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Abstract-An identification method for concurrent discrete 
event systems (DES) is presented. The purpose of the identified 
model is model-based fault detection in closed loop industrial 
DES such as production or manufacturing systems. The method 
consists of identifying an automata network with a scalable 
restriction of the network behavior. We especially deal with 
incomplete observation of the system language within a finite 
time horizon which is a typical result of a high degree of 
concurrency. It is shown how models identified on the basis of 
an incompletely observed language can be used for fault 
detection. 

I. INTRODUCTION 

Fault Detection and Isolation (FDI) in Discrete Event 
Systems (DES) has been an active research area in the last 10 
to 15 years. Since the introduction of the diagnoser approach 
in [1] various modifications and improvements of this 
model-based diagnosis technique have been developed. The 
core of this method is to build component models of a 
system that reflect the normal, fault-free behavior as well as 
the behavior in the case of given faults. The goal is to detect 
and diagnose a fault in the system by only considering so 
called “observable events” using a special observer 
(diagnoser). Although the method has successfully been 
applied to small and medium sized systems, the manual 
model-building is a laborious task if large industrial 
production systems are considered. Using identification 
techniques to get the necessary models for fault detection 
and isolation (FDI) allows minimizing the modeling effort. 
In contrast to the classical diagnoser approach an identified 
model is usually based on the fault-free observed system 
behavior. Thus, the identified model contains only the fault-
free behavior. If the identified model is used as an observer it 
must be analyzed if an observed behavior cannot be 
reproduced by the fault-free model. In this case a fault is 
detected.  

Since industrial production systems often consist of 
concurrent parts an identification method should be able to 
handle this concurrency. The identification of concurrent 
discrete event systems has been examined by several 
research groups in the last years. Usually, the methods are 
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based on Petri Nets. In [2] an identification algorithm for 
Interpreted Petri Nets is given that detects concurrent 
transitions by the analysis of the order of their occurrence. 
The algorithm uses some rules when to add non-measurable 
places to the identified net such that the observed sequence 
of transitions and measurable net places can be produced by 
the identified model.  

In [3] an identification method for Petri nets based on the 
formulation of algebraic constraints for an integer 
programming problem is given. The method allows 
considering additional information such as structural 
constraints if available. Since like shown in [3], solving the 
integer programming problem has exponential complexity 
with respect to the longest string in the observed language, 
finding a solution for large scale systems with long cycles 
may be impossible within a reasonable time.  

Dealing with the identification of concurrent systems one 
key problem arises that has not been addressed in literature 
so far: the concurrency can lead to a very large possible 
behavior of the system that cannot be completely observed 
within a given time. In order to deal with incomplete 
observation of the system behavior a new distributed 
identification approach is presented in this paper. It is an 
extension of an identification method given in [4] that yields 
a monolithic automaton that is especially suitable for fault 
detection.  

II.  MONOLITHIC IDENTIFICATION OF A DES 

The identification approach in [4] considers closed loop 
DES. The closed loop consists of controller and plant, which 
is a typical configuration for industrial production systems. 
The identification works on the basis of the 
I/O (input/output) vectors of the controller collected during p 
different production cycles.  

Definition 1: The j-th I/O vector in the h-th of p 
production cycles is defined as 

1 1( ) ( ( ), ..., ( ), ( ), ..., ( ))h s m hu j I j I j O j O j=  with I1, .., Is and 

O1, .., Om denoting the considered inputs and outputs of the 
controller of the closed loop system.  

Definition 2: If during the h-th production cycle, lh 
I/O vectors have been observed, the sequence is denoted as 

( , , ..., )σ (1) (2) ( )
h h hh hu u u l= .  

If each observed I/O vector is considered as a letter of an 
alphabet it is possible to define the set of observed words 
with length q observed during p different production cycles. 
A word represents an observed I/O vector sequence. 
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Definition 3: The observed words of length q are denoted 
as 

( ) ( ) ( )( )
1

Obs
1 1

, 1 , ..., 1
il qp

q
i i i

i j

W u j u j u j q
− +

= =

=
 

+ + − 
 
∪ ∪   

With this definition it is possible to describe the behavior 
of a system by the language built on the basis of the observed 
words.   

Definition 4: The observed language of length n is 

1

n
n i
Obs Obs

i

L W
=

=∪  

The identification algorithm given in [4] consists of 
building an automaton that generates the observed language 
of length n of the identified DES. Since a system with 
interaction of controller (deterministic behavior) and 
physical process (non-deterministic behavior) has to be 
identified, the identified model is a non-deterministic 
autonomous automaton with output (NDAAO):  

Definition 5: 0(NDAAO , , , , x )X r λ= Ω  

X  finite set of states,  
Ω  output alphabet, 

: 2Xr →X non-deterministic transition relation, 
:λ →X Ω  output function, 

0x X∈  initial state. 

The output alphabet Ω consists of the observed 
I/O vectors such that in the case of an identified NDAAO 

1
ObsW=Ω . λ assigns a word and thus an I/O vector from the 

output alphabet to each state.  
The NDAAO generates a set of words of length n from 

each state ( )x i X∈ that is defined as: 

Definition 6: 
1 1
( ) : ( ( ( )))x iW w w x iλ= ∈ Ω =  and 

1
( ) { : ( ( ( )), ( ( 1)), ...,

( ( 1))) : ( 1) ( ( )) 2}

n n
x iW w w x i x i

x i n x j r x j i j i n

λ λ
λ

> = ∈ = +

+ − + ∈ ∀ ≤ ≤ + −

Ω
  

The definition of the language of length n generated by an 
NDAAO follows definition 4:  

Definition 7: The language of length n generated by an 

NDAAO is 
1

n
n i
Ident x

i x X

L W
= ∈

=∪∪  

Thus, the language consists of all the words up to length n 
that can be produced starting from each state x X∈ .  

The algorithm in [4] allows to construct an NDAAO on 
the basis of observed words of the parametric length k, the 
identified automaton is able to produce the observed 
language of the system and is k+1-complete ( 1 1k k

Obs IdentL L+ += ) 

[5].  
If the language (and thus the cardinality of the word set) of 

the system has not been completely observed like in the case 
of the dashed line in Fig 1, the identified NDAAO will not 
be able to produce each fault-free I/O vector sequence of 
length n=k+1 of the system. Not yet observed regular 
sequences are not part of the model and can thus not be 

produced which leads to false alerts when monitoring the 
system with the identified model. 
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Fig 1: Evolution of the number of observed words of length n over 
production cycles h 

 

For large scale systems with a high degree of concurrency 
it is by experience not possible to observe all fault-free 
words (I/O vectors) within a reasonable time. It is only 
possible to determine an upper bound of new words that are 
expected in each new system cycle (see as an example 
Fig 7). To handle concurrent systems which make a complete 
observation impossible, a new distributed approach is 
presented.   

III.  PROPOSED DISTRIBUTED APPROACH 

A. Automata Network Behavior 

The main goal of the presented approach is to handle 
incomplete observation due to a high degree of concurrency 
of a closed loop DES when identifying a model. To handle 
the concurrent parts of a system it is advantageous to divide 
the system into concurrent subsystems for the identification 
and online observation. Even if the combined behavior of the 
concurrent subsystems can not be completely observed 
within a reasonable time, a complete (or almost complete) 
observation is much more likely for each single subsystem. 
For the considered class of closed loop industrial production 
systems this division can be made by considering 
well-defined parts of the I/O vectors of the controller for 
each subsystem.  

Definition 8: The j-th partial I/O vector in the h-th of p-th 
production cycle is defined as 

1 1( ) ( ( ), ..., ( ), ( ), ..., ( ))h s m hu j I j I j O j O j=  with I1, .., Is and 

O1, .., Om {0,1, }∈ − . The I/Os get a “-“ if they are not 

considered in the partial vector, else they have values “1” or 
“0” according to the observed values. 
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Fig. 2: Division of an I/O vector into two subsystems 

 

In this paper we suppose that the division of the system 
into subsystems and thus the allocation of I/Os to the 
subsystems is performed using a-priori knowledge. Other 
approaches to automatically divide the system based on an 
analysis of the observed language are part of current 
research. 

For each subsystem a partial automaton is identified 



  

according to the procedure given in [4]. Each partial 
automaton contains only parts of the entire I/O vector like in 
Fig 2. 

The combined output of two or more partial NDAAOs is 
defined by a join operation on the outputs of the active 
states:  

Definition 9: The join of two partial I/O vectors (v1,v2) is 
defined as 

1 2

1 2 1 2

1 2 1 2

2 1

1 1 2

 if | | | |

 if ( ) ( ) ( ) ( )

( , )( ) ( ) if ( )

( ) if ( )

( ) if ( ) ( )

c v v

c v i v i v i v i

J v v i v i v i

v i v i

v i v i v i

≠
 ≠ − ∧ ≠ − ∧ ≠= = −
 = −

 =

 

1 21,..,max(| |,| |)i v v∀ =  

The I/Os at each position of the two partial I/O vectors are 
compared. If one of them is “-“ (it is not considered in the 
subsystem represented by the partial automaton) the value of 
the other vector is taken. If one of them is “1” and the other 
“0” c for contradiction is taken.  

From this definition follows directly that a valid state 
combination 1( ,.., )nx x  of partial automata for modeling of a 

system state must fulfill the condition 1( ( ),.., ( ))nc J x xλ λ∉ . 

If the identified automata are used to monitor the system they 
can evolve independently as long as their state combination 
produces a valid system output. The language of the 
automata network is the language of the cross product of the 
partial automata given as: 

Definition 10: Cross product of two partial NDAAO: 
State space: 

|| 1 2 1 2 1 2 1 2| ( , ) : ( ( ), ( ))X X X x x X X c J x xλ λ= × ∀ ∈ × ∉  

State output  

1 2 || 1 2 1 2( , ) : (( , )) ( ( ), ( ))x x X x x J x xλ λ λ∀ ∈ =  

Transition relation 

1 2 || 1 2 1 2

1 2 1 1 2 2 1 2

1 2 1 2

( , ) : (( , )) {( , ) |

( , ) ( ( )) ( ( )) : ( ( ), ( ))

and ( , ) ( , )}

p p

p p p p

p p

x x X r x x x x

x x x r x x r x c J x x

x x x x

λ λ
∀ ∈ =

∈ ∪ × ∪ ∉

≠

 Initial state: 0 1_ 0 2 _ 0( , )x x x=  

From this definition it follows directly that the cross 
product contains only states with a valid output 
( || : ( )x X c xλ∀ ∈ ∉ ).  

Let SB denote the complete fault-free system behavior and 

,S iB  the fault-free partial behavior of the i-th subsystem. It is 

obvious that ,1 ,|| .. ||S S n SB B B⊇ . Since there is usually a part 

,1 ,( || .. || ) \ {}S S n SB B B ≠  the cross product is not suitable for 

use in FDI. Some faulty behaviors , ,1 ,( || .. || ) \S F S S n SB B B B∈  

cannot be distinguished from fault-free behaviors using the 
cross product even if for each identified partial behavior 

, , ,S i Ident S iB B= holds.  

Instead of a proof consider the following (extreme) 

example: Each I/O in the global I/O vector can be assigned 
to an own partial automaton containing only this I/O. The 
resulting network of partial automata can produce every 
combination of I/O values since the automata are not 
synchronized. Hence, no matter which I/O vector sequence 
will be the consequence of a fault, it is part of the identified 
network behavior and thus the fault can not be detected. 
Even if in real systems such an extreme choice of subsystems 
would not be made, it shows that the network behavior must 
be restrained in order to use the network for fault detection. 

To deal with this problem the framework in Fig 3 is 
proposed. In order to reduce the set ,1 ,( || .. || ) \S S n SB B B  

containing non-detectable faults a permissive observed cross 
product is introduced that is built on the basis of the 
observed cross product of the partial automata. This 
automaton is used to detect if the combination of the 
identified partial behaviors ,1, , ,( || .. || )S Ident S n IdentB B  is part of 

the already observed fault-free behavior ,S ObsB  of the entire 

system. Using a tolerance specification it is possible to adjust 
the amount of combined but not yet observed partial 
behavior ,1, , , ,( || .. || )S Ident S n Ident S ObsB B B∉ that is accepted as 

fault-free. The tolerance specification can be constructed 
using the gradient at the end of the curve in Fig 1. The 
gradient shows how many new words are usually expected in 
a new cycle. This information can be translated into an 
automaton defining the threshold of consecutive new words 
that are considered as a fault symptom. 
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Fig. 3: Proposed model schema 

B. Restriction of the Automata Network Behavior 

The first step to restrict the automata network behavior is 
the introduction of the observed network behavior: 

Definition 11: The Observed Cross Product of n partial 
NDAAO is a 5-tuple || || || || ||_ 0( , , , , )obs obs obs obs obsrX xλΩ  

according to definition 5. The output alphabet consists of the 
possible state combinations of the network of n partial 
automata ( || 1 ..obs nX XΩ = × × ). The output function assigns a 

state combination of the network to each state of the 
observed cross product.  

The observed cross product is derived from the cross 
product of the partial automata and data of the observed 
production cycles:  



  

 

Algorithm 1: : {}ObsX =  

For each recorded production cycle 
( , , ..., )σ (1) (2) ( )

h h hh hu u u l= : 
h

||

l
|| || || x (1) ( ) :( (1), (2),.., ( )) | W =σh hx x x l∀         

  || || ||: ( (1), (2),.., ( ))hObsX ObsX x x x l= ∪  

end_for 
For each state ||, || ||,|nObs nObsx X x ObsX∈ ∉ :  

|| || || || ||,: ( ) : ( ) \ nObsx X r x r x x∀ ∈ =  

|| || ||,: \ nObsX X x=  

end_for 
For each || || :Obsx X∈  || || 1 2( ) : ( , ,.. )obs obs nx x x xλ = ∈   

1 2 .. nX X X× × × from step “state space” in definition 10 

end_for 

|| || || ||: , :obs obsX X r r= =  

End algorithm 1.  
 

The algorithm consists in “playing” the cross product 
using the observed I/O sequences (Fig 4). Each state that is 
not necessary to produce the observed I/O sequences is 
removed from the state set of the cross product. The 
transition relations are adapted such that they contain only 
remaining states. The remaining cross product is transformed 
into an observed cross product by changing the output 
function of the states. The output function 

|| || ||:obs obs obsλ →X Ω  assigns to each state the combination of 

the partial automata states that has been used in the step 
“State space” in definition 10 to build the cross product state. 
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Fig 4: Construction of the observed cross product  
 

The automata network and the observed cross product can 
now be combined according to the following definition: 

Definition 12: Combined evolution of n partial automata 
and observed cross product: Let ||_obs actualx  be the actual state 

of the observed cross product with 

|| ||_ 1_ _( ) ( ,.., )obs obs actual i n ix x xλ = . The n partial automata can 

move from state combination 1_ _( ,.., )i n ix x  to another state 

combination 1_ _ 1_ _( ,.., ) ( ,.., )j n j i n ix x x x≠   

if  1 :a n∀ ≤ ≤  _ _a i a jx x=  or _ _( )a j a a ix r x∈  holds (where 

a is the index of the a-th of n partial automata) and  
if 1 || |obsx X∃ ∈  || 1 1_ _( ) ( ,.., )obs j n jx x xλ = ∧  

1 || ||_( )obs obs actualx r x∈ . If the condition is fulfilled the observed 

cross product moves to the new actual state 1x  and the 

automata network changes to the state combination 

1_ _( ,.., )j n jx x . 

With this definition, the network can only produce two 

consecutive state combinations 1_ _( ,.., )i n ix x , 1_ _( ,.., )j n jx x  

if they are part of the observed cross product. In order to 
deal with incomplete observation like the dashed line in 
Fig 1, it is necessary to allow a certain number of not yet 
observed state combinations to reduce the number of false 
alerts. To do this the permissive observed cross product and 
the tolerance specification are introduced in the next two 
subsections.  

C. Permissive Observed Cross Product 

The aim of the permissive observed cross product (POCP) 
is to make it possible that the automata network can produce 
not yet observed trajectories of state combinations (and thus 
I/O vector sequences), but to recognize such a situation. 
Hence, a new function is introduced that determines if a 
transition of the POCP has already been observed during the 
model learning phase.  

Definition 13: The permissive observed cross product 
(POCP) is a 6-tuple ( , , ,POCP POCP POCPX rΩ  

_ 0, , )POCP POCP POCPxλ Θ . The first five elements are defined 

according to definition 5. :POCP POCP POCPX XΘ ×  

{ , }true false→  is the transition observation function.    

The POCP is constructed starting from the observed cross 
product according to the following algorithm:  

 

Algorithm 2: 
Step 1: Enlarged output alphabet 

||:POCP obs eΩ = Ω ∪  where e is the empty letter.  

Step 2: Basic state space 

||:POCP obsX X=  

Step 3: Basic transition relation 

||:POCP obsr r=  

Step 4: Transition observation function:  
: ( , ( )) :POCP POCPx X x r x true∀ ∈ Θ =  

Step 5: Enlarged state space : 
: | : ( ) :POCP POCP e e POCP eX X x x x eλ= ∪ = , ( ) : {}POCP er x =   

( ) :POCP e POCP er x X x= ∪  where ex is a state with an empty 

output that is connected to each state in the state space.  
Step 6: Enlarged transition relation 

  ( ) : ( ) : \e POCP POCP POCPx x X r x X x∀ ≠ ∈ =  

Step 7: Complete definition of the observation function:
 : if ( , ( )) not yet defined:

                        ( , ( )) :  
EOCP POCP POCP

POCP POCP

x X x r x

x r x false

∀ ∈ Θ
Θ =

 

End algorithm 2 
 

Fig 3 shows the result of the algorithm: the POCP includes 
the complete observed cross product plus one state ex (the 

black circle) containing the empty symbol as output. Each 
state is connected to the state ex  and to each other state by a 

transition. If this transition has been observed – it was 
already part of the observed cross product – the transition 
observation function has the value “true” which is 
represented by a solid line in Fig 3. If the transition was 



  

added during the construction of the POCP the transition 
observation function has the value “false” (dashed line in 
Fig 3). 

The dynamics of the combination of automata network 
and POCP is defined as follows:  

Definition 14: Let _POCP actualx be the actual state of the 

POCP. The n partial automata can move from one state 
combination 1_ _( ,.., )i n ix x  to another state combination 

1_ _ 1_ _( ,.., ) ( ,.., )j n j i n ix x x x≠ if  1 :a n∀ ≤ ≤  _ _a i a jx x=  or 

_ _( )a j a a ix r x∈  holds. The POCP evolutes according to the 

following rule:  
If 1_ _| ( ( ) ( ,.., ))POCP POCP POCP j n jx X x x xλ∃ ∈ = ∧ POCPx ∈  

_( )POCP POCP actualr x  the POCP moves to the according state 

else the POCP moves to the state with the empty output 

ex  ( _( )e POCP POCP actualx r x∈  is always true because of 

step 5 and step 6 of the algorithm 2).  
 
Following this definition, the network can produce 

observed and unobserved trajectories of state combinations. 
If two consecutive state combinations have already been 
observed, the POCP will take a transition with POCP trueΘ = . 

If the consecutive state combinations are not yet known, a 
transition with POCP falseΘ =  will be taken. The state with 

the empty output aggregates all state combinations that have 
not been observed. Hence, if the automata network produces 
state combinations that are unknown they can be represented 
by this state. By analyzing the transition observation function 

POCPΘ  it is now possible to distinguish observed and 

unobserved state trajectories of the network. 

D. Tolerance specification 

The information of POCPΘ  during the combined evolution 

of network and POCP can now be used to specify the length 
of yet unobserved network trajectories that is considered as a 
fault symptom. This specification is given by a tolerance 
specification automaton. 

Definition 15:  The tolerance specification is a 6-tuple 

_ 0( , , , , , )Tolerance Tolerance Tolerance Tolerance Tolerance ToleranceX r xλΩ Θ  

according to definition 13.  The output alphabet ToleranceΩ  

consists of the three elements { , , }OK Fault −  where OK 

represents a fault free situation, Fault represents a situation 
that leads to a fault detection and “-“ represents an undecided 
situation.   

The tolerance specification is to be used in combination 
with the network and the POCP. The evolution of network 
and POCP is given in definition 14. The tolerance 
specification automaton monitors the POCP evolution via the 
transition observation function:  

If the POCP moves from a state xA to a state xB  the 
tolerance specification moves from its actual state 1x  to a 

state 2x  iff 2 1( )Tolerancex r x∈  and 

1 2( , ) ( , )Tolerance PCPA A Bx x x xΘ = Θ . Reading the output of the 

following state x2 it is possible to see if the network 
evolution that led to the PCOP trajectory is considered as a 
fault ( 2( )Tolerance x Faultλ = ) or not.  

An example for a design of the tolerance specification is 
given in Fig 7 in the next chapter. The combined evolution 
of tolerance specification and POCP works on the basis of 
observed (solid line) and unobserved (dashed line) 
transitions. If the POCP takes an already observed transition 
(solid line in Fig 3) the tolerance specification also takes an 
observed transition (solid line in Fig 7). If the transition in 
the POCP has not yet been observed (dashed line in Fig 3) 
the tolerance specification takes an unobserved transition 
(dashed line in Fig 7). In order to produce the observed and 
the unobserved behavior defined in the tolerance 
specification, the automata network, POCP and the tolerance 
specification (grey parts in Fig 3) evolve according to the 
rules given in this chapter.  

IV.  APPLICATION 

In order to evaluate the ability of the identified models to 
detect faults the method was not directly applied to an 
industrial production system. For an evaluation of the 
method it is necessary to do tests with faults in the system 
which is usually not possible in a production system in 
operation. The lab size plant which was treated has a 
significant degree of concurrency that can also be found in 
industrial manufacturing systems. The evolution of the 
observed language is also comparable with industrial systems 
that have been treated with the method from [4].  

The plant in Fig 5 has 30 binary controller I/Os. During 
one production cycle the plant in Fig 5 treats three work 
pieces. Since there are three machine tools in the plant that 
work concurrently, a complete observation of the whole 
system language takes very long. In Fig 6 it can be seen that 

the evolution of | |n
ObsW  representing the set of I/O vector 

sequences up to length three does not reach a stable level and 
is thus not completely observed. A monolithic automaton 
identified according to section II with the parameter k=2 has 
416 states. k=2 is chosen such that each physical system state 
can unambiguously be distinguished from each other 
physical system state by the analysis of k=2 consecutive 
I/O vectors. Hence, each automaton state represents only one 
physical system state which is advantageous for FDI. Since 
the set of words with length 3 is not completely observed the 
basic set of the identification is supposed to grow within the 
next production cycles. Consequently, monitoring the system 
with the monolithic model led to false alerts as soon as new 
words of length 3 have been observed. Fault-free words that 
are not observed within the given 62 fault-free production 
cycles are not included in the model and lead to fault 
detection since the model is not able to produce them. 

To deal with this problem the system has been divided 



  

into three overlapping subsystems (I/O groups) that can be 
seen in Fig 5 using apriori knowledge. Note that an 
intersection of the groups is not necessary. Even for high 

values of n | |n
ObsW can be considered as completely observed 

for each subsystem as the graphs converge very early to a 
stable level (they are not depicted due to space limitations).  

I/O group 1 I/O group 2 I/O group 3I/O group 1 I/O group 2 I/O group 3

 
Fig 5: Identified lab system 
 

With the available data of 62 production cycles a partial 
NDAAO for each I/O group has been identified with k=2. 
The partial automata have 15, 15 and 17 states. Then, the 
observed cross product has been built. It consists of 327 
states. Following the algorithm given in section III.C the 
POCP has been constructed.  
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Fig 6: Evolution of the number of observed words of length n 
 

In Fig 6 it can be seen that in each new production cycle 
after the 53th one at most two new words of length n=2 are 
observed in a new cycle (e.g. in the last one). This 
information can be interpreted as follows: in a fault-free 
production cycle we expect at most two consecutive 
unobserved transitions in the POCP since the partial 
automata are expected to produce at most two yet 
unobserved consecutive state combinations. The yet 
unobserved state combinations produce the new sequences of 
I/O vectors. Hence, an appropriate tolerance specification 
should accept two unobserved transitions as fault free but 
should lead to fault detection after the occurrence of the third 
unobserved transition in the POCP. Fig 7 shows the 
tolerance specification designed for the lab plant. As soon as 
the first unobserved transition is detected, the OK-state is 
left. If only one or two yet unobserved transitions are 
observed it is possible that the tolerance specification moves 
back to the “OK”-state. Here, the design is heuristically 
chosen such that each way back from a “-“-state to the OK-
state takes one already observed transition more than it took 
unobserved transitions to get to the “-“-state. After the 
occurrence of three consecutive unobserved transitions in the 
POCP, the tolerance specification will be in the Fault-state.  
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Fig 7: Tolerance specification for the lab plant 

 

Using the automata network, the POCP and the tolerance 
specification allowed monitoring the whole system with an 
identified model without the occurrence of false alerts 
whereas built-in faults have been detected. Note that faults 
can be detected due to two situations: Firstly, a partial 
automaton can not produce the observed partial behavior. 
Secondly, the network behavior exceeds the accepted 
behavior and the tolerance specification moves to the Fault-
state. The combination of POCP and tolerance specification 
realizes a scalable restriction of the automata network 
behavior.  

The proposed framework is also able to handle inaccuracy 
during the I/O allocation to the subsystems which may not 
always be as obvious as in the presented case. Even if 
sensors of e.g. I/O-group 3 have been assigned to I/O-
group 1, we were able to detect the built-in sensor-faults. 
Faults in cases like this are often not detectable by the partial 
automata but by the tolerance specification.  

V. OUTLOOK 

Current research is focused on building I/O groups of the 
concurrent subsystems based on the observed process 
behavior. The aim is to provide a method that divides a 
process like in Fig 5 automatically in concurrent parts and to 
allocate the according I/Os. Another research area is the 
development of fault localization algorithms for the 
proposed framework. 
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