
HAL Id: hal-00430111
https://hal.science/hal-00430111

Submitted on 5 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed identification of concurrent discrete event
systems for fault detection purposes
Matthias Roth, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Matthias Roth, Jean-Jacques Lesage, Lothar Litz. Distributed identification of concurrent discrete
event systems for fault detection purposes. European Control Conference 2009 (ECC 2009), Aug 2009,
Budapest, Hungary. pp.2590-2595. �hal-00430111�

https://hal.science/hal-00430111
https://hal.archives-ouvertes.fr

Abstract-An identification method for concurrent discrete
event systems (DES) is presented. The purpose of the identified
model is model-based fault detection in closed loop industrial
DES such as production or manufacturing systems. The method
consists of identifying an automata network with a scalable
restriction of the network behavior. We especially deal with
incomplete observation of the system language within a finite
time horizon which is a typical result of a high degree of
concurrency. It is shown how models identified on the basis of
an incompletely observed language can be used for fault
detection.

I. INTRODUCTION

Fault Detection and Isolation (FDI) in Discrete Event
Systems (DES) has been an active research area in the last 10
to 15 years. Since the introduction of the diagnoser approach
in [1] various modifications and improvements of this
model-based diagnosis technique have been developed. The
core of this method is to build component models of a
system that reflect the normal, fault-free behavior as well as
the behavior in the case of given faults. The goal is to detect
and diagnose a fault in the system by only considering so
called “observable events” using a special observer
(diagnoser). Although the method has successfully been
applied to small and medium sized systems, the manual
model-building is a laborious task if large industrial
production systems are considered. Using identification
techniques to get the necessary models for fault detection
and isolation (FDI) allows minimizing the modeling effort.
In contrast to the classical diagnoser approach an identified
model is usually based on the fault-free observed system
behavior. Thus, the identified model contains only the fault-
free behavior. If the identified model is used as an observer it
must be analyzed if an observed behavior cannot be
reproduced by the fault-free model. In this case a fault is
detected.

Since industrial production systems often consist of
concurrent parts an identification method should be able to
handle this concurrency. The identification of concurrent
discrete event systems has been examined by several
research groups in the last years. Usually, the methods are

Matthias Roth is with the Institute of Automatic Control at the

University of Kaiserslautern, Germany, and the LURPA, Ecole Normale
Supérieure de Cachan, France. (mroth@eit.uni-kl.de)

J.-J. Lesage is the head of the LURPA at the Ecole Normale Supérieure
de Cachan, F - 94235 Cachan Cedex, France (lesage@lurpa.ens-cachan.fr)

L. Litz is the head of the Institute of Automatic Control at the University
of Kaiserslautern, D – 67653 Kaiserslautern, Germany (litz@eit.uni-kl.de)

based on Petri Nets. In [2] an identification algorithm for
Interpreted Petri Nets is given that detects concurrent
transitions by the analysis of the order of their occurrence.
The algorithm uses some rules when to add non-measurable
places to the identified net such that the observed sequence
of transitions and measurable net places can be produced by
the identified model.

In [3] an identification method for Petri nets based on the
formulation of algebraic constraints for an integer
programming problem is given. The method allows
considering additional information such as structural
constraints if available. Since like shown in [3], solving the
integer programming problem has exponential complexity
with respect to the longest string in the observed language,
finding a solution for large scale systems with long cycles
may be impossible within a reasonable time.

Dealing with the identification of concurrent systems one
key problem arises that has not been addressed in literature
so far: the concurrency can lead to a very large possible
behavior of the system that cannot be completely observed
within a given time. In order to deal with incomplete
observation of the system behavior a new distributed
identification approach is presented in this paper. It is an
extension of an identification method given in [4] that yields
a monolithic automaton that is especially suitable for fault
detection.

II. MONOLITHIC IDENTIFICATION OF A DES

The identification approach in [4] considers closed loop
DES. The closed loop consists of controller and plant, which
is a typical configuration for industrial production systems.
The identification works on the basis of the
I/O (input/output) vectors of the controller collected during p
different production cycles.

Definition 1: The j-th I/O vector in the h-th of p
production cycles is defined as

1 1() ((), ..., (), (), ..., ())h s m hu j I j I j O j O j= with I1, .., Is and

O1, .., Om denoting the considered inputs and outputs of the
controller of the closed loop system.

Definition 2: If during the h-th production cycle, lh
I/O vectors have been observed, the sequence is denoted as

(, , ...,)σ (1) (2) ()
h h hh hu u u l= .

If each observed I/O vector is considered as a letter of an
alphabet it is possible to define the set of observed words
with length q observed during p different production cycles.
A word represents an observed I/O vector sequence.

Distributed identification of concurrent discrete event systems
for fault detection purposes

Matthias Roth, Jean-Jacques Lesage Member, IEEE, Lothar Litz Member, IEEE

Definition 3: The observed words of length q are denoted
as

() () ()()
1

Obs
1 1

, 1 , ..., 1
il qp

q
i i i

i j

W u j u j u j q
− +

= =

=
 

+ + − 
 
∪ ∪

With this definition it is possible to describe the behavior
of a system by the language built on the basis of the observed
words.

Definition 4: The observed language of length n is

1

n
n i
Obs Obs

i

L W
=

=∪

The identification algorithm given in [4] consists of
building an automaton that generates the observed language
of length n of the identified DES. Since a system with
interaction of controller (deterministic behavior) and
physical process (non-deterministic behavior) has to be
identified, the identified model is a non-deterministic
autonomous automaton with output (NDAAO):

Definition 5: 0(NDAAO , , , , x)X r λ= Ω

X finite set of states,
Ω output alphabet,

: 2Xr →X non-deterministic transition relation,
:λ →X Ω output function,

0x X∈ initial state.

The output alphabet Ω consists of the observed
I/O vectors such that in the case of an identified NDAAO

1
ObsW=Ω . λ assigns a word and thus an I/O vector from the

output alphabet to each state.
The NDAAO generates a set of words of length n from

each state ()x i X∈ that is defined as:

Definition 6:
1 1
() : ((()))x iW w w x iλ= ∈ Ω = and

1
() { : ((()), ((1)), ...,

((1))) : (1) (()) 2}

n n
x iW w w x i x i

x i n x j r x j i j i n

λ λ
λ

> = ∈ = +

+ − + ∈ ∀ ≤ ≤ + −

Ω

The definition of the language of length n generated by an
NDAAO follows definition 4:

Definition 7: The language of length n generated by an

NDAAO is
1

n
n i
Ident x

i x X

L W
= ∈

=∪∪

Thus, the language consists of all the words up to length n
that can be produced starting from each state x X∈ .

The algorithm in [4] allows to construct an NDAAO on
the basis of observed words of the parametric length k, the
identified automaton is able to produce the observed
language of the system and is k+1-complete (1 1k k

Obs IdentL L+ +=)

[5].
If the language (and thus the cardinality of the word set) of

the system has not been completely observed like in the case
of the dashed line in Fig 1, the identified NDAAO will not
be able to produce each fault-free I/O vector sequence of
length n=k+1 of the system. Not yet observed regular
sequences are not part of the model and can thus not be

produced which leads to false alerts when monitoring the
system with the identified model.

W Obs

n

h

Low concurrency

High concurrency

W Obs

n

h

Low concurrency

High concurrency

Fig 1: Evolution of the number of observed words of length n over
production cycles h

For large scale systems with a high degree of concurrency
it is by experience not possible to observe all fault-free
words (I/O vectors) within a reasonable time. It is only
possible to determine an upper bound of new words that are
expected in each new system cycle (see as an example
Fig 7). To handle concurrent systems which make a complete
observation impossible, a new distributed approach is
presented.

III. PROPOSED DISTRIBUTED APPROACH

A. Automata Network Behavior

The main goal of the presented approach is to handle
incomplete observation due to a high degree of concurrency
of a closed loop DES when identifying a model. To handle
the concurrent parts of a system it is advantageous to divide
the system into concurrent subsystems for the identification
and online observation. Even if the combined behavior of the
concurrent subsystems can not be completely observed
within a reasonable time, a complete (or almost complete)
observation is much more likely for each single subsystem.
For the considered class of closed loop industrial production
systems this division can be made by considering
well-defined parts of the I/O vectors of the controller for
each subsystem.

Definition 8: The j-th partial I/O vector in the h-th of p-th
production cycle is defined as

1 1() ((), ..., (), (), ..., ())h s m hu j I j I j O j O j= with I1, .., Is and

O1, .., Om {0,1, }∈ − . The I/Os get a “-“ if they are not

considered in the partial vector, else they have values “1” or
“0” according to the observed values.

1

0

1

1

0

 
 
 
 
 
 
 
 

1

1

1

 
 − 
 
 
 
 − 

0

1

0

− 
 
 
 
 − 
 
 

Global I/O vector partial automaton 2partial automaton 1

1

0

1

1

0

 
 
 
 
 
 
 
 

1

1

1

 
 − 
 
 
 
 − 

0

1

0

− 
 
 
 
 − 
 
 

Global I/O vector partial automaton 2partial automaton 1

Fig. 2: Division of an I/O vector into two subsystems

In this paper we suppose that the division of the system
into subsystems and thus the allocation of I/Os to the
subsystems is performed using a-priori knowledge. Other
approaches to automatically divide the system based on an
analysis of the observed language are part of current
research.

For each subsystem a partial automaton is identified

according to the procedure given in [4]. Each partial
automaton contains only parts of the entire I/O vector like in
Fig 2.

The combined output of two or more partial NDAAOs is
defined by a join operation on the outputs of the active
states:

Definition 9: The join of two partial I/O vectors (v1,v2) is
defined as

1 2

1 2 1 2

1 2 1 2

2 1

1 1 2

 if | | | |

 if () () () ()

(,)() () if ()

() if ()

() if () ()

c v v

c v i v i v i v i

J v v i v i v i

v i v i

v i v i v i

≠
 ≠ − ∧ ≠ − ∧ ≠= = −
 = −

 =

1 21,..,max(| |,| |)i v v∀ =

The I/Os at each position of the two partial I/O vectors are
compared. If one of them is “-“ (it is not considered in the
subsystem represented by the partial automaton) the value of
the other vector is taken. If one of them is “1” and the other
“0” c for contradiction is taken.

From this definition follows directly that a valid state
combination 1(,..,)nx x of partial automata for modeling of a

system state must fulfill the condition 1((),.., ())nc J x xλ λ∉ .

If the identified automata are used to monitor the system they
can evolve independently as long as their state combination
produces a valid system output. The language of the
automata network is the language of the cross product of the
partial automata given as:

Definition 10: Cross product of two partial NDAAO:
State space:

|| 1 2 1 2 1 2 1 2| (,) : ((), ())X X X x x X X c J x xλ λ= × ∀ ∈ × ∉

State output

1 2 || 1 2 1 2(,) : ((,)) ((), ())x x X x x J x xλ λ λ∀ ∈ =

Transition relation

1 2 || 1 2 1 2

1 2 1 1 2 2 1 2

1 2 1 2

(,) : ((,)) {(,) |

(,) (()) (()) : ((), ())

and (,) (,)}

p p

p p p p

p p

x x X r x x x x

x x x r x x r x c J x x

x x x x

λ λ
∀ ∈ =

∈ ∪ × ∪ ∉

≠

 Initial state: 0 1_ 0 2 _ 0(,)x x x=

From this definition it follows directly that the cross
product contains only states with a valid output
(|| : ()x X c xλ∀ ∈ ∉).

Let SB denote the complete fault-free system behavior and

,S iB the fault-free partial behavior of the i-th subsystem. It is

obvious that ,1 ,|| .. ||S S n SB B B⊇ . Since there is usually a part

,1 ,(|| .. ||) \ {}S S n SB B B ≠ the cross product is not suitable for

use in FDI. Some faulty behaviors , ,1 ,(|| .. ||) \S F S S n SB B B B∈

cannot be distinguished from fault-free behaviors using the
cross product even if for each identified partial behavior

, , ,S i Ident S iB B= holds.

Instead of a proof consider the following (extreme)

example: Each I/O in the global I/O vector can be assigned
to an own partial automaton containing only this I/O. The
resulting network of partial automata can produce every
combination of I/O values since the automata are not
synchronized. Hence, no matter which I/O vector sequence
will be the consequence of a fault, it is part of the identified
network behavior and thus the fault can not be detected.
Even if in real systems such an extreme choice of subsystems
would not be made, it shows that the network behavior must
be restrained in order to use the network for fault detection.

To deal with this problem the framework in Fig 3 is
proposed. In order to reduce the set ,1 ,(|| .. ||) \S S n SB B B

containing non-detectable faults a permissive observed cross
product is introduced that is built on the basis of the
observed cross product of the partial automata. This
automaton is used to detect if the combination of the
identified partial behaviors ,1, , ,(|| .. ||)S Ident S n IdentB B is part of

the already observed fault-free behavior ,S ObsB of the entire

system. Using a tolerance specification it is possible to adjust
the amount of combined but not yet observed partial
behavior ,1, , , ,(|| .. ||)S Ident S n Ident S ObsB B B∉ that is accepted as

fault-free. The tolerance specification can be constructed
using the gradient at the end of the curve in Fig 1. The
gradient shows how many new words are usually expected in
a new cycle. This information can be translated into an
automaton defining the threshold of consecutive new words
that are considered as a fault symptom.

Cross product

Observed cross product

Permissive observed cross product

Tolerance specification

OK - F

Fault detection:
forbidden network
behavior

Fault detection:
partial observation
not reproducible

Partial automaton 1 Partial automaton 2

…
Partial automaton n

Cross product

Observed cross product

Permissive observed cross product

Tolerance specification

OK - FOK - F

Fault detection:
forbidden network
behavior

Fault detection:
partial observation
not reproducible

Partial automaton 1 Partial automaton 2

…
Partial automaton n

Fig. 3: Proposed model schema

B. Restriction of the Automata Network Behavior

The first step to restrict the automata network behavior is
the introduction of the observed network behavior:

Definition 11: The Observed Cross Product of n partial
NDAAO is a 5-tuple || || || || ||_ 0(, , , ,)obs obs obs obs obsrX xλΩ

according to definition 5. The output alphabet consists of the
possible state combinations of the network of n partial
automata (|| 1 ..obs nX XΩ = × ×). The output function assigns a

state combination of the network to each state of the
observed cross product.

The observed cross product is derived from the cross
product of the partial automata and data of the observed
production cycles:

Algorithm 1: : {}ObsX =

For each recorded production cycle
(, , ...,)σ (1) (2) ()

h h hh hu u u l= :
h

||

l
|| || || x (1) () :((1), (2),.., ()) | W =σh hx x x l∀

 || || ||: ((1), (2),.., ())hObsX ObsX x x x l= ∪

end_for
For each state ||, || ||,|nObs nObsx X x ObsX∈ ∉ :

|| || || || ||,: () : () \ nObsx X r x r x x∀ ∈ =

|| || ||,: \ nObsX X x=

end_for
For each || || :Obsx X∈ || || 1 2() : (, ,..)obs obs nx x x xλ = ∈

1 2 .. nX X X× × × from step “state space” in definition 10

end_for

|| || || ||: , :obs obsX X r r= =

End algorithm 1.

The algorithm consists in “playing” the cross product
using the observed I/O sequences (Fig 4). Each state that is
not necessary to produce the observed I/O sequences is
removed from the state set of the cross product. The
transition relations are adapted such that they contain only
remaining states. The remaining cross product is transformed
into an observed cross product by changing the output
function of the states. The output function

|| || ||:obs obs obsλ →X Ω assigns to each state the combination of

the partial automata states that has been used in the step
“State space” in definition 10 to build the cross product state.

1 1 1 1

0 0 0 0
, , , ...

1 0 1 1

1 1 0 1

       
       
       
       
       
       

p production cycles

I/O vector sequences

Cross product Observed cross product

1 1 1 1

0 0 0 0
, , , ...

1 0 1 1

1 1 0 1

       
       
       
       
       
       

p production cycles

I/O vector sequences

Cross product Observed cross product

Fig 4: Construction of the observed cross product

The automata network and the observed cross product can
now be combined according to the following definition:

Definition 12: Combined evolution of n partial automata
and observed cross product: Let ||_obs actualx be the actual state

of the observed cross product with

|| ||_ 1_ _() (,..,)obs obs actual i n ix x xλ = . The n partial automata can

move from state combination 1_ _(,..,)i n ix x to another state

combination 1_ _ 1_ _(,..,) (,..,)j n j i n ix x x x≠

if 1 :a n∀ ≤ ≤ _ _a i a jx x= or _ _()a j a a ix r x∈ holds (where

a is the index of the a-th of n partial automata) and
if 1 || |obsx X∃ ∈ || 1 1_ _() (,..,)obs j n jx x xλ = ∧

1 || ||_()obs obs actualx r x∈ . If the condition is fulfilled the observed

cross product moves to the new actual state 1x and the

automata network changes to the state combination

1_ _(,..,)j n jx x .

With this definition, the network can only produce two

consecutive state combinations 1_ _(,..,)i n ix x , 1_ _(,..,)j n jx x

if they are part of the observed cross product. In order to
deal with incomplete observation like the dashed line in
Fig 1, it is necessary to allow a certain number of not yet
observed state combinations to reduce the number of false
alerts. To do this the permissive observed cross product and
the tolerance specification are introduced in the next two
subsections.

C. Permissive Observed Cross Product

The aim of the permissive observed cross product (POCP)
is to make it possible that the automata network can produce
not yet observed trajectories of state combinations (and thus
I/O vector sequences), but to recognize such a situation.
Hence, a new function is introduced that determines if a
transition of the POCP has already been observed during the
model learning phase.

Definition 13: The permissive observed cross product
(POCP) is a 6-tuple (, , ,POCP POCP POCPX rΩ

_ 0, ,)POCP POCP POCPxλ Θ . The first five elements are defined

according to definition 5. :POCP POCP POCPX XΘ ×

{ , }true false→ is the transition observation function.

The POCP is constructed starting from the observed cross
product according to the following algorithm:

Algorithm 2:
Step 1: Enlarged output alphabet

||:POCP obs eΩ = Ω ∪ where e is the empty letter.

Step 2: Basic state space

||:POCP obsX X=

Step 3: Basic transition relation

||:POCP obsr r=

Step 4: Transition observation function:
: (, ()) :POCP POCPx X x r x true∀ ∈ Θ =

Step 5: Enlarged state space :
: | : () :POCP POCP e e POCP eX X x x x eλ= ∪ = , () : {}POCP er x =

() :POCP e POCP er x X x= ∪ where ex is a state with an empty

output that is connected to each state in the state space.
Step 6: Enlarged transition relation

 () : () : \e POCP POCP POCPx x X r x X x∀ ≠ ∈ =

Step 7: Complete definition of the observation function:
 : if (, ()) not yet defined:

 (, ()) :
EOCP POCP POCP

POCP POCP

x X x r x

x r x false

∀ ∈ Θ
Θ =

End algorithm 2

Fig 3 shows the result of the algorithm: the POCP includes
the complete observed cross product plus one state ex (the

black circle) containing the empty symbol as output. Each
state is connected to the state ex and to each other state by a

transition. If this transition has been observed – it was
already part of the observed cross product – the transition
observation function has the value “true” which is
represented by a solid line in Fig 3. If the transition was

added during the construction of the POCP the transition
observation function has the value “false” (dashed line in
Fig 3).

The dynamics of the combination of automata network
and POCP is defined as follows:

Definition 14: Let _POCP actualx be the actual state of the

POCP. The n partial automata can move from one state
combination 1_ _(,..,)i n ix x to another state combination

1_ _ 1_ _(,..,) (,..,)j n j i n ix x x x≠ if 1 :a n∀ ≤ ≤ _ _a i a jx x= or

_ _()a j a a ix r x∈ holds. The POCP evolutes according to the

following rule:
If 1_ _| (() (,..,))POCP POCP POCP j n jx X x x xλ∃ ∈ = ∧ POCPx ∈

_()POCP POCP actualr x the POCP moves to the according state

else the POCP moves to the state with the empty output

ex (_()e POCP POCP actualx r x∈ is always true because of

step 5 and step 6 of the algorithm 2).

Following this definition, the network can produce

observed and unobserved trajectories of state combinations.
If two consecutive state combinations have already been
observed, the POCP will take a transition with POCP trueΘ = .

If the consecutive state combinations are not yet known, a
transition with POCP falseΘ = will be taken. The state with

the empty output aggregates all state combinations that have
not been observed. Hence, if the automata network produces
state combinations that are unknown they can be represented
by this state. By analyzing the transition observation function

POCPΘ it is now possible to distinguish observed and

unobserved state trajectories of the network.

D. Tolerance specification

The information of POCPΘ during the combined evolution

of network and POCP can now be used to specify the length
of yet unobserved network trajectories that is considered as a
fault symptom. This specification is given by a tolerance
specification automaton.

Definition 15: The tolerance specification is a 6-tuple

_ 0(, , , , ,)Tolerance Tolerance Tolerance Tolerance Tolerance ToleranceX r xλΩ Θ

according to definition 13. The output alphabet ToleranceΩ

consists of the three elements { , , }OK Fault − where OK

represents a fault free situation, Fault represents a situation
that leads to a fault detection and “-“ represents an undecided
situation.

The tolerance specification is to be used in combination
with the network and the POCP. The evolution of network
and POCP is given in definition 14. The tolerance
specification automaton monitors the POCP evolution via the
transition observation function:

If the POCP moves from a state xA to a state xB the
tolerance specification moves from its actual state 1x to a

state 2x iff 2 1()Tolerancex r x∈ and

1 2(,) (,)Tolerance PCPA A Bx x x xΘ = Θ . Reading the output of the

following state x2 it is possible to see if the network
evolution that led to the PCOP trajectory is considered as a
fault (2()Tolerance x Faultλ =) or not.

An example for a design of the tolerance specification is
given in Fig 7 in the next chapter. The combined evolution
of tolerance specification and POCP works on the basis of
observed (solid line) and unobserved (dashed line)
transitions. If the POCP takes an already observed transition
(solid line in Fig 3) the tolerance specification also takes an
observed transition (solid line in Fig 7). If the transition in
the POCP has not yet been observed (dashed line in Fig 3)
the tolerance specification takes an unobserved transition
(dashed line in Fig 7). In order to produce the observed and
the unobserved behavior defined in the tolerance
specification, the automata network, POCP and the tolerance
specification (grey parts in Fig 3) evolve according to the
rules given in this chapter.

IV. APPLICATION

In order to evaluate the ability of the identified models to
detect faults the method was not directly applied to an
industrial production system. For an evaluation of the
method it is necessary to do tests with faults in the system
which is usually not possible in a production system in
operation. The lab size plant which was treated has a
significant degree of concurrency that can also be found in
industrial manufacturing systems. The evolution of the
observed language is also comparable with industrial systems
that have been treated with the method from [4].

The plant in Fig 5 has 30 binary controller I/Os. During
one production cycle the plant in Fig 5 treats three work
pieces. Since there are three machine tools in the plant that
work concurrently, a complete observation of the whole
system language takes very long. In Fig 6 it can be seen that

the evolution of | |n
ObsW representing the set of I/O vector

sequences up to length three does not reach a stable level and
is thus not completely observed. A monolithic automaton
identified according to section II with the parameter k=2 has
416 states. k=2 is chosen such that each physical system state
can unambiguously be distinguished from each other
physical system state by the analysis of k=2 consecutive
I/O vectors. Hence, each automaton state represents only one
physical system state which is advantageous for FDI. Since
the set of words with length 3 is not completely observed the
basic set of the identification is supposed to grow within the
next production cycles. Consequently, monitoring the system
with the monolithic model led to false alerts as soon as new
words of length 3 have been observed. Fault-free words that
are not observed within the given 62 fault-free production
cycles are not included in the model and lead to fault
detection since the model is not able to produce them.

To deal with this problem the system has been divided

into three overlapping subsystems (I/O groups) that can be
seen in Fig 5 using apriori knowledge. Note that an
intersection of the groups is not necessary. Even for high

values of n | |n
ObsW can be considered as completely observed

for each subsystem as the graphs converge very early to a
stable level (they are not depicted due to space limitations).

I/O group 1 I/O group 2 I/O group 3I/O group 1 I/O group 2 I/O group 3

Fig 5: Identified lab system

With the available data of 62 production cycles a partial
NDAAO for each I/O group has been identified with k=2.
The partial automata have 15, 15 and 17 states. Then, the
observed cross product has been built. It consists of 327
states. Following the algorithm given in section III.C the
POCP has been constructed.

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

n=3

n=2

n=1

Production cycles in chronological order

W Obs

n

506
508
510
512
514
516
518
520

52 54 56 58 60 62

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61

n=3

n=2

n=1

Production cycles in chronological order

W Obs

n

506
508
510
512
514
516
518
520

52 54 56 58 60 62

Fig 6: Evolution of the number of observed words of length n

In Fig 6 it can be seen that in each new production cycle
after the 53th one at most two new words of length n=2 are
observed in a new cycle (e.g. in the last one). This
information can be interpreted as follows: in a fault-free
production cycle we expect at most two consecutive
unobserved transitions in the POCP since the partial
automata are expected to produce at most two yet
unobserved consecutive state combinations. The yet
unobserved state combinations produce the new sequences of
I/O vectors. Hence, an appropriate tolerance specification
should accept two unobserved transitions as fault free but
should lead to fault detection after the occurrence of the third
unobserved transition in the POCP. Fig 7 shows the
tolerance specification designed for the lab plant. As soon as
the first unobserved transition is detected, the OK-state is
left. If only one or two yet unobserved transitions are
observed it is possible that the tolerance specification moves
back to the “OK”-state. Here, the design is heuristically
chosen such that each way back from a “-“-state to the OK-
state takes one already observed transition more than it took
unobserved transitions to get to the “-“-state. After the
occurrence of three consecutive unobserved transitions in the
POCP, the tolerance specification will be in the Fault-state.

OK - - Fault

- -

-

unobserved

observed
OK - - Fault

- -

-

unobserved

observed

Fig 7: Tolerance specification for the lab plant

Using the automata network, the POCP and the tolerance
specification allowed monitoring the whole system with an
identified model without the occurrence of false alerts
whereas built-in faults have been detected. Note that faults
can be detected due to two situations: Firstly, a partial
automaton can not produce the observed partial behavior.
Secondly, the network behavior exceeds the accepted
behavior and the tolerance specification moves to the Fault-
state. The combination of POCP and tolerance specification
realizes a scalable restriction of the automata network
behavior.

The proposed framework is also able to handle inaccuracy
during the I/O allocation to the subsystems which may not
always be as obvious as in the presented case. Even if
sensors of e.g. I/O-group 3 have been assigned to I/O-
group 1, we were able to detect the built-in sensor-faults.
Faults in cases like this are often not detectable by the partial
automata but by the tolerance specification.

V. OUTLOOK

Current research is focused on building I/O groups of the
concurrent subsystems based on the observed process
behavior. The aim is to provide a method that divides a
process like in Fig 5 automatically in concurrent parts and to
allocate the according I/Os. Another research area is the
development of fault localization algorithms for the
proposed framework.

REFERENCES

[1] M. Sampath, R. Sengutpa, S. Lafortune, K. Sinnamohideen,
D.C. Teneketzis, “Failure Diagnosis using Discrete-Event Models”,
IEEE Trans. on Control Systems Technology, Vol. 4, No. 2, pp. 105-
124, March 1996.

[2] M.E. Meda-Campaña; E. Lopez-Mellado: “Identification of
Concurrent Discrete Event Systems using Petri Nets”. “2005 IMACS:
Mathematical Computer, Modelling and Simulation Conference”.
July 2005, Paris

[3] A. Giua, C. Seatzu, "Identification of Petri nets via integer
programming", CDC-ECC'05: 44th Int. Conf. on Decision and
Control and European Control Conference (Seville, Spain), pp. 7639
– 7644, December 2005.

[4] S. Klein, J.-J. Lesage, L. Litz, “Fault detection of Discrete Event
Systems using an identification approach”, 16th IFAC World
Congress, CDROM paper n°02643, 6 pages, Praha(CZ), July 4-8,
2005.

[5] T. Moor, J. Raisch, and S. O’Young, “Supervisory control of hybrid
systems via l-complete approximations”, in Proc. of the IEE fourth
Workshop on Discrete Event Systems WODES’98, Cagliari, Italy,
August 1998, pp. 426-431.

