N

N

Distributed identification of concurrent discrete event
systems for fault detection purposes
Matthias Roth, Jean-Jacques Lesage, Lothar Litz

» To cite this version:

Matthias Roth, Jean-Jacques Lesage, Lothar Litz. Distributed identification of concurrent discrete
event systems for fault detection purposes. European Control Conference 2009 (ECC 2009), Aug 2009,
Budapest, Hungary. pp.2590-2595. hal-00430111

HAL Id: hal-00430111
https://hal.science/hal-00430111
Submitted on 5 Nov 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00430111
https://hal.archives-ouvertes.fr

Distributed identification of concurrent discrete event systems
for fault detection purposes

Matthias Roth, Jean-Jacques Lesligenber, IEEELothar LitzMember, IEEE

Abstract-An identification method for concurrent discrete
event systems (DEYS) is presented. The purpose of the identified
model is model-based fault detection in closed loop industrial
DES such as production or manufacturing systems. The method
consists of identifying an automata network with a scalable
restriction of the network behavior. We especially deal with
incomplete observation of the system language within a finite
time horizon which is a typical result of a high degree of
concurrency. It is shown how models identified on the basis of
an incompletely observed language can be used for fault
detection.

I. INTRODUCTION

Fault Detection and Isolation (FDI) in Discrete Bie
Systems (DES) has been an active research areea liast 10
to 15 years. Since the introduction of the diagnag@roach
in [1] various modifications and improvements ofisth
model-based diagnosis technique have been develdhed
core of this method is to build component modelsaof
system that reflect the normal, fault-free behagsmwell as
the behavior in the case of given faults. The go&b detect

based on Petri Nets. In [2] an identification aition for
Interpreted Petri Nets is given that detects cawecur
transitions by the analysis of the order of thaicuwrence.
The algorithm uses some rules when to add non-regalsu
places to the identified net such that the obsesezflience
of transitions and measurable net places can duped by
the identified model.

In [3] an identification method for Petri nets basm the
formulation of algebraic constraints for an integer
programming problem is given. The method allows
considering additional information such as struaitur
constraints if available. Since like shown in [8flving the
integer programming problem has exponential conigylex
with respect to the longest string in the obseneedjuage,
finding a solution for large scale systems withgarycles
may be impossible within a reasonable time.

Dealing with the identification of concurrent syste one
key problem arises that has not been addresseattiiatlire
so far: the concurrency can lead to a very largssipte
behavior of the system that cannot be completekented

and diagnose a fault in the system by only consideso ijthin a given time. In order to deal with incomigle
called “observable events” using a special observgbservation of the system behavior a new distribute
(diagnoser). Although the method has successfubignb dentification approach is presented in this papeis an
applied to small and medium sized systems, the elanixtension of an identification method given in {dét yields
model-building is a laborious task if large indistr 3 monolithic automaton that is especially suitafole fault

production systems are considered. Using identifina
techniques to get the necessary models for faukctien
and isolation (FDI) allows minimizing the modelimdfort.
In contrast to the classical diagnoser approacliantified
model is usually based on the fault-free observestem
behavior. Thus, the identified model contains dhly fault-
free behavior. If the identified model is used a®hbserver it
must be analyzed if an observed behavior cannot
reproduced by the fault-free model. In this castaudt is
detected.

Since industrial production systems often consiét
concurrent parts an identification method shouldabi to
handle this concurrency. The identification of coment

discrete event systems has been examined by sevéral -

research groups in the last years. Usually, théhoakst are

Matthias Roth is with the Institute of Automatic i@ml at the
University of Kaiserslautern, Germany, and the LUREcole Normale
Supérieure de Cachan, France. (mroth@eit.uni-kl.de)

J.-J. Lesage is the head of the LURPA at the Bldolenale Supérieure
de Cachan, F - 94235 Cachan Cedex, France (lesageg@ns-cachan.fr)

L. Litz is the head of the Institute of Automatiom@rol at the University
of Kaiserslautern, D — 67653 Kaiserslautern, Gegnihiz@eit.uni-kl.de)

0production

detection.

[I. MONOLITHIC IDENTIFICATION OF ADES

The identification approach in [4] considers clodedp
DES. The closed loop consists of controller anahplahich
is a typical configuration for industrial produaticystems.
The identification works on the basis of the
tf’/ﬁ) (input/output) vectors of the controller colied duringp
different production cycles.

Definition 1: The j-th I/O vector in theh-th of p
cycles is defined
u, (D =0.3G) -1 G)0.G), -0, () with 14, .., Is and
., On, denoting the considered inputs and outputs of the
controller of the closed loop system.

Definition 2 If during the h-th production cycle,ly,

I/O vectors have been observed, the sequence &atkas
op = (u,() u,(2), ... u,(,,))-

If each observed I/O vector is considered as arlett an
alphabet it is possible to define the set of obsgrwords
with lengthq observed during different production cycles.

A word represents an observed I/O vector sequence.

as

Definition 3: The observed words of lengthare denoted produced which leads to false alerts when monigptime
as system with the identified model.

ngs:LpJ[IIle(q(j),q(j+1),...,q(j+ q-]))] (W

=1\ j=1

High concurrency
With this definition it is possible to describe thehavior
of a system by the language built on the basik@bbserved ,
words. I
Definition 4: The observed language of lengtis

Fous iL=J1WObS For large scale systems with a high degree of aoecoy
The identification algorithm given in [4] consistsf it is by experience not possible to observe allltfaae
building an automaton that generates the obsemsglihge words (I/O vectors) within a reasonable time. Itdsly
of length n of the identified DES. Since a system withpossible to determine an upper bound of new wdrdsdre
interaction of controller (deterministic behavioind expected in each new system cycle (see as an exampl
physical process (non-deterministic behavior) hasbe Fig 7). To handle concurrent systems which makenaptete
identified, the identified model is a non-deterrstii observation impossible, a new distributed appro@sh

— Low concurrency

h

Fig 1: Evolution of the number of observed words lefigthn over
production cycle$

autonomous automaton with output (NDAAO): presented.
Definition 5 NDAAO = (X, Q, 1,4, %)
X finite set of states, I1l. PROPOSEDDISTRIBUTED APPROACH
Q output alphabet, A. Automata Network Behavior

r: X - 2* non-deterministic transition relation,
A: X - Q output function,
X O X initial state.

The main goal of the presented approach is to kandl
incomplete observation due to a high degree of wwancy
of a closed loop DES when identifying a model. Temdie
The output alphabetQ consists of the observedthe concurrent parts of a system it is advantagémuasvide
I/O vectors such that in the case of an identifidAAO the system into concurrent subsystems for the ifiEatton
Q =W, . L assigns a word and thus an 1/O vector from thand online observation. Even if the combined bejreni the
output alphabet to each state. concurrent subsystems can not be completely obderve
The NDAAO generates a set of words of lengtfrom within a reasonable time, a complete (or almost pleta)

each statex(i) 0 X that is defined as: observation is much more likely for each singlesysbtem.
For the considered class of closed loop induspriatiuction

Delf|n|_t|on 6:1_ B systems this division can be made by considering
Wy = wh Q™ w=(A(X))) and well-defined parts of the I/0 vectors of the cohéo for
fozj)l ={wOQ" w=(A(X)), A(X i+1)), ..., each subsystem.

. ur SN _ Definition 8: Thej-th partial I/O vector in théh-th of p-th
ACG+n=10):x(+DOrx(DBT < <i+n -2} production cycle is defined as

The definition of the language of lengtlgenerated by an U (D) = () ool GO G) O (), With I l. and
h - 1 gl g ~ g onun m y oy lg

NDAAO follows definition 4:)
O, .., Oy, 0{0,1,-}. The I/Os get a ““ if they are not

Definition 7: The language of lengthgenerated by an
. n i considered in the partial vector, else they havees 1" or
NDAAQ is Ly, ={JUW, “0" according to the observed values.

i=1 xOX

Thus. the Ianguage consists of all the words LIprtgthn partial automaton 1 Global 1/0 vector partial automaton 2

that can be produced starting from each stdieX . - 1 »1
The algorithm in [4] allows to construct an NDAAQG 0 _ ‘13 « ‘1’ 1 -@
the basis of observed words of the parametric kekgthe - 1 . 1
identified automaton is able to produce the obskrve 0l—I.o _
language of the system and ksl-complete (55 =L 1) Fig. 2: Division of an /O vector into two subsyste
[5]- In this paper we suppose that the division of ty&esn

If the language (and thus the cardinality of thedvget) of into subsystems and thus the allocation of 1/Osthe
the system has not been completely observed likleeitase subsystems is performed using a-priori knowledgéhe©
of the dashed line in Fig 1, the identified NDAAGIlwot approaches to automatically divide the system basedn
be able to produce each fault-free I/O vector segeeof analysis of the observed language are part of wurre
length n=k+1 of the system. Not yet observed regularesearch.
sequences are not part of the model and can thud®eo For each subsystem a partial automaton is idedtifie

according to the procedure given in [4]. Each parti example: Each 1/O in the global 1/O vector can bsigned
automaton contains only parts of the entire I/Qeebke in to an own partial automaton containing only thi®.1/The
Fig 2. resulting network of partial automata can produeerge
The combined output of two or more partial NDAAQGs i combination of I/O values since the automata aré no
defined by a join operation on the outputs of tlitiva synchronized. Hence, no matter which 1/O vectorusage

states: will be the consequence of a fault, it is parthed tdentified
Definition 9: The join of two partial /O vectors/{,V,) is network behavior and thus the fault can not be alete
defined as Even if in real systems such an extreme choicellofygstems
cif |v v, | would not be made, it shows that the network bealraviust
¢ if v(i) # —0v,() # —Ov(D # v,(i) be restrained in order to use the network for fdatection.
. - _ To deal with this problem the framework in Fig 3 is
I w)(0) = (D IF () == proposed. In order to reduce the S&, ||..||Bs,)\Bs
v, (i) if v, (i) = - - o ’
b : _ containing non-detectable faultgparmissiveobserved cross
Vi (i) 1 vy (i) = v (i) product is introduced that is built on the basis tbé
Oi =1,..,max(y, |V, | observed cross product of the partial automata.s Thi
The 1/Os at each position of the two partial I/@teoes are automaton is used to detect if the combination tud t
compared. If one of them is ““ (it is not considdrin the identified partial behavior§Bg, el --1IBg ; 1geny) 1S PArL Of

subsystem represented by the partial automatonjatie of {he already observed fault-free behavRy . of the entire
the other vector is taken. If one of them is “1t&he other '

“0" c for contradiction is taken.
From this definition follows directly that a valigtate
combination(x,..,x,) of partial automata for modeling of a
system state must fulfill the conditiond J(A(X),...A (%)). faglt-free. The 'tolerance specification can bg anﬂed
) .) using the gradient at the end of the curve in Fighe
If the |dent|f|.ed automata are used to mon'|torstjm§m t.hey gradient shows how many new words are usually degen
can evolve independently as long as their statebiation a new cycle. This information can be translated iah

produces a Val'd, system output. The language of t'?;l%tomaton defining the threshold of consecutive menrds
automata network is the language of the cross ptoafuthe that are considered as a fault symptom

partial automata given as:
Definition 10:Cross product of two partial NDAAO:
State space:
X = X3 X, [0,)0 Xpx X0 dd JA(9.A(%)
State output
00, %) 0 X2 A((%, %)) = IA(%),A(%))
Transition relation
0%, %) 0 X 1%) ={(%, %21

(Xo1 X52) O (% 0 r00))x 6T 10x)) - € A(59,4 %) N
and g 5, 6. %) o IR ANE

Partial 2 Partial

Initial state:x, = (X ¢ X, o) Fig. 3: Proposed model schema

From this definition it follows directly that therass B. Restriction of the Automata Network Behavior

?rmoxdgc)t(.E%n;?lgs) only states with a valid output The first sFep to restrict the automata networkalvdﬂ*r is
e ' the introduction of the observed network behavior:

Let B denote the complete fault-free system behavior and Definition 11: The Observed Cross Product rofpartial
B; the fault-free partial behavior of tieh subsystem. Itis NDAAO is a 5-tuple (Xguq Q ongoT ongrA oo X om0
obvious thatBs, ||..||Bs , 0 Bs. Since there is usually a partaccording to definition 5. The output alphabet ¢sfssof the
possible state combinations of the network rofpartial
automata Q= X, x..x X,). The output function assigns a

system. Using a tolerance specification it is fulesio adjust
the amount of combined but not yet observed partial
behavior (Bg; gentl - 1IBg 5 wend” B s oithat is accepted as

Fault detection:
forbidden network
behavior

Tolerance specification

Permissive observed cross product
Observed cross product

(Bs1 I1--11Bs) \Bs# {} the cross product is not suitable for

use in FDI. Some faulty behavio, ¢ [(Bg, || - 11Bs) \B. state combination of the network to each state haf t

cannot be distinguished from fault-free behavis®sgi the gpserved cross product.

cross product even if for each identified partighavior The observed cross product is derived from the scros

Bs,i.igen = Bg jholds. product of the partial automata and data of theenlesi
Instead of a proof consider the following (extremeproduction cycles:

Algorithm 1: ObsX:={}
For each recorded
oy = (U,@), U, (2), .. u,0,)):
D(X”(l), X1|(2): X G)I \N; @) B(h):
ObsX:= ObsXJ(X1), X2),.., X,1)

end_for
For each state, ,op L X[X001 ObSX:

O, 0 X 1(%) = (XD \ Xjp0ns
X=X\ Xjoobs
end_for
For eachxgn 0 X1 Agg (Xjopd = (X Xy X)) O

production

X, x X, %x..x X from step “state space” in definition 10
end_for
Kobgt = Xy Tobs =

End algorithm 1

obg - My

The algorithm consists in “playing” the cross produ
using the observed 1/0O sequences (Fig 4). Eack #tat is

not necessary to produce the observed /O sequeiscesiccording

consecutive state combinatior, ;,...%,), (X _j.-% ;)

cycleif they are part of the observed cross productorider to

deal with incomplete observation like the dashet lin
Fig 1, it is necessary to allow a certain numbemnof yet
observed state combinations to reduce the numbéals#
alerts. To do this the permissive observed crogdymt and
the tolerance specification are introduced in tlestntwo
subsections.

C. Permissive Observed Cross Product

The aim of the permissive observed cross produ@CHP)
is to make it possible that the automata networkpraduce
not yet observed trajectories of state combinat{@nsl thus
I/O vector sequences), but to recognize such aatiitu
Hence, a new function is introduced that determiifies
transition of the POCP has already been observadgithe
model learning phase.

Definition 13: The permissive observed cross product

(POCP)
A X

POCP?

is a 6-tuple (Xpoce Qpoce I'poce

poce 00 poce - 1he first five elements are defined

to definition 5.

ePOCP: X F’OCPX X POCF

removed from the state set of the cross product Th- {true falsg¢ is the transition observation function.

transition relations are adapted such that theyagoronly
remaining states. The remaining cross productissformed

into an observed cross product by changing the ubutp
function
Aovg) K ong = € oy @SSIgNSs to each state the combination of

function of the states. The output

the partial automata states that has been usebeirstep
“State space” in definition 10 to build the crosequct state.

p production cycles Cross product

Observed cross product
1/0 vector sequences

Fig 4: Construction of the observed cross product

The automata network and the observed cross pradnct
now be combined according to the following defuniti

Definition 12: Combined evolution of partial automata
and observed cross product: Lef, ... be the actual state

of the observed cross product with
Aobg(Xovgy_acad = (X4 X,). The n partial automata can

move from state combinatio(x, ,..,%, ;) to another state
combination(x, ;,...% ;)% (X%)
if Dl<sasn: X, ;=X ; orx, ;0r(x, ;) holds (where

ais the index of tha-th of n partial automata) and
if D(lljxobsul /]obq|(X1):(X1_j"'an_j)D

The POCP is constructed starting from the obsecvess
product according to the following algorithm:

Algorithm 2:
Step 1: Enlarged output alphabet
Qpocp = Q oy [€ Wheree is the empty letter.

Step 2: Basic state space
Xpoer = Xopg

Step 3: Basic transition relation
Meoce = robq

Step 4: Transition observation function:

Ox O Xpocp - © pocsl X (X)) = true

Step 5: Enlarged state space :

XPOCP = ><POCP|:| Xel Xe:/1 POCV(Xl =& rPOCP(Xe) = {}
Moocr(Xa) = X pocpl] X, Where x,is a state with an empty
output that is connected to each state in the spatee.
Step 6: Enlarged transition relation

DX # %) U Xooep ! Foocd X 1= Xpocpt X

Step 7: Complete definition of the observation tiorc

Ox O Xeoep - if © pocd % ook ¥) Not yet defined

Opoce A feoce X) false
End algorithm 2

Fig 3 shows the result of the algorithm: the PO@thides

the complete observed cross product plus one stgtee

black circle) containing the empty symbol as outftach

% D Topg(Xong_aced - I the condition is fulfilled the observed siate is connected to the stateand to each other state by a

cross product moves to the new actual stateand the

transition.

If this transition has been observedt -was

automata network changes to the state combinatiefready part of the observed cross product — thesition

(% s X)
With this definition, the network can only produteo

observation function has the value “true” which
represented by a solid line in Fig 3. If the tréinsi was

added during the construction of the POCP the itians state X, iff X, O FrgreranceX0) and

I(zitiqs;a));vation function has the value “false” (dastiad in O, yeraned X0 %) = O oo X 2 X . Reading the output of the
The dynamics of the combination of automata netwo
and POCP is defined as follows:

Definition 14: Let Xoocp .auaP€ the actual state of the

rEE)Ilowing state x, it is possible to see if the network
evolution that led to the PCOP trajectory is coesid as a
fault (A eanc %) = Fault) or not.

An example for a design of the tolerance specificats
ven in Fig 7 in the next chapter. The combinedl&ion
of tolerance specification and POCP works on theisbaf
(% jseoX)#E (%%)if Ol<asn: x, ;=% ; or observed (solid line) and unobserved (dashed line)
X, ;0r,(x, ;) holds. The POCP evolutes according to thiransitions. If the POCP takes an already obsemzetition
(solid line in Fig 3) the tolerance specificatidscatakes an
observed transition (solid line in Fig 7). If theartsition in
I DXeoce U Xeocel (A(Xpoed = (%_ 41 Xy)T Xeoce U the POCP has not yet been observed (dashed lire iB)
Teocr(Xpoce acdd the POCP moves to the according statethe tolerance specification takes an unobservedsitian
else the POCP moves to the state with the empty outp(ashed line in Fig 7). In order to produce theeobsd and
X, (% Olooce(Xpoc) IS always true because ofthe .L-mo.bserved behavior defined in the tolerance
- specification, the automata network, POCP anddleance
specification (grey parts in Fig 3) evolve accogdiio the

. . _— rules given in this chapter.
Following this definition, the network can produce g P

observed and unobserved trajectories of state cwtibns.
If two consecutive state combinations have alrebdgn
observed, the POCP will take a transition wap,, = true.

If the consecutive state combinations are not yetwn, a
transition with ©,,., = false will be taken. The state with

POCP. Then partial automata can move from one stat%i
combination (x ;,..,%, ;) to another state combination

following rule:

step 5 and step 6 of the algorithm 2).

IV. APPLICATION

In order to evaluate the ability of the identifistbdels to
detect faults the method was not directly appliedan
industrial production system. For an evaluation tbé
method it is necessary to do tests with faultshi;m $ystem
the empty output aggregates all state combinatizaishave which is usually not possible in a production systin
not been observed. Hence, if the automata netwattuyzes operation. The lab size plant which was treated &as
state combinations that are unknown they can besepted significant degree of concurrency that can alsddumd in
by this state. By analyzing the transition obseovafunction industrial manufacturing systems. The evolution tbg
Opocp It is now possible to distinguish observed an@bserved language is also comparable with indlisysems
unobserved state trajectories of the network. that have been treated with the method from [4].

The plant in Fig 5 has 30 binary controller 1/0suring
one production cycle the plant in Fig 5 treats ehmork

The information of@,,., during the combined evolution pieces. Since there are three machine tools irplenet that
of network and POCP can now be used to specifyethgth work concurrently, a complete observation of theoleh
of yet unobserved network trajectories that is mered as a System language takes very long. In Fig 6 it casden that
fault symptom. This specification is given by aetaince the evolution of|W,, | representing the set of I/O vector

D. Tolerance specification

specification automaton. o sequences up to length three does not reach @ $takel and
Definition 15 The tolerance specification is a 6-tuplgg thus not completely observed. A monolithic aton
(xTolerance'Q Tolerancer Tolerand(,!1 Tolerant%(Tatee 0 'eTolerance) identified according to section Il with the paraBTEN:Z has

according to definition 13. The output alphat®t,. ... 416 statesk=2 is chosen such that each physical system state

can unambiguously be distinguished from each other
L .. physical system state by the analysiskeR consecutive
represents a fault free situatidfault represents a situation |, «tors. Hence. each automaton state represalyt®ne
;?;2?3:8 to a fault detection and *-* representsindecided physical system state which is advantageous for. BDice
h .I ification i b di i the set of words with length 3 is not completelgatved the
-L eh 0 eranci sp(zm ;lcatl'aogc'; tc')l'he usel In co '2 basic set of the identification is supposed to gvathin the
W'td the netwqr an t € defi - 1Ne evo Ut'ﬁn OI“'IO‘E next production cycles. Consequently, monitorirg $histem
an .POC,:P IS given in - de inition 14. " The FO €ranCQith the monolithic model led to false alerts asrsas new
specification automaton monitors the POCP evolutiarthe words of length 3 have been observed. Fault-freisvthat

tra;;&::on;obséeprvatlon fur]:ctlon: h are not observed within the given 62 fault-free duction
the moves from a staig to a statexs the cycles are not included in the model and lead taltfa

tolerance specification moves from its actual st&teto a jatection since the model is not able to produeenth
To deal with this problem the system has been diid

consists of the three elemenf©K, Fault } where OK

into three overlapping subsystems (I/O groups) dzat be

seen in Fig5 using apriori knowledge. Note that an

intersection of the groups is not necessary. Exenhigh

values ofn |W,, |can be considered as completely observed

for each subsystem as the graphs converge very &ad
stable level (they are not depicted due to spaai¢aliions).
1/0 group 2 1/0 group 3

1/0 group 1

Fig 5: Identified lab system

With the available data of 62 production cyclesaatigl
NDAAO for each I/O group has been identified wih?2.
The partial automata have 15, 15 and 17 statesn, Tthe
observed cross product has been built. It consit827
states. Following the algorithm given in sectiohQl the
POCP has been constructed.

.
|We..
800

700 1+ oo

600 +—— 514
5001 | 50

506
¥ P E @S &

400 T

300
0 | %:_/—ﬁ

100

(O L o e AL
135 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Production cycles in chronological order

Fig 6: Evolution of the number of observed wordseofgthn

In Fig 6 it can be seen that in each new producatiarie
after the 53 one at most two new words of length2 are

= = unobserved
— observed

Fig 7: Tolerance specification for the lab plant

Using the automata network, the POCP and the tudera
specification allowed monitoring the whole systerithwan
identified model without the occurrence of falseertd
whereas built-in faults have been detected. No&¢ fidwlts
can be detected due to two situations: Firstly, aatiql
automaton can not produce the observed partial viimha
Secondly, the network behavior exceeds the accepted
behavior and the tolerance specification move$ed-ault-
state. The combination of POCP and tolerance spatidn
realizes a scalable restriction of the automatawort
behavior.

The proposed framework is also able to handle inaoy
during the 1/O allocation to the subsystems whiciy mot
always be as obvious as in the presented case. Even
sensors of e.g. I/O-group 3 have been assigned/Qe |
group 1, we were able to detect the built-in seffigolts.
Faults in cases like this are often not detecthplthe partial
automata but by the tolerance specification.

V. OUTLOOK

Current research is focused on building 1/0O groopthe
concurrent subsystems based on the observed process
behavior. The aim is to provide a method that disich
process like in Fig 5 automatically in concurreattp and to
allocate the according I/Os. Another research asethe
development of fault localization algorithms for eth

observed in a new cycle (e.g. in the last one).s Thproposed framework.

information can be interpreted as follows: in altfénee

production cycle we expect at most two consecutive
unobserved transitions in the POCP since the partia)
automata are expected to produce at most two yet
unobserved consecutive state combinations. The vyet
unobserved state combinations produce the new segsi®f [2]
I/O vectors. Hence, an appropriate tolerance sppatifn
should accept two unobserved transitions as faalt but
should lead to fault detection after the occurresfade third (3
unobserved transition in the POCP. Fig7 shows the
tolerance specification designed for the lab plAstsoon as

the first unobserved transition is detected, @ie-state is |4
left. If only one or two yet unobserved transitioase
observed it is possible that the tolerance spediio moves
back to the OK’-state. Here, the design is heuristically[S]
chosen such that each way back from a “-“-statihédOK-
state takes one already observed transition maire ithtook
unobserved transitions to get to the “-“-state.eAfthe
occurrence of three consecutive unobserved transiin the
POCP, the tolerance specification will be in Bault-state.

REFERENCES

M. Sampath, R. Sengutpa, S. Lafortune, K. Sinnades,
D.C. Teneketzis, “Failure Diagnosis using Discretent Models”,
IEEE Trans. on Control Systems Techno|oggl. 4, No. 2, pp. 105-
124, March 1996.

M.E. Meda-Campafia; E. Lopez-Mellado: “ldentificatio of
Concurrent Discrete Event Systems using Petri Né&905 IMACS:
Mathematical Computer, Modelling and Simulation €wencé.
July 2005, Paris

A. Giua, C. Seatzu, "ldentification of Petri netsa vinteger
programming”, CDC-ECC'05: 44th Int. Conf. on Decision and
Control and European Control Conferen(®eville, Spain), pp. 7639
— 7644, December 2005.

S. Klein, J.-J. Lesage, L. Litz, “Fault detectioh Discrete Event
Systems using an identification approacht’6th IFAC World
Congress CDROM paper n°02643, 6 pages, Praha(CZz), July 4-8
2005.

T. Moor, J. Raisch, and S. O’Young, “Supervisorytrol of hybrid
systems via I-complete approximationdi, Proc. of the IEE fourth
Workshop on Discrete Event Systems WODES®&liari, Italy,
August 1998, pp. 426-431.

