin(M) ∈ R(K).

Let Â(M)(X) be the equivariant A-genus class: it is an equivariant analytic
function from a neigborhood of 0 ∈ k with value in the algebra of differential forms
on M . The Atiyah-Segal-Singer index theorem [6] tell us that

(1.1) QK
spin(M)(eX) :=

∫

M

ei(ω+〈Φ,X〉)Â(M)(X)

for X ∈ k small enough. It shows in particular that QK
spin(M) ∈ R(K) does not

depend of the choice of the Spin-prequantum data.
This notion of Spin-quantization is closely related to the notion of metaplec-

tic correction. Suppose that (M, ω, Φ) carries a Kostant-Souriau line bundle Lω,

and that the bundle of half-form κ
1/2
J associated to an invariant almost complex

structure J is well defined. In this case, (M, ω, Φ) is Spin-prequantized by the

Spinc-structure defined by J and twisted by the line bundle Lω ⊗κ
1/2
J . The crucial

point here is that the corresponding Spin-quantization of (M, ω, Φ) does not depend
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of the choice of the almost complex structure. Note that the existence of the bundle

of half-form κ
1/2
J is equivalent to the existence of a Spin structure on M [14].

The purpose of this article is to compute geometrically the multiplicities of
QK

spin(M) ∈ R(K) in a way similar to the famous “quantization commutes with
reduction” phenomenon of Guillemin-Sternberg [10, 16, 17, 24, 18, 25, 12, 26, 21].
This question was partially resolved in a previous paper [19] under the condition
that the infinitesimal stabilizers of the K-action are abelian. C. Teleman also ob-
tained some results [23][Proposition 3.10] in the algebraic setting.

The stricking difference with the standard Guillemin-Sternberg phenomenon is
the rho shift that we explain now. Let T be a maximal torus of K with Lie algebra
t ⊂ k. Let t∗+ ⊂ t∗ be the closed Weyl chamber. We will look at t∗+ as a disjoint
union of its open faces, the maximal one beeing its interior (t∗+)o. Let ρ ∈ (t∗+)o be
the half sum of the positive roots. At each open face τ of t∗+, we associate the term
ρτ which is the half sum of the positive roots which are orthogonal to τ . We note
that ρ − ρτ ∈ τ corresponds to the orthogonal projection of ρ on τ .

For any ξ ∈ t∗+ and any face τ containing ξ in its closure, we consider the shifted
symplectic reduction

M τ
ξ := Φ−1(ξ + ρ − ρτ )/Kτ

where Kτ is the common stabiliser of points in τ . Note that ξ + ρ − ρτ ∈ τ when
ξ ∈ τ .

We are particularly interested to the smallest face σ of the Weyl chamber so
that the Kirwan polytope ∆(M) := Φ(M) ∩ t∗+ is contained in the closure of σ.
It is not hard to see that the Spin-prequantum data on (M, ω, Φ) descents to the
shifted symplectic reduction Mσ

µ when µ is a dominant weight belonging to σ. Then
Qspin(M

σ
µ ) ∈ Z is naturally defined when µ+ρ−ρσ is a regular value of the moment

map. In general, the number Qspin(M
σ
µ ) is defined by shift-desingularization.

By definition Qspin(M
σ
µ ) vanishes when µ + ρ − ρσ /∈ ∆(M), but in fact we can

strengthen this vanishing property: Qspin(M
σ
µ ) = 0 if µ+ ρ− ρσ does not belong to

the relative interior of the Kirwan polytope ∆(M).
Recall that the irreducible representation V K

µ of K are parametrized by their

highest weight µ ∈ K̂ ⊂ t∗+.
The main result of this paper is the following

Theorem 1.1. Let (M, ω, Φ) be a compact Spin-prequantized Hamiltonian K-
manifold. Let σ be the smallest face of the Weyl chamber so that ∆(M) ⊂ σ.
We have

QK
spin(M) =

∑

µ∈ bK∩σ

Qspin(M
σ
µ )V K

µ

Let us give some ideas about the proof. The representation V K
µ is equal to the

Spin-quantization of the coadjoint orbit Oµ := K · (µ + ρ). Then the shifting trick
tells us that the multiplicity mµ of V K

µ in QK
spin(M) is equal to

[
QK

spin(M) ⊗ (V K
µ )∗

]K
=

[
QK

spin(M ×Oµ)
]K

,
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where Oµ is the coadjoint orbit with the opposite symplectic structure. As we did

in [18, 19], we study the expression
[
QK

spin(M ×Oµ)
]K

by localizing the Riemann-
Roch character on the critical points of the square of the moment map

Φµ : M ×Oµ → k∗.

Here our treatment differs depending on whether the Kirwan polytope ∆(M)
intersects the interior of the Weyl chambers or not (i.e. σ = t∗+ or not).

When σ = t∗+, we show that the multiplicity mµ is calculated using the Riemann-
Roch character localized near the zero level set of the moment map Φµ. This case
is (more or less) treated in [19].

The heart of this paper is when we work out the case σ 6= t∗+. We have Φ−1
µ (0) =

∅, but we show how to compute mµ using the Riemann-Roch character localized
near

K ·
(
Nρσ ∩ Φ−1

µ (−ρσ)
)
.

Here Nρσ denotes the submanifold of N = M ×Oµ where the infinitesimal action
of ρσ vanishes.

Notations. Throughout the paper, K will denote a compact connected Lie
group, and k its Lie algebra. We let T be a maximal torus in K, and t be its
Lie algebra. The integral lattice ∧ ⊂ t is defined as the kernel of exp : t → T ,
and the real weight lattice ∧∗ ⊂ t∗ is defined by : ∧∗ := hom(∧, 2πZ). Every
µ ∈ ∧∗ defines a 1-dimensional T -representation, denoted Cµ, where t = exp(X)

acts by tµ := ei〈µ,X〉. We fix a positive Weyl chamber t∗+ ⊂ t∗. For any dominant

weight µ ∈ K̂ := ∧∗ ∩ t∗+, we denote by V K
µ the irreducible representation with

highest weight µ. We denote R(K) the representation ring of K. We denote
R−∞(K) := homZ(R(K), Z) its dual. An element E ∈ R−∞(K) can be represented
as an infinite sum E =

∑
µ∈ bK mµV K

µ , with mµ ∈ Z. The multiplicity m0 of the

trivial representation is denoted [E]K . If H is a closed subgroup of K, we have the

induction map IndK
H

: R−∞(H) → R−∞(K) which is the dual of the restriction

morphism R(K) → R(H). We see that [IndK
H

(E)]K = [E]H .

2. Spin-quantization of compact Hamiltonian K-manifolds

Let M be a compact Hamiltonian K-manifold with symplectic form ω and mo-
ment map Φ : M → k∗ characterized by the relation

(2.2) ι(XM )ω = −d〈Φ, X〉, X ∈ k,

where XM (m) := d
dt |t=0e

−tX · m is the vector field on M generated by X ∈ k.
In the Kostant-Souriau framework [13, 22], a Hermitian line bundle Lω with an

invariant Hermitian connection ∇ is a prequantum line bundle over (M, ω, Φ) if

(2.3) L(X) −∇XM
= i〈Φ, X〉 and ∇2 = −iω,

for every X ∈ k. Here L(X) is the infinitesimal action of X ∈ k on the sections
of Lω → M . (Lω,∇) is also called a Kostant-Souriau line bundle. Remark that
conditions (2.3) imply, via the equivariant Bianchi formula, the relation (2.2).
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2.1. Spin-quantization: definitions. Let J be any invariant almost complex
structure on M , not necessarily compatible with the symplectic form ω. Let

RR
K

J (M,−)

be the corresponding Riemann-Roch character [18]. We consider the complex tan-
gent bundle (TM, J) and its complex dual T∗

C
M := homC(TM, C). We consider

the line bundle

κJ := detT∗
CM.

If (M, ω, Φ) is prequantized by Lω, a standard procedure (called the metaplectic
correction in the geometric quantization literature) is to tensor Lω by the bundle

of half-forms κ
1/2
J [27]. We may consider the equivariant index

(2.4) QK
J (M) := ǫJRR

K

J (M, Lω ⊗ κ
1/2
J )

where ǫJ = ±1 is the quotient of the orientations defined by ω and by J . Note

that QK
J (M) is well defined when the tensor product L̃ = Lω ⊗ κ

1/2
J has a meaning

(even if neither Lω nor κ
1/2
J exist).

The almost complex structure J defines a Spinc structure PJ on M with de-
terminant line bundle detPJ = κ−1

J . If we twist the Spinc structure PJ by any
complex line bundle L we get a Spinc structure PJ,L with determinant line bundle

detPJ,L = L
2 ⊗ κ−1

J .

See [14, 19].
We make the following basic observation.

Proposition 2.1. Let (M, ω, Φ) be an Hamiltonian K-manifold. The following
assertions are equivalent:

a) For any invariant complex structure J there exists a K-equivariant line

bundle L̃ such that L̃2 ⊗κ−1
J is a prequantum line bundle over (M, 2ω, 2Φ).

b) There exist an invariant complex structure J and a K-equivariant line bun-

dle L̃ such that κ−1
J ⊗ L̃2 is a prequantum line bundle over (M, 2ω, 2Φ).

c) There exists an equivariant Spinc structure P such that its determinant line
bundle detP is a prequantum line bundle over (M, 2ω, 2Φ).

When the previous assertions holds, we says that (M, ω, Φ) is Spin-prequantized,

either by the Spinc-structure P , or by the data (J, L̃).

Proposition 2.2. Let (M, ω, Φ) be a Spin-prequantized Hamiltonian K-manifold.

The equivariant index QK
J (M) := ǫJRR

K

J (M, L̃) does not depend of the choice of

the Spin-prequantum data (J, L̃). In fact QK
J (M) coincides with the equivariant

index of the Spinc Dirac operator DP attached to the Spinc-structure P .

Definition 2.3. Let (M, ω, Φ) be a Spin-prequantized Hamiltonian K-manifold.
The Spin-quantization of (M, ω, Φ) is defined as the equivariant index QK

J (M),
and is denoted

QK
spin(M) ∈ R(K)
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Proof of Propositions 2.1 and 2.2. We have obviously a) =⇒ b), and we get
b) =⇒ c) by taking the Spinc sructure PJ,L̃. Let us prove c) =⇒ a).

Let P be a Spinc-structure on M such that its determinant line bundle det P
is a prequantum line bundle over (M, 2ω). Let SP be the corresponding bundle
of spinors. Let PJ and SJ be respectively the associated Spinc-structure and the
bundle of spinors on M associated to an invariant almost complex structure J on
M . Since SP ,SJ are irreducible clifford modules, we have

(2.5) SP ≃ SJ ⊗ L̃

where L̃ is the line bundle defined by L̃ := homcl(SJ , SP ). From (2.5) we get that
the line bundle

detP = L̃2 ⊗ det PJ

= L̃2 ⊗ κ−1
J .

is a prequantum line bundle over (M, 2ω, 2Φ).

Let P be the Spinc structure attached to a data (J, L̃). The symplectic orienta-
tion on M defines a decomposition on the bundle of spinors, SP = S+

P ⊕ S−
P , and

the corresponding Spinc Dirac operator DP maps Γ(S+
P ) to Γ(S−

P ).
On the other hand the almost complex structure on M gives the decomposition

∧T∗M ⊗ C = ⊕i,j ∧i,j T∗M of the bundle of differential form. The corresponding
bundle of spinors is SJ := ∧0,• T∗M and the complex orientation induces the split-

ting SJ = S+
J ⊕S−

J with S+
J := ∧0,evenT∗M . The Dolbeault Dirac operator ∂L̃+∂

∗

L̃

maps Γ(S±
J ⊗ L̃) to Γ(S∓

J ⊗ L̃), and the Riemann Roch character RRK
J (M, L̃) is

defined as the equivariant index of the elliptic operator

∂L̃ + ∂
∗

L̃ : Γ(S+
J ⊗ L̃) −→ Γ(S−

J ⊗ L̃)

If ǫJ = ±1 is the quotient of the orientations defined by ω and by J , one has
that

S±
P = S±ǫJ

J ⊗ L̃.

Hence QK
J (M) = ǫJRRK

J (M, L̃) is defined as the equivariant index of the Dolbeault

Dirac operator ∂L̃ + ∂
∗

L̃ viewed as an elliptic operator D+

L̃
from Γ(S+

P ) to Γ(S−
P ).

Finally we know that IndexK(DP ) = IndexK(D+

L̃
) since the first order elliptic

operators DP and D+

L̃
have the same principal symbol [9]. �

In the remaining part of this paper, we find convenient to work with the following

Definition 2.4. An Hamiltonian K-manifold (M, ω, Φ) is Spin-prequantized by L̃
if there exists an invariant almost complex structure J compatible with ω such that
L̃2 ⊗ κ−1

J is a Kostant-Souriau line bundle over (M, 2ω, 2Φ).

We remark that εJ = 1 when J is compatible with ω. Moreover, the Riemann-
Roch character RRK

J (M,−) does not depend [18] on the choice of the compatible
invariant almost complex structure J : we denote it simply by RRK(M,−).

Finally, when an Hamiltonian manifold (M, ω, Φ) is Spin-prequantized by the

line bundle L̃, its Spin-quantization is defined by

QK
spin(M) := RRK(M, L̃).
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2.2. Functorial properties. We summarize the functorial properties of Qspin in
the next

Proposition 2.5. • If (M, ω, Φ) is a Spin-prequantized Hamiltonian K-manifold,
and H is a closed subgroup of K then the restriction of QK

spin(M) to H is equal to

QH
spin(M).
• If (Mj , ωj, Φj) are Spin-prequantized Hamiltonian Kj-manifold, for j = 1, 2,

then M1 × M2 is a Spin-prequantized Hamiltonian K1 × K2-manifold and

QK1×K2

spin (M1 × M2) = QK1

spin(M1) ⊗QK2

spin(M2)

in R(K1 × K2) ≃ R(K1) ⊗ R(K2).
• If (M, ωM , ΦM ) and (N, ωN , ΦN ) are Spin-prequantized Hamiltonian K-manifold,

then M × N is a Spin-prequantized Hamiltonian K-manifold and

QK
spin(M × N) = QK

spin(M) · QK
spin(N),

where · denotes the product in R(K).
• A Spin-prequantization on (M, ω, Φ) induces a Spin-prequantization on M :=

(M,−ω,−Φ). The Spin-quantization of M corresponds to the dual of the Spin-
quantization of M :

QK
spin(M) =

[
QK

spin(M)
]∗

.

Proof. The first three points are direct consequences of the functorial properties
of the index map. Let us prove the last point. One see that if (L̃, J) is a Spin-

prequantum data for M then (L̃−1,−J) is a Spin-prequantum data for M . Then
we have for X ∈ k small enough

QK
spin(M)(eX) =

∫

M

ei(−ω−〈Φ,X〉)Â(M)(X)

=

∫

M

ei(ω+〈Φ,X〉)Â(M)(X) [1]

= QK
spin(M)(eX). [2]

The relation [1] is due to the fact that the differential form Â(M)(X) has real
coefficients. Since X → QK

spin(M)(eX) are analytic functions, the identity [2] shows

that QK
spin(M)(k) = QK

spin(M)(k) for any k ∈ K. In other words the (virtual)

representation QK
spin(M) corresponds to the dual of the (virtual) representation

QK
spin(M). �

2.3. Spin-quantization of coadjoint orbits. Let µ ∈ K̂ be a dominant weight.
Let σ be a face of the Weyl chamber such that µ ∈ σ: hence the stabilizer subgroup
Kµ contains Kσ. We will restrict the one-dimensional representation Cµ of Kµ to
the subgroup Kσ.

Let ρ be half the sum of the positive roots, and let ρσ be half the sum of the
positive roots which are orthogonal to σ. Note that ρ − ρσ belongs to σ, hence
µ + ρ − ρσ belongs also to σ for any µ ∈ σ. The coadjoint orbit

Oσ
µ := K · (µ + ρ − ρσ)
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is Spin-prequantized by the compatible complex structure and the line bundle L̃ =
K ×Kσ

Cµ. We have

QK
spin(O

σ
µ) = RRK(K/Kσ, K ×Kσ

Cµ)

= V K
µ .

Thanks to Proposition 2.5, we know that QK
spin

(
Oσ

µ

)
=

(
V K

µ

)∗
, where Oσ

µ be the
coadjoint orbit Oσ

µ with the opposite symplectic form.

We have seen that the same irreducible representations V K
µ can be realized as the

Spin-quantization of the coadjoint orbits Oσ
µ where σ is a face of the Weyl chamber

containing µ in its closure.

2.4. Spin-prequantization commutes with reduction. We consider first the
case of an Hamiltonian H-manifold (N, ω, Φ), not necessarily compact, which is

Spin-prequantized by L̃. We suppose that 0 is a regular value of Φ. Let N0 :=
Φ−1(0)/H be the orbifold reduced space with its canonical symplectic structure
ω0.

Lemma 2.6. The orbifold line bundle L̃0 := (L̃|Φ−1(0))/H Spin-prequantizes (N0, ω0).

Proof. The fiber Z = Φ−1(0) is a smooth H-invariant submanifold of N . Let
π : Z → Z/H = N0 be the projection. Recall that the symplectic structure ω0

on N0 is defined by the relation π∗(ω0) = ω|Z . Let L2ω the Kostant-Souriau line
bundle on (N, 2ω, 2Φ) such that

(2.6) L̃2 = L2ω ⊗ κJ .

Here J is a compatible invariant almost complex structure on N . We have TM |Z =
TZ ⊕ J(hZ) where hZ ⊂ TZ is the trivial bundle given by the infinitesimal action
of H . Since TZ ≃ π∗(TN0) ⊕ hZ we get

TM |Z ≃ π∗(TN0) ⊕ hZ ⊕ J(hZ).

Hence J induces a compatible almost complex structure J0 on (N0, ω0), such that
(κJ |Z)/H = κJ0

.
The line bundle L2ω0

= (L2ω|Z)/H is a prequantum line bundle on (N0, ω0).
Finally, if we restrict (2.6) to Z, we have after taking the quotient by H that

L̃2
0 = L2ω0

⊗ κJ0
.

We have proved that (J0, L̃0) Spin-prequantizes (N0, ω0). �

For the rest of this section we consider a compact Hamiltonian K-manifold
(M, ω, Φ), that we suppose Spin-prequantized by the line bundle L̃.

Let τ be a face of the Weyl chamber, and let Kτ be the commun stabilizer of
points in τ . Following Guillemin-Sternberg [11], we introduce the following Kτ -
invariant open subset of k∗τ :

Uτ = Kτ · {ξ ∈ t∗+|Kξ ⊂ Kτ} = Kτ ·
⋃

τ⊂σ

σ.

By construction, Uτ is a slice for the coadjoint action: this mean that the map
K × Uτ , (k, ξ) 7→ k · ξ factors through an inclusion K ×Kτ

Uτ →֒ k∗.
The symplectic cross-section theorem [11] asserts that the pre-image Yτ = Φ−1(Uτ )

is a symplectic submanifold : we denote ωτ the restriction of ω to Yτ . The action of
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Kτ on (Yτ , ωτ ) is Hamiltonian, where the restriction of Φ to Yτ is a moment map.
We will work with the translated moment map Φτ : Yτ → k∗τ defined by

Φτ = Φ|Yτ
− (ρ − ρτ ).

Lemma 2.7. The symplectic slice (Yτ , ωτ , Φτ ) is Spin-prequantized by the line bun-

dle L̃τ := L̃|Yτ
.

Proof. We consider the open subset K ×Kτ
Yτ of M and the projection

π : K ×Kτ
Yτ → K/Kτ . We can suppose that the Spin-prequantum data, when

restricted to K ×Kτ
Yτ , is given by (J, L̃) where J is a compatible almost complex

structure on K ×Kτ
Yτ defined as the “sum” of the compatible almost complex

structures Jo and Jτ : Jo on K/Kτ and Jτ on Yτ .

When we restrict the identity L2ω = L̃2 ⊗ κ−1
J to Yτ we get

(2.7) L2ω|Yτ
= (L̃|Yτ

)2 ⊗ κ−1
Jτ

⊗ C2(ρ−ρτ ).

We consider the following line bundle on Yτ :

L2ωτ
:= L2ω|Yτ

⊗ C
−1
2(ρ−ρτ ).

The relation (2.7) is then L2ωτ
= (L̃|Yτ

)2 ⊗ κ−1
Jτ

. Since L2ωτ
is a Kτ -equivariant

prequantum bundle over (Yτ , 2ωτ , 2Φτ ), we conclude that (Yτ , ωτ , Φτ ) is Spin-

prequantized by the data (Jτ , L̃τ). �

Let us consider the case where τ = σ is the smallest face of the Weyl chamber
so that moment polyhedron ∆(M) := Φ(M) ∩ t∗+ is contained in the closure of σ.
Then the symplectic slice Yσ is equal to Φ−1(σ), and the action of the subgroup
[Kσ, Kσ] is trivial on it [15].

We will then consider the Hamiltonian action of the center Zσ = Z(Kσ) on Yσ.
The map Φσ : Yσ → k∗σ takes values in z∗σ = Rσ ⊂ t∗ and corresponds to the
moment map relative to the action of Zσ on (Yσ , ωσ). We know that (Yσ, ωσ, Φσ)

is Spin-prequantized by L̃σ := L̃|Yσ
.

For each dominants weights µ which belongs to the closure of σ, we consider the
symplectic reduction

Mσ
µ = Φ−1(Oσ

µ)/K

= Φ−1
σ (µ)/Zσ.

For the rest of this section we fix a dominant weight µ ∈ σ such that
µ + ρ− ρσ ∈ ∆(M), and we explain how one defines the Spin-quantization
of the (possibly singular) reduced spaces Mσ

µ .

Let
−→
∆ ⊂ z∗σ be the rationnal vector subspace generated by {a− b |a, b ∈ ∆(M)}.

Let z∆σ ⊂ zσ be the subspace orthogonal to
−→
∆, and let Z∆

σ ⊂ Zσ be the correspond-
ing subtorus.

Lemma 2.8. The torus Z∆
σ acts trivially on Yσ and on the line bundle L̃σ ⊗C−µ.

Proof. By definition of z∆σ , 0 = d〈Φσ, X〉 = −ι(XYσ
)ωσ on Yσ for any X ∈ z∆σ .

Hence the torus Z∆
σ acts trivially on Yσ. Let L2ωσ

be the Kostant-Souriau line

bundle over (Yσ, 2ωσ, 2Φσ) so that L̃2
σ = L2ωσ

⊗ κJσ
(see Lemma 2.7). We have on

the section of L2ωσ
the following equality of linear operators:

L(X) −∇XM
= i〈2Φσ, X〉, ∀X ∈ zσ.
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If one takes X ∈ z∆σ , the function y ∈ Yσ 7→ 〈Φσ(y), X〉 is constant equal to 〈µ, X〉.
Finally

L(X) − 2i〈µ, X〉 = 0, ∀X ∈ z∆σ

as an operator on the section of L2ωσ
. In other words, the torus Z∆

σ acts trivially

on L2ωσ
⊗C−2µ = (L̃σ ⊗C−µ)2 ⊗ κ−1

Jσ
. Since Z∆

σ acts trivially on κJσ
, we conclude

finally that Z∆
σ acts trivially on the line bundle L̃σ ⊗ C−µ. �

Let Z ′
σ ⊂ Z∆

σ be another subtorus such that Zσ = Z∆
σ × Z ′

σ: the dual of its Lie

algebra z′σ is identified with
−→
∆ ⊂ z∗σ. We look now at (Yσ, ωσ) as an Hamiltonian

Z ′
σ-manifold with moment map

Φ′
σ := Φσ − µ = Φ|Yσ

− (µ + ρ − ρσ).

The Z ′
σ-equivariant line bundle L̃′

σ := L̃σ⊗C−µ Spin-prequantizes the Hamiltonian
Z ′

σ-manifold (Yσ, ωσ, Φ′
σ).

If 0 ∈
−→
∆ is a regular value of Φ′

σ, we know after Lemma 2.6 that the orbifold
reduced space (Mσ

µ , ωσ
µ) is Spin-prequantized by the line bundle

L̃σ
µ :=

(
L̃|Φ−1

σ (µ) ⊗ C−µ

)
/Z ′

σ,

and its Spin-quantization QSpin(M
σ
µ ) is defined like in Definition 2.3. In the general

case where 0 ∈
−→
∆ is not necessarily a regular value of Φ′

σ we proceed by shift

desingularization. For ε ∈
−→
∆ small enough and generic we consider the orbifold

reduced space

Mσ
µ+ε := (Φ′

σ)−1(ε)/Z ′
σ = Φ−1

σ (µ + ε)/Z ′
σ

and its orbifold line bundle

L̃σ
µ+ε :=

(
L̃|Φ−1

σ (µ+ε) ⊗ C−µ

)
/Z ′

σ.

The following crucial fact is proved in Section 3.4.

Theorem 2.9. The Riemann-Roch number RR(Mσ
µ+ε, L̃

σ
µ+ε) ∈ Z does not depend

of the choice of a generic and small enough ε ∈
−→
∆.

Thanks to the last Theorem we can define the quantization Qspin(M
σ
µ ) ∈ Z of

the (possibly singular) reduced space Mσ
µ for µ ∈ K̂ ∩ σ.

Definition 2.10. Let µ ∈ K̂ ∩ σ.
• If µ + ρ − ρσ ∈ ∆(M), the integer Qspin(M

σ
µ ) ∈ Z is defined as the Riemann-

Roch character RR(Mσ
µ+ε, L̃

σ
µ+ε) for ε ∈

−→
∆ generic and small enough.

• If µ + ρ − ρσ /∈ ∆(M), we set Qspin(M
σ
µ ) = 0

Remark 2.11. If µ + ρ− ρσ does not belongs to the relative interior of ∆(M), we
can choose ε so that µ+ρ−ρσ +ε /∈ ∆(M). Then the reduced space Mσ

µ+ε is empty

and the corresponding Riemann-Roch character RR(Mσ
µ+ε, L̃

σ
µ+ε) vanishes. Hence

Qspin(M
σ
µ ) = 0.
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3. Spin-quantization commutes with reduction

We look at the multiplicities of the representation QK
spin(M)

QK
spin(M) =

∑

µ∈ bK

mµV K
µ .

The main result of this paper is the following

Theorem 3.1. Let (M, ω, Φ) be a compact Hamiltonian K-manifold which is Spin
prequantized. Let σ be the smallest face of the Weyl chamber so that Φ(M)∩t∗+ ⊂ σ.
We have

QK
spin(M) =

∑

µ∈σ

Qspin(M
σ
µ )V K

µ

In particular the multiplicity mµ vanishes if µ /∈ σ.

In this section we introduce the main tools needed for the proof of Theorem 3.1.
In Section 3.1, we recall the notion of tranversally elliptic symbols.
In Section 3.2, we recall the Witten’s way of localization the Riemann-Roch

character [18]. We recall in Proposition 3.7, the criterium observed in [19] for the
vanishing of the invariant part of the localized Riemann-Roch character.

In Section 3.3, we recall the induction formula proved in [18, 19] for the localized
Riemann-Roch character.

In Section 3.4, we prove Theorem 3.1 when K is a torus1. We give by the
same way a proof of Theorem 2.9 which is essential to the definition of the Spin-
quantization of the (possibly singular) reduced spaces Mσ

µ .

3.1. Elliptic and transversally elliptic symbols. Here we give the basic def-
initions from the theory of transversally elliptic symbols (or operators) defined
by Atiyah-Singer in [1]. For an axiomatic treatment of the index morphism see
Berline-Vergne [7, 8] and Paradan-Vergne [20]. For a short introduction see [18].

Let X be a compact K-manifold. Let p : TX → X be the projection, and let
(−,−)X be a K-invariant Riemannian metric. If E0, E1 are K-equivariant complex
vector bundles over X , a K-equivariant morphism σ ∈ Γ(TX , hom(p∗E0, p∗E1)) is
called a symbol on X . The subset of all (x, v) ∈ TX where2 σ(x, v) : E0

x → E1
x is

not invertible is called the characteristic set of σ, and is denoted by Char(σ).
In the following, the product of a symbol σ by a complex vector bundle F → M ,

is the symbol

σ ⊗ F

defined by σ ⊗ F (x, v) = σ(x, v) ⊗ IdFx
from E0

x ⊗ Fx to E1
x ⊗ Fx. Note that

Char(σ ⊗ F ) = Char(σ).
Let TKX be the following subset of TX :

TKX = {(x, v) ∈ TX , (v, XX (x))
X

= 0 for all X ∈ k} .

A symbol σ is elliptic if σ is invertible outside a compact subset of TX (i.e.
Char(σ) is compact), and is K-transversally elliptic if the restriction of σ to TKX
is invertible outside a compact subset of TKX (i.e. Char(σ) ∩ TK2

X is compact).
An elliptic symbol σ defines an element in the equivariant K-theory of TX with

1This situation was already handeld in [19].
2The map σ(x, v) will be also denote σ|x(v)
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compact support, which is denoted by KK(TX ), and the index of σ is a virtual finite

dimensional representation of K, that we denote IndexK
X (σ) ∈ R(K) [2, 3, 4, 5].

Let

R−∞
tc (K) ⊂ R−∞(K)

be the R(K)-submodule formed by all the infinite sum
∑

µ∈ bK mµV K
µ where the map

µ ∈ K̂ 7→ mµ ∈ Z has at most a polynomial growth. The R(K)-module R−∞
tc (K) is

the Grothendieck group associated to the trace class virtual K-representations: we
can associate to any V ∈ R−∞

tc (K), its trace k → Tr(k, V ) which is a generalized
function on K invariant by conjugation. Then the trace defines a morphism of
R(K)-module

(3.8) R−∞
tc (K) →֒ C−∞(K)K .

A K-transversally elliptic symbol σ defines an element of KK(TKX ), and the
index of σ is defined as a trace class virtual representation of K, that we still denote
IndexK

X (σ) ∈ R−∞
tc (K).

Remark that any elliptic symbol of TX is K-transversally elliptic, hence we have
a restriction map KK(TX ) → KK(TKX ), and a commutative diagram

(3.9) KK(TX ) //

IndexK

X

��

KK(TKX )

IndexK

X

��

R(K) // R−∞
tc (K) .

Using the excision property, one can easily show that the index map IndexK
U :

KK(TKU) → R−∞
tc (K) is still defined when U is a K-invariant relatively compact

open subset of a K-manifold (see [18][section 3.1]).

Suppose that M is a K-manifold equipped with an invariant almost complex
structure J . Let us recall the definition of the Riemann-Roch character RRK

J (M,−).
The complex vector bundle (T∗M)0,1 is K-equivariantly identified with the tan-

gent bundle TM equipped with the complex structure J . Let h be the Hermitian
structure on (TM, J) defined by : h(v, w) = Ω(v, Jw) − iΩ(v, w) for v, w ∈ TM .
The symbol

Thom(M, J) ∈ Γ
(
M, hom(p∗(∧even

C TM), p∗(∧odd
C TM))

)

at (m, v) ∈ TM is equal to the Clifford map

(3.10) cm(v) : ∧even
C TmM −→ ∧odd

C TmM,

where cm(v).w = v∧w−ι(v)w for w ∈ ∧•
C
TmM . Here ι(v) : ∧•

C
TmM → ∧•−1TmM

denotes the contraction map relative to h. Since cm(v)2 = −‖v‖2Id, the map cm(v)
is invertible for all v 6= 0. Hence the characteristic set of Thom(M, J) corresponds
to the 0-section of TM .

Let E be a K-equivariant complex vector bundle over M . It is a classical fact

that the principal symbol of the Dolbeault-Dirac operator ∂E + ∂
∗

E is equal to the
following elliptic symbol3

cE := Thom(M, J) ⊗ E,

3Here we use an identification T∗M ≃ TM given by an invariant Riemannian metric.
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see [9]. Since M is compact, the symbol cE is elliptic and then defines an element
of the equivariant K-group of TM .

Definition 3.2. The Riemann-Roch character RRK
J (M, E) ∈ R(K) is defined

equivalently
• as the topological index of cE ∈ KK(TM), or

• as the analytical index of the Dolbeault-Dirac operator ∂E + ∂
∗

E.

3.2. Localization of the Riemann-Roch character. Let (M, ω, Φ) a compact

Hamiltonian K-manifold Spin-prequantized by (L̃, J) where J is a compatible al-
most complex structure on M . The Riemann-Roch character attached to J is just
denoted RRK(M,−).

By definition the Spin-quantization of (M, ω, Φ) is

QK
spin(M) := RRK(M, L̃) ∈ R(K).

We recall the Witten’s deformation of the Riemann-Roch character [18, 19]. We
use in all this paper an isomorphism k∗ ≃ k defined by a K-invariant scalar product
on k∗. In order to simplify the notation, we use the same symbol for ξ ∈ k∗ and its
corresponding element in k.

The moment map is seen as en equivariant map from M to k. We define the
Kirwan vector field on M :

(3.11) κm = (Φ(m))M (m), m ∈ M.

Definition 3.3. The symbol cL̃ = Thom(M, J)⊗ L̃ pushed by the vector field κ is
the symbol cκ

L̃
defined by the relation

cκ
L̃
|m(v) = Thom(M, J) ⊗ L̃|m(v − κm)

for any (m, v) ∈ TM .

Note that cκ
L̃
|m(v) is invertible except if v = κm. If furthermore v belongs to

the subset TKM of tangent vectors orthogonal to the K-orbits, then v = 0 and
κm = 0. Indeed κm is tangent to K · m while v is orthogonal.

Since κ is the Hamiltonian vector field of the function −1
2 ‖Φ‖2, the set of zeros

of κ coincides with the set Cr(‖Φ‖2) of critical points of ‖Φ‖2. Finally we have

Char(cκ
L̃
) ∩ TKM ≃ Cr(‖Φ‖2)

=
⋃

β∈B

K ·
(
Mβ ∩ Φ−1(β)

)
︸ ︷︷ ︸

Cβ

where B ⊂ k∗ is a finite subset parametrizing coadjoint orbits K · β.
We are interested to the restriction cκ

L̃
|U of the elliptic symbol on an invariant

open subset U ⊂ M . Note that the set Char(cκ
L̃
|U ) ∩ TKU ≃ Cr(‖Φ‖2) ∩ U is

compact when

(3.12) ∂U ∩ Cr(‖Φ‖2) = ∅.

When (3.12) holds we denote

(3.13) QK
Φ (U) := IndexK

U (cκ
L̃
|U ) ∈ R−∞

tc (K)

the equivariant index of the transversally elliptic symbol cκ
L̃
|U .

For any β ∈ B, we consider a relatively compact open invariant neighborhood
Uβ of Cβ such that Cr(‖Φ‖2) ∩ Uβ = Cβ .
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Definition 3.4. We denote

QK
β (M) ∈ R−∞

tc (K)

the index of the transversally elliptic symbol cκ
L̃
|Uβ

.

Everything can be defined if we replace the line bundle L̃ by any equivariant
complex vector bundle E. We can consider the pushed symbol cκ

E , and the localized
Riemann-Roch characters

RRK
Φ (U, E) := IndexK

U (cκ
E |U ) and RRK

β (M, E) := IndexK
Uβ

(cκ
E |Uβ

).

A direct application of the excision property [18] gives that

(3.14) QK
spin(M) =

∑

β∈B

QK
β (M).

If we work with RRK
Φ (U, E), we have

(3.15) RRK
Φ (U, E) =

∑

β∈B∩Φ(U)

RRK
β (U, E).

The decomposition (3.14) and (3.15) will be used in the next chapters when one
want to compute the multiplicity, denoted [QK

spin(M)]K , of the trivial representation

in QK
spin(M). We have

[
QK

spin(M)
]K

=
∑

β∈B

[
QK

β (M)
]K

.

and we will see a criterium under which one has
[
QK

β (M)
]K

= 0.

Let β be a non-zero element in k: let Tβ ⊂ K be the torus generated by β.
For m ∈ Mβ, let αm

1 , · · · , αm
p be the real infinitesimal weights for the action of Tβ

on the fibers of TmM (we equip the fibers of TmM/TmMβ with a Tβ-invariant
complex structure).

Definition 3.5. Let us denote by Trβ |TmM | the following positive number

Trβ |TmM | :=

l∑

i=1

|〈αm
i , β〉| .

Note that m ∈ Mβ 7→ Trβ |TmM | is constant along a connected component of
Mβ. We see also that the expression Trβ |E| is well defined for any H-equivariant
real vector bundle E → P , when β ∈ h acts trivially on P .

Example 3.6. The map β ∈ k 7→ Trβ |k| is invariant under the adjoint action.
When β belongs to the Weyl chamber, one has Trβ |k| = 2(ρ, β). Note that Trβ|k| ≤
2‖ρ‖ ‖β‖ for any β ∈ k.

We have proved in [19] the following nice criterium.

Proposition 3.7. Let β 6= 0 in B. The multiplicity of the trivial representation in
QK

β (M) is equal to zero if

(3.16) ‖ β ‖2 +
1

2
Trβ |TmM | > Trβ |k|, ∀ m ∈ Mβ ∩ Φ−1(β).
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Remark 3.8. Note that condition (3.16) is equivalent to

(3.17) ‖ Φ(m) ‖2 +
1

2
TrΦ(m)|TmM | > TrΦ(m)|k|, ∀ m ∈ Cβ .

If the critical set Cβ decomposes in a finite disjoint union of closed K-invariant

subset Cβ = ∪jC
j
β , we consider invariant open neighborhood U j of Cj

β such that

U j
β ∩ Cr(‖Φ‖2) = Cj

β , and we define

QK
Cj

β

(M) := IndexK
Uj

β

(cκ|Uj

β
) ∈ R−∞

tc (K)

Then the generalized character QK
β (M) is equal to the sum

∑
j Q

K
Cj

β

(M) and Propo-

sition 3.7 tells us that [QK
Cj

β

(M)]K = 0 if (3.17) holds on Cj
β .

3.3. Induction formulas. Let H be a compact connected Lie group. Let H · a
be a coadjoint orbit. Let (N, ωN , ΦN) be an Hamiltonian H-manifold which is not
assumed to be compact. But we assume that ΦN is proper near H · a: the pullback
Φ−1

N (C) is compact if C ⊂ h∗ is a small enough compact invariant neighborhood of
H · a.

Let Ha be the stabilizer of a ∈ h∗, and let Ya be a symplectic slice near H ·a: Ya

is a Ha-invariant symplectic manifold of N such that ΦN (Ya) ⊂ h∗a and such that
H ×Ha

Ya is diffeomorphic to an invariant open neighborhood of Φ−1
N (H · a). We

will work with the following moment map on Ya:

ΦYa
= ΦN |Ya

− a.

Let N × H · a be the Hamiltonian H-manifold, with moment map Φ(n, ξ) =
ΦN (n) − ξ. Let

RRH
0 (N × H · a, − )

be the Riemann-Roch character localized near the compact subset Φ−1(0) ⊂ N ×
H · a. Let

RRHa

0 (Ya, − )

be the Riemann-Roch character localized near the compact subset Φ−1
Ya

(0) = Φ−1
N (a) ⊂

Ya.

Let Ind
H

Ha
: R−∞(Ha) → R−∞(H) be the induction map. If E and F are

respectively H-equivariant complex vector bundles on N and H · a, we denote
E ⊠ F their product. We have proved in [18] (see also Proposition 4.13 in [19]) the
following induction formula

Proposition 3.9. For any equivariant complex vector bundles E → N and F →
H · a, we have

RRH
0 (N × H · a, E ⊠ F ) = Ind

H

Ha

[
RRHa

0 (Ya, E|Ya
⊗ F |{a})

]
.

The last Proposition gives in particular that

(3.18)
[
RRH

0 (N × H · a, E ⊠ F )
]H

=
[
RRHa

0 (Ya, E|Ya
⊗ F |{a})

]Ha

.
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3.4. The torus case. Let T be a compact torus, and let (M, ω, Φ) be a compact

Hamiltonian T -manifold which is Spin-prequantized by the data (J, L̃). We suppose
that J is compatible with ω. The irreducible representation of T is parametrized by

the lattice T̂ ⊂ t∗: at each µ ∈ T̂ we associate the one-dimensional representation
Cµ.

We write

QT
spin(M) =

∑

µ∈ bT

mµCµ,

and one wants to shows that the multiplicity mµ is equal to the Spin-quantization
of the (possibly singular) reduced space Mµ := Φ−1(µ)/T .

We fix once for all µ ∈ T̂ . And we apply the Witten deformation procedure to the
Hamiltonian T -manifold (M, ω, Φ−µ) which is Spin-prequantized by (J, L̃⊗C−µ).
We have

mµ =
∑

β∈Bµ

[
RRT

β (M, L̃ ⊗ C−µ)
]T

where Bµ parametrizes the critical points of ‖Φ − µ‖2. Here the criterion (3.16)
holds for any non-zero β since the Lie algebra t is abelian. We have then

mµ =
[
RRT

0 (M, L̃ ⊗ C−µ)
]T

.

In particular mµ = 0 if µ /∈ Φ(M). When µ ∈ Φ(M), we consider a small neigh-

borhood U of Φ−1(µ) ⊂ M so that U ∩ Cr(‖Φ − µ‖2) = Φ−1(µ). We know then
that

(3.19) mµ =
[
RRT

Φ−µ(U, L̃|U ⊗ C−µ)
]T

.

3.4.1. First case: µ is a regular value of Φ. We consider the orbifold reduced space
Mµ = Φ−1(µ)/T which is equipped with a canonical symplectic form ωµ. Let
RR(Mµ,−) be the Riemann-Roch character attached to a compatible almost com-
plex struture. We prove in [18] that for any complex vector bundle E → U

(3.20)
[
RRT

Φ−µ(U, E)
]T

= RR(Mµ, E)

where E = E|Φ−1(µ)/T is the induced orbifold bundle on Mµ. If we take E =

L̃|U ⊗ C−µ on sees that

L̃µ = (L̃|Φ−1(µ) ⊗ C−µ)/T

is an orbifold line bundle which Spin-prequantizes (Mµ, ωµ), and (3.20) gives to-
gether with (3.19) that

mµ = RR(Mµ, L̃µ) = Qspin(Mµ).

3.4.2. Second case : µ is a not (necessarilly) a regular value of Φ. Let
−→
∆ be the

rationnal vector subspace generated by {a − b |a, b ∈ Φ(M)} ⊂ t∗. We work here
with a weigh µ ∈ Φ(M) so that the polytope Φ(M) lives in the affine subspace

µ +
−→
∆. Let t∆ ⊂ t be the subspace orthogonal to ∆, and let T∆ ⊂ T be the

corresponding subtorus.

Lemma 3.10. The group T∆ acts trivially on M and on the line bundle L̃⊗C−µ.

Proof. See the proof of Lemma 2.8. �
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Let T ′ ⊂ T be another subtorus such that T = T∆ × T ′: the dual of its Lie

algebra t′ is identified with
−→
∆ ⊂ t∗. We look now at (M, ω) as an Hamiltonian

T ′-manifold with moment map

Φ′ := Φ − µ : M −→
−→
∆ = (t′)∗

The T ′-equivariant line bundle L̃′ := L̃ ⊗ C−µ Spin-prequantizes the Hamiltonian
T ′-manifold (M, ω, Φ′). Let U be a small neighborhood of Φ′−1(0) in M . The

generalized character RRT
Φ−µ(U, L̃|U ⊗ C−µ) belongs to R−∞(T ′) and corresponds

to the localized Riemann-Roch character

RRT ′

Φ′ (U, L̃′|U ).

We deform the moment map Φ′ in Φ′ − ε where ε is a small element in
−→
∆. We

have proved in [19][Proposition 4.14] the following

Lemma 3.11. • If ε is small enough, the critical set of ‖Φ′−ε‖2 does not intersect

∂U , so that the localized Riemann-Roch character RRT ′

Φ′−ε(U, L̃′|U ) is well defined.

• We have RRT ′

Φ′ (U, L̃′|U ) = RRT ′

Φ′−ε(U, L̃′|U ) if ε is small enough.

Now we are left to the computation of mµ =
[
RRT ′

Φ′−ε(U, L̃′|U )
]T ′

for ε is small

enough. We start with the decomposition

RRT ′

Φ′−ε(U, L̃′|U ) =
∑

β∈Bε

RRT ′

Φ′−ε,β(U, L̃′|U )

where RRT ′

Φ′−ε,β(U, L̃′|U ) denotes the Riemann-Roch charcater localized near the

compact subset Uβ ∩ (Φ′)−1(β + ε). We have proved in [19][Lemma 4.16] the
following

Lemma 3.12. If ε is small enough we have
[
RRT ′

Φ′−ε,β(U, L̃′|U )
]T ′

= 0 when β 6= 0.

At ε ∈
−→
∆ small enough and generic we associate the orbifold Mµ+ε =

Φ−1(µ + ε)/T ′ which is equipped with the orbifold line bundle

L̃µ+ε =
(
L̃|Φ−1(µ+ε) ⊗ C−µ

)
/T ′.

Let RR(Mµ+ε,−) be the Riemann-Roch map associated to a compatible almost
complex structure.

If we use (3.20) together with the Lemmas 3.11 and 3.12 we get

Theorem 3.13. The multiplicity mµ is equal to the Riemann-Roch number

RR(Mµ+ε, L̃µ+ε) ∈ Z where ε ∈
−→
∆ small and generic.

We prove here that the quantity RR(Mµ+ε, L̃µ+ε) does not depend of the choice
of ε small and generic: it is the definition of the Spin quantization, denoted
Qspin(Mµ), of the (possibly singular) reduced space Mµ.

3.4.3. Proof of Theorem 2.9. The same kind of proof work for Theorem 2.9. We con-
sider an invariant relatively compact neighborhood Uσ,µ of Φ−1

σ (µ) =

Φ−1(µ + ρ− ρσ) in the slice Yσ so that Cr(‖Φσ −µ‖2)∩Uσ,µ = Φ−1
σ (µ). Thanks to

Lemmas 3.11 and 3.12, we know that the Riemann Roch character

RR
Z′

σ

Φσ−µ−ε(Uσ,µ, L̃′) ∈ R−∞(Z ′
σ)



SPIN-QUANTIZATION COMMUTES WITH REDUCTION 17

are well defined for ε ∈
−→
∆ small enough, and they do not depend of the choice of

ε. If ε1, ε2 ∈
−→
∆ are small enough regular values of Φσ − µ we get thanks to (3.20)

that

RR(Mσ
µ+ε1

, L̃σ
µ+ε1

) =
[
RR

Z′

σ

Φσ−µ−ε1
(Uσ,µ, L̃′)

]Z′

σ

=
[
RR

Z′

σ

Φσ−µ−ε2
(Uσ,µ, L̃′)

]Z′

σ

= RR(Mσ
µ+ε2

, L̃σ
µ+ε2

).

4. Proof of Theorem 3.1

Let (M, ω, Φ) be a compact Hamiltonian K-manifold which is Spin prequantized.
Let σ be the smallest face of the Weyl chamber so that Φ(M) ∩ t∗+ ⊂ σ. Let µ be

a dominant weight, and let mµ be the multiplicity of V K
µ in QK

spin(M).

Let Oµ be the coadjoint orbit K · (µ + ρ). Since the dual representation (V K
µ )∗

can be realized4 as QK
spin(Oµ), we know by the shifting trick that

mµ =
[
QK

spin(M ×Oµ)
]K

Now we work with the K-Hamiltonian manifold N = M × Oµ with moment

map ΦN (m, ξ) = Φ(m)− ξ. The Witten deformation on N gives QK
spin(M ×Oµ) =∑

β∈Bµ QK
β (M ×Oµ) where Bµ is a finite set parametrizing Cr(‖ΦN‖2). We have

then

(4.21) mµ =
∑

β∈Bµ

[
QK

β (M ×Oµ)
]K

.

We remark that 0 does not appears in Bµ when σ 6= t∗+, since µ + ρ /∈ Φ(M).
The main point of this section is the following

Proposition 4.1. • If µ /∈ σ, the identity (3.16) holds on Cβ for any β ∈ Bµ.
Hence mµ = 0.

• If µ ∈ σ, the identity (3.16) holds on Cβ for any β 6= −ρσ. Then

mµ =
[
QK

−ρσ
(M ×Oµ)

]K
.

When σ = t∗+, we have ρσ = 0 and Proposition 4.1 tell us that the multiplicity mµ

id equal to
[
QK

0 (M ×Oµ)
]K

for any µ ∈ K̂. In particular mµ = 0 if µ+ρ /∈ Φ(M).
When σ 6= t∗+ and µ ∈ σ, we precise Proposition 4.1 as follow. The generalized

character QK
−ρσ

(M ×Oµ) is defined as the index of a transversally elliptic symbol
living in a neighborhood of

C−ρσ
= K

(
Nρσ ∩ Φ−1

N (−ρσ)
)
.

Let Kρσ
be the stabilizer subgroup of ρσ. Let W (Kρσ

) ⊂ W be the Weyl
subgroup of Kρσ

. A direct computation gives that

C−ρσ
=

⋃

w̄∈W (Kρσ )\W

C−ρσ ,w̄

with
C−ρσ ,w̄ = K

(
Mρσ ∩ Φ−1(w(µ + ρ) − ρσ) × {w(µ + ρ)}

)
.

4Oµ is the coadjoint orbit Oµ with the opposite symplectic structure.
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We are particularly interested in the component C−ρσ ,ē. Let us denote C−ρσ ,out

the union of the C−ρσ ,w̄ for w̄ 6= ē. We have a decomposition

(4.22) C−ρσ
= C−ρσ ,ē ∪ C−ρσ ,out

into closed invariant disjoint subsets. Then the generalized character QK
−ρσ

(M×Oµ)
is equal to the sum

QK
−ρσ ,ē(M ×Oµ) + QK

−ρσ ,out(M ×Oµ)

where both terms correspond to the specialization of the transversally elliptic sym-
bol to the neighborhood of each part of the decomposition (4.22).

Proposition 4.2. Suppose that σ 6= t∗+ and that µ ∈ σ. The identity (3.16) holds
on the subset C−ρσ ,out, and then

mµ =
[
QK

−ρσ ,ē(M ×Oµ)
]K

.

Note that C−ρσ ,e = ∅ if µ + ρ − ρσ /∈ Φ(M). At this stage we know then that
mµ = 0 if µ + ρ − ρσ does not belongs to the image of the moment map.

4.1. Proofs of Propositions 4.1 and 4.2. Let N = M × Oµ and let ‖ΦN‖2 :
N → R be the square of the moment map. Recall that we denote by σ the smallest
face of the Weyl chamber so that Φ(M) ∩ t∗+ ⊂ σ.

We want to prove that for any n = (m, ξ) ∈ Cr(‖ΦN‖2) the vector β := Φ(m)−ξ
satisfies

(I) ‖ β ‖2 +
1

2
Trβ |TnN | ≥ Trβ |k|.

Afterwards we will discuss the case of equality in (I).
The tangent space TξOµ is equal to the kξ-module k/kξ: then

Trβ |TξOµ| = Trβ |k| − Trβ |kξ|

= Trβ |k|,

since β belongs to the abelian subalgebra kξ. Using that Trβ |TnN | = Trβ |TmM |+
Trβ |k|, we see that (I) is equivalent to

(II) ‖ β ‖2 +
1

2
Trβ |TmM | ≥

1

2
Trβ |k|.

The module k/km is naturally a subspace of TmM . Let Em be a Km-equivariant
supplement to k/km in TmM . Using that Trβ |TmM | = Trβ |k/km| + Trβ |Em|, we
see that (II) is equivalent to

(III) ‖ β ‖2 +
1

2
Trβ |Em| ≥

1

2
Trβ |km|.

Thanks to the inclusion km ⊂ kΦ(m), we see that (I) ⇔ (II) ⇔ (III) are induced
by the following inequality

(IV) ‖ β ‖2≥
1

2
Trβ|kΦ(m)|.

Lemma 4.3. • For any (m, ξ) ∈ Cr(‖ΦN‖2) the vector β := Φ(m)− ξ satisfies the
inequality (IV).

• Let (m, ξ) ∈ Cr(‖ΦN‖2) such that β := Φ(m) − ξ satisfies the ‖ β ‖2=
1
2Trβ |kΦ(m)|. Then there exists a face τ of σ such that

(1) µ ∈ τ
(2) (m, ξ) belongs to the K-orbit of Φ−1(µ + ρ − ρτ ) × {µ + ρ} ⊂ N .
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(3) β belongs to the coadjoint orbit K · (−ρτ ).

Proof. Up to the multiplication of (m, ξ) by an element of K, we can assume that
β ∈ t∗. Up to the multiplication of n = (m, ξ) by an element of the stabilizer
subgroup Kβ := {k ∈ K |Ad(k)β = β} we can assume that n = (m, w(µ + ρ)) with
m ∈ Mβ and Φ(m) = β + w(µ + ρ) ∈ t∗.

Up to the multiplication of n = (m, w(µ + ρ)) by an element of the Weyl group,
we can assume that Φ(m) belongs to the Weyl chamber: let τ be the face of σ
containing Φ(m) so that KΦ(m) = Kτ .

So we have to prove that for Φ(m) = a ∈ τ and w ∈ W the vector β = a−w(µ+ρ)
satisfies the relation

(4.23) ‖ β ‖2≥
1

2
Trβ |kτ |

The inequality (4.23) is the consequence of three basic inequalities.
We have

(4.24) ‖a − w(µ + ρ)‖ ≥ ‖a− (µ + ρ)‖.

for any w ∈ W , and (4.24) is strict unless w ∈ W (Kτ ). In order to prove (4.24),
we consider the function ξ ∈ K · (µ + ρ) 7−→ ‖ξ − a‖2 = ‖a‖2 + ‖b‖2 − 2(ξ, a). It is
a classical result of symplectic geometry that the function ξ 7→ (ξ, a) has a unique
maximum on the coadjoint orbit K · (µ + ρ) which is reached on an orbit of the
stabilizer subgroup Ka = Kτ . Since a and µ + ρ belongs to the Weyl chamber,
one checks easily that this maximum is obtained on the orbit Kτ (µ + ρ). Hence
‖k(λ + ρ) − a‖2 ≥ ‖(λ + ρ) − a‖2 for any k ∈ K with equality only if k ∈ Kτ .
Inequality (4.24) is proved by taking k = w.

On the other hand we have

‖µ + ρ − a‖ ≥
(µ + ρ − a, ρτ )

‖ρτ‖

=
1

‖ρτ‖
(µ, ρτ )︸ ︷︷ ︸

≥0

+
1

‖ρτ‖
(ρ − ρτ − a, ρτ )︸ ︷︷ ︸

=0

+
1

‖ρτ‖
(ρτ , ρτ )

≥ ‖ρτ‖.(4.25)

Note that (4.25) is strict unless µ ∈ τ and µ + ρ − a = ρτ . The third inequality is

(4.26)
1

2
Trβ|kτ | ≤ ‖ρτ‖ ‖β‖.

See Example 3.6. If we put (4.24), (4.25) and (4.26) together we have

‖ β ‖2 ≥‖ β ‖ ‖a − (µ + ρ)‖ ≥ ‖ β ‖ ‖ρτ‖ ≥
1

2
Trβ |kτ |,

and the equality ‖ β ‖2= 1
2Trβ |kτ | holds if and only if we have the equality in

(4.24), (4.25) and (4.26).
But equalities in (4.24) and (4.25) gives that w ∈ W (Kτ ), µ ∈ τ and a = µ+ρ−

ρτ ∈ τ . Then (m, w(µ+ρ)) = w(m′, µ+ρ) with Φ(m′) = w−1(µ+ρ−ρτ) = µ+ρ−ρτ

and β = µ + ρ − ρτ − w(µ + ρ) = −wρτ . We have then

1

2
Trβ|kτ | =

1

2
Trρτ

|kτ | = ‖ρτ‖
2

which is the equality in (4.26).
�
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Since the strict inequality in (IV) implies the strict inequality in (I), Lemma
4.3 tells us that the identity (3.16) holds on Cβ for all β ∈ Bµ when µ /∈ σ. When
µ ∈ σ the identity (3.16) holds

(1) on Cβ for the β which are not in K · (−ρτ ), where τ is a face of σ such that
µ ∈ τ ,

(2) on C−ρσ ,w for all the w̄ 6= ē.

The proof of Proposition 4.1 is completed by

Lemma 4.4. Let τ be a face of σ, distinct from σ, such that µ ∈ τ . Then the
identity (3.16) holds for β ∈ K · (−ρτ ).

Proof. Let β = −ρτ . The critical set C−ρτ
:= K(Nρτ ∩ Φ−1

N (−ρτ )) admits the
decomposition C−ρτ

= ∪w∈W C−ρτ ,w where

C−ρτ ,w = K
(
Mρτ ∩ Φ−1(w(µ + ρ) − ρτ ) × {w(µ + τ)}

)
.

It is not hard to see that C−ρτ ,w intersects C−ρτ ,e only if w ∈ W (Kρτ
), and that

C−ρτ ,w = C−ρτ ,e when w ∈ W (Kρτ
). We know then from Lemma 4.3 that the

strict inequality in (IV) holds on C−ρτ ,w for w /∈ W (Kρτ
).

Let us consider now the case where m ∈ Mρτ ∩Φ−1(µ + ρ− ρτ ). We know that
the equality holds in (IV) for (m, µ + ρ). The equality in (I) for (m, µ + ρ) is then
equivalenty to

(4.27) Trβ |Em| + Trβ|kτ/km| = 0.

Let us prove that (4.27) can not holds. The image of m by the moment map
belongs to τ . Then m belongs to the symplectic slice Yτ ⊂ M . A neighborhood m
is then K ×Kτ

Yτ . So the tangent space at m decomposes in two manners

TmM = k/kτ ⊕ TmYτ

= k/km ⊕ Em

If (4.27) holds we see that Trβ |TmYτ | = Trβ |Em| = 0, which means that β =
−ρτ acts trivially on the tangent space TmYτ . Hence it would implies that ρτ acts
trivially on the manifold Yτ . Since Yσ ⊂ Yτ , the action of ρτ on the principal slice
Yσ is also trivial.

We know that [kσ , kσ] acts trivially on Yσ: since ρσ ∈ [kσ, kσ], the action of ρσ is
trivial on Yσ. Finally if (4.27) holds, we have that

ρτ/σ := ρτ − ρσ ∈ Rσ

acts trivially on Yσ.
The moment polytope of M , ∆(M), which is equal to the closure of Φ(Yσ) ⊂ σ

is a convex polytope. Since the action of ρτ/σ is trivial on Yσ we knows that the
map ξ ∈ ∆(M) 7→ (ξ, ρτ/σ) is constant.

Finally we can use the last information in our hands: µ+ρ−ρτ = Φ(m) belongs
to ∆(M). Then for ξ ∈ ∆(M) we have

(ξ, ρτ/σ) = (µ + ρ − ρτ , ρτ/σ) = 0.

It is contradictory since (ξ, ρτ/σ) > 0 for any ξ ∈ σ.

We have finally proved that when (m, ξ) ∈ Nρτ ∩ Φ−1
N (−ρτ ) the vector β =

Φ(m) − ξ satisfies ‖ β ‖2 + 1
2Trβ |TmM | > Trβ |k|. �
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4.2. Computation of the multiplicities when σ = t∗+. In this section we sup-
pose that the moment polytope ∆(M) = Φ(M) ∩ t∗+ intersects the interior of the
Weyl chamber. Let ∆(M)o ⊂ (t∗+)o be the relative interior of the moment polytope.

We know that mµ = [QK
0 (M ×Oµ)]K for any µ ∈ K̂. In Definition 2.10, we have

defined the number Q(M
t
∗

+

µ ) has follows. If µ + ρ /∈ ∆(M)o, we set Q(Mµ,t∗
+
) = 0.

If µ+ρ ∈ ∆(M)o, we consider, for ε generic and small enough, the orbifold reduced

space M
t
∗

+

µ+ε := Φ−1(µ + ε + ρ)/T and the orbifold line bundle

L̃µ+ε =
(
L̃|Φ−1(µ+ε+ρ) ⊗ C−µ

)
/T.

The Spin quantization Qspin(M
t
∗

+

µ ) ∈ Z is defined as the Riemann-Roch number

RR(M
t
∗

+

µ+ε, L̃µ+ε).

The main result of this section is the following

Theorem 4.5. The number
[
QK

0 (M ×Oµ)
]K

is equal to Qspin(M
t
∗

+

µ ).

We have proved Theorem 3.1 when the moment polytope of M intersects the
interior of the Weyl chamber :

QK
spin(M) =

∑

µ∈ bK

Qspin(M
t
∗

+

µ )V K
µ .

The rest of this section is devoted to the proof of Theorem 4.5. When µ + ρ /∈
∆(M), we see that QK

0 (M ×Oµ) = 0 since the moment map on M ×Oµ does not

goes through 0 ∈ k∗. We have then [QK
0 (M ×Oµ)]K = Qspin(M

t
∗

+

µ ) = 0.
We consider now a dominant weight µ such that µ + ρ ∈ ∆(M). Let Y =

Φ−1((t∗+)o) be the symplectic slice with its canonical symplectic form ωY . The
action of T on (Y, ωY ) is Hamiltonian with moment map ΦY := Φ|Y − ρ. We know

that L̃|Y Spin-prequantizes (Y, ωY , ΦY ) (see Lemma 2.7).

We consider the Riemann-Roch character RRT
0 (Y, L̃|Y ⊗C−µ) which is localised

near (ΦY − µ)−1(0) ⊂ Y . Thanks to the induction formula (3.18), we know that

mµ =
[
QK

0 (M ×Oµ)
]K

=
[
RRK

0 (M ×Oµ, L̃ ⊠ C[−µ])
]K

=
[
RRT

0 (Y, L̃|Y ⊗ C−µ)
]T

=
[
RRT

Φ
Y
−µ(U, L̃|U ⊗ C−µ)

]T

where U is a small neighborhood of Φ−1
Y (µ) in Y .

The computation of the expression [RRT
Φ

Y
−µ(U, L̃|U ⊗ C−µ)]T is identical to

what we have done in Section 3.4. Forr ε small enough and generic, we get

[RRT
Φ

Y
−µ(U, L̃|U ⊗ C−µ)]T = [RRT

Φ
Y
−µ−ε(U, L̃|U ⊗ C−µ)]T

= RR(M
t
∗

+

µ+ε, L̃µ+ε)

= Qspin(M
t
∗

+

µ ).

When µ + ρ does not belong to the relative interior of ∆(M), we can choose ε

so that µ + ρ + ε /∈ ∆(M), and then RR(M
t
∗

+

µ+ε, L̃µ+ε) = Qspin(M
t
∗

+

µ ) = 0.
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4.3. Computation of the multiplicities when σ 6= t∗+. Let µ ∈ σ so that
µ + ρ − ρσ ∈ σ. In the rest of this section β will be −ρσ.

Let QK
β,ē(M×Oµ) be the generalized character defined as the index of a transver-

sally elliptic symbol defined in a neighborhood of

Cβ,ē = K
(
Mβ ∩ Φ−1(µ + ρ − ρσ) × {µ + ρ}

)
⊂ N.

We have proved in the last section that mµ =
[
QK

β,ē(M ×Oµ)
]K

.

First we notice that the character QK
β,ē(M × Oµ) coincide with the Riemann-

Roch character RRK
β,ē(N, L̃N) localized with the Kirwan vector field near Cβ,ē ⊂

Cr(‖ΦN‖2). We can look at N as a Kβ-Hamiltonian manifold, and consider the
Riemann-Roch character

RR
Kβ

β,e(N,−)

localized with the Kirwan vector field near Kβ(Φ−1(µ + ρ − ρσ) × {µ + ρ}).
We have prove in [18] that

(4.28) RRK
β,e(N, L̃N ) = Ind

K

Kβ

(
RR

Kβ

β,e(N, L̃N ) ∧•
C (k/kβ)C

)

where Ind
K

Kβ
: R−∞(Kβ) → R−∞(K) is the induction map, and (k/kβ)C is the

complexification of the real Kβ-module k/kβ . It gives that
[
RRK

β,e(N, L̃N)
]K

=
[
RR

Kβ

β,e(N, L̃N ) ∧•
C (k/kβ)C

]Kβ

.

Let Yσ be the principal symplectic slice of M . Recall that the subgroup [Kσ, Kσ]
acts trivially on Yσ and that ρσ belongs to [kσ, kσ]: hence

Φ−1(µ + ρ − ρσ) ⊂ Yσ ⊂ Mβ.

We are looking at a Kβ-invariant neighborhhood U of Φ−1(µ+ ρ− ρσ)×{µ+ ρ}
in Nβ. We consider the open neighborhood K ×Kσ

Yσ of Φ−1(µ + ρ − ρσ) in M .
Since Kβ ∩ Kσ = T , one sees that

Kβ ×T Yσ ⊂ (K ×Kσ
Yσ)

β

is a Kβ-invariant neighborhood of Yσ in Mβ. Then we take

U := (Kβ ×T Yσ) × Kβ(µ + ρ) ⊂ Nβ .

We look at U as an Hamiltonian Kβ-manifold with moment map ΦU ([k, y], ξ) =
kΦ(y) − ξ ∈ k∗β . The set C′

β := Kβ(Φ−1(µ + ρ − ρσ) × {µ + ρ}) is a connected

component of critical points of Cr(‖ΦU‖2), and we consider the Riemann-Roch
character

RR
Kβ

β (U ,−)

localized with the Kirwan vector field near C′
β ⊂ U .

Let N be the normal bundle of U in N . We have N = N1 ⊠N2 where N1 is the
normal bundle of Kβ ×T Yσ in K ×Kσ

Yσ and N2 is the normal bundle of Kβ(µ+ρ)
in K(µ + ρ). One computes that N1 = Kβ ×T N1 where

N1 =
∑

α>0

α|σ 6=0, (α,β) 6=0

k(α)
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and that N2 = Kβ ×T N2 where

N2 =
∑

α<0

(α,β) 6=0

k(α)

We decompose N in the sum of the polarized bundle N+,β and N−,β . Similarly

let NC the complexified bundle, and its polarized β-positive part N+,β
C

.

Let S(N+,β
C

) =
∑

k≥0 Sk(N+,β
C

) be the symmetric algebra vector bundle associ-

ated to N+,β
C

. Let us compute the rank nβ,+ of the polarized vector bundle vector
N+,β. We have

nβ,+ = ♯ {α > 0 | (α, β) > 0 and α|σ 6= 0} + ♯ {α < 0 | (α, β) > 0}

= ♯ {α > 0 | (α, β) > 0 } + ♯ {α < 0 | (α, β) > 0} (1)

=
1

2
dim(K/Kβ).

In (1) we use that α|σ = 0 imposes (α, ρ − ρσ) = 0. Then (α, β) = −(α, ρ) < 0
for α > 0. Let detN+,β be the determinant line bundle associated to N+,β .

Thanks to the results in [18][Section 6.3], we know that

(4.29) RR
Kβ

β,e(N, L̃N ) = (−1)n+

β RR
Kβ

β

(
U , L̃N |U ⊗ detN+,β ⊗ S(N+,β

C
)
)

.

Hence we know that mµ =
[
RRK

β,ē(N, L̃N )
]K

is equal to (−1)n+

β times

[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β ⊗ S(N+,β

C
)
)
∧•

C (k/kβ)C

]Kβ

=
∑

k≥0

[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β ⊗ Sk(N+,β

C
)
)
∧•

C (k/kβ)C

]Kβ

(4.30)

Let E → U be any Kβ-equivariant Hermitian vector bundle. Since β acts trivially
on U we can look at the Lie derivative L(β) on E. Then 1

iL(β) defines for each
x ∈ U an Hermitian endomorphism of Ex. Let us denote

1

i
L(β) > 0

when all its eigenvalue on the fibers of E are stricly positive.
We made in [18] the crucial observation

Lemma 4.6. If 1
iL(β) > 0, then

[
RR

Kβ

β (U , E)
]Kβ

= 0.

Let us compute the Lie action L(β) on the fibers of the bundle L̃N |U⊗detN+,β⊗

Sk(N+,β
C

). It is easy to check (see [19]) that on L̃N |U ⊗ detN+,β the Lie action
1
iL(β) is equal to

‖β‖2 +
1

2
Trβ|N |

Look now at the Lie derivative L(β) on ∧•
C
(k/kβ)C. As a T -module ∧•

C
(k/kβ)C is

equal to
∏

(α,β) 6=0

(1 − eiα) =
∏

(α,β)<0

(1 − eiα)
∏

(α,β)>0

(1 − eiα)

= (−1)1/2 dim(K/Kβ)e−iδβ

( ∏

(α,β)>0

(1 − eiα)
)2
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with δβ =
∑

(α,β)>0 α. Notice that e−iδβ defines a character of the group Kβ that

we denote C−δβ
. We have proved then that

∧•
C(k/kβ)C = (−1)nβ,+C−δβ

⊕ R

where the Lie derivative 1
iL(β) on C−δβ

is equal to −(δβ , β) = −Trβ |k| and the Lie

derivative 1
iL(β) on the kβ-module R is > −Trβ |k|.

Since ‖β‖2 + 1
2Trβ |N | = Trβ|k|, we can conclude that the Lie derivative 1

i L(β)

(1) is equal to zero on L̃N |U ⊗ detN+,β ⊗ C−δβ
,

(2) is > 0 on L̃N |U ⊗ detN+,β ⊗ R,

(3) is > 0 on L̃N |U ⊗ detN+,β ⊗ Sk(N+,β
C

) ⊗ ∧•
C
(k/kβ)C for any k ≥ 1.

With Lemma 4.6, we see that the sum (4.30) restricts to

(−1)nβ,+

[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β

)
⊗ C−δβ

]Kβ

At this stage we have proved that the multiplicity mµ is equal to

(4.31)
[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β

)
⊗ C−δβ

]Kβ

.

On the symplectic slice (Yσ, ωσ), we have the moment map Φσ − µ relative to
the action of Zσ. The data (Yσ, ωσ, Φσ −µ) is Spin-prequantized by the line bundle

L̃|Yσ
⊗ C−µ. Let

(4.32) RRZσ

0 (Yσ, L̃|Yσ
⊗ C−µ) ∈ R−∞(Zσ)

be the Riemann-Roch character localized near (Φσ − µ)−1(0) = Φ−1(µ + ρ− ρσ) ⊂
Yσ.

We conluce the computation of the multiplicity mµ with the

Lemma 4.7. We have

mµ =
[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β

)
⊗ C−δβ

]Kβ

=
[
RRZσ

0 (Yσ, L̃|Yσ
⊗ C−µ)

]Zσ

(1)

= Qspin(M
σ
µ ). (2)

Proof. Let us prove that (1) is a consequence of the induction formula of Proposition

3.9. First we notice that the data (Yσ, ωσ, Φσ−µ, L̃|Yσ
⊗C−µ) is naturally equipped

with an action of the maximal torus, but with a trivial action of T/Zσ. So the
generalized character (4.32) coincides with

RRT
0 (Yσ, L̃|Yσ

⊗ C−µ) ∈ R−∞(T ).

Let us consider the Hamiltonian Kβ-manifold U := (Kβ ×T Yσ) × Kβ(µ + ρ).
Since Kβ acts trivially on ρσ the map ξ 7→ ξ + ρσ realizes a Kβ-equivariant sym-

plectomorphic between the coadjoint orbits Kβ(µ + ρ) and

O := Kβ(µ + ρ − ρσ).

The manifold U is then symplectomorphic to (Kβ ×T Yσ) × O. Moreover, one

sees that the generalized Riemann-Roch character RR
Kβ

β (U ,−) coincides with the
Riemann-Roch character

RR
Kβ

0 ((Kβ ×T Yσ) ×O,−)
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localized on C0 := Kβ(Φ−1(µ + ρ − ρσ) × {µ + ρ − ρσ}).
Since Kβ ∩ Kσ = T , the Hamiltonian T -manifold Yσ corresponds to the sym-

plectic slice of the Hamiltonian Kβ-manifold Kβ ×T Yσ.

The bundle detN+,β over (Kβ ×T Yσ)×O is equal to the product of Kβ×T Cδ1
→

Kβ ×T Yσ with Kβ ×T Cδ2
→ O, where

δ1 =
∑

α>0

(α,β)>0

α and δ2 =
∑

α<0

(α,β)>0

α.

The line bundle L̃N is equal to the product of L̃ with K ×T C−µ. Then the

restrictions of the line bundle detN+,β and L̃N to Yσ×{µ+ρ−ρσ} are respectively

equal to, the trivial line bundle Cδ1+δ2
= Cδβ

, and to the line bundle L̃|Yσ
⊗ C−µ.

Finally the induction formula of Proposition 3.9 gives that

RR
Kβ

β

(
U , L̃N |U ⊗ detN+,β

)
= RR

Kβ

0 ((Kβ ×T Yσ) ×O, L̃N |U ⊗ detN+,β)

= Ind
Kβ

T

(
RRT

0 (Yσ , L̃|Yσ
⊗ C−µ) ⊗ Cδβ

)

= Ind
Kβ

T

(
RRT

0 (Yσ , L̃|Yσ
)
)
⊗ Cδβ

.

Hence
[
RR

Kβ

β

(
U , L̃N |U ⊗ detN+,β

)
⊗ C−δβ

]Kβ

=
[
RRT

0 (Yσ , L̃|Yσ
⊗ C−µ)

]T

=
[
RRZσ

0 (Yσ, L̃|Yσ
⊗ C−µ)

]Zσ

.

Equality (2), i.e.
[
RRZσ

0 (Yσ, L̃|Yσ
⊗ C−µ)

]Zσ

= Qspin(M
σ
µ )

has been proved in Section 3.4.
�
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