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High order harmonic balance formulation of free and

encapsulated microbubbles

Marie-Christine Pauzin, Serge Mensah∗, Bruno Cochelin, Jean-Pierre Lefebvre

CNRS - Laboratoire de Mécanique et d’Acoustique;

31 chemin Joseph Aiguier, 13402 Marseille, Cedex 20, France

Abstract

The radial responses of free or encapsulated micro-bubbles excited by a plane
wave of large wavelength are governed by NonLinear Ordinary Differential Equa-
tions (NL-ODEs). The nonlinear frequency response details the harmonic con-
tent of the time response and constitutes the expected outcome of a high order
harmonic analysis. In this paper, a high order harmonic balance analysis of
the ”RNNP” (bubble), Hoff and Marmottant (contrast agents) models are per-
formed with the open-source Manlabr software extensively described in a pre-
vious paper. With this purpose, the original NL-ODEs are recast into nonlinear
systems for which the non-linearities are at most quadratic. In the spectral
domain, this recast provides close form and aliasing-free solutions of arbitrary
large number of harmonics. Relevant quantities such as primary and secondary
resonances or the nonlinear amplitude threshold of the excitation wave are eval-
uated. The frequency curves drawn characterize the bending and quantify the
jump frequencies and amplitudes of each harmonic component. The results
obtained with this predictive methodology confirm the significant aid it may
provide in the derivation of bubble nonlinear detection and sizing techniques or
in the design of contrast agents and their optimal ultrasound activation.

Keywords: ultrasound, diffraction tomography, near-field
PACS: 43.25.Yw 43.25.Ts 43.25.Zx

1. Introduction

The study of the nonlinear response of microbubbles to ultrasound exci-
tations is of interest for the detection and sizing of bubbles [1, 2, 3, 4] in the
engineering field, from propeller damage induced by cavitation to drag reduction
by supercavitation [5, 6], valve leakage, chemical process control [7], monitoring
of liquid sodium coolant for nuclear reactors [8, 9], and in the biomedical field for
decompression sickness prevention (in diving and space extravehicular activities
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[10]) and medical imaging with contrast agents [13, 15, 16, 17, 18, 19, 20](i.e.
encapsulated microbubbles). For the latter field of activity, in specific condi-
tions, it has been demonstrated that the sole second harmonic signal generated
by bubbles and Ultrasonic Contrast Agents (UCA) may provide enhanced con-
trast information (bubble to tissue discrimination) if compared with the global
signal content also comprising the fundamental component. This possibility of
bubble/tissue discrimination while working on the second harmonic is founded
on the fact that nonlinear response of tissues is drastically weaker than that of
bubbles or contrast agents. The second harmonic imaging potential capability
of UCA has been deeply investigated by a number of research institutions and
private companies in order to derive relevant physical parameters improving the
second harmonic backscattering cross section. However, in practical use, second
harmonic imaging suffers from several drawbacks: firstly, it is altered by an
attenuation of the second harmonic components higher than that undergone by
the fundamental one, reducing implicitly the range (depth of penetration) of 2nd
harmonic imaging. In addition, the significant second harmonic signal produced
by the tissue itself impinges on the contrast of the bubbles or agents[21, 22].
These limitations could be partly overcome if it were possible to exploit most of
the major harmonics, ultraharmonics and subharmonics generated by the pul-
sating bubbles. On the other hand, one can expect to improve not only range
and resolution by using specific coded sequences (pulse compression techniques)
but also the bubble or contrast agent signature characterization by a fine anal-
ysis, for instance a time-frequency analysis, of the global response (including
the fundamental). The importance of the large bubble oscillations at specific
frequencies, the so-called resonance frequencies, motivates the search for the
characterization of the nonlinear acoustical response of the bubble according to
the local context. This will pave the way for the design of more or less accurate
inversion procedures able to give information related to, for instance, the bub-
ble size, the possible attachment of the targeted contrast agent to neighboring
tissues, the mechanical behavior of these neighboring tissues. Thus, in order
to render the tissue/bubble separation more acute or to improve the detection
and characterization capabilities, we present nonlinear frequency responses of
bubbles and contrast agents obtained by using various models and a high order
Harmonic Balance Method (HBM) combined with a Continuation Method. The
method, implemented in a useful software[23], has been extensively described
in a previous paper [24]. It generates high precision approximations of the full
responses, including stable and unstable solutions, the degree of precision de-
pending on the number, which may be high, of harmonic terms of the driving
solicitation taken into account.

Since the main features of the non-linear as well as of the linear acoustic re-
sponses of microbubbles to ultrasound lie in their radial oscillations, this paper,
like most of the literature on the subject, is devoted to the radial oscillations
of spherical bare or coated microbubbles. For bare bubbles, the modeling of
the problem leads to the so-called Rayleigh-Plesset equation and its general-
ization, the RPNNP model (referring to Rayleigh, Plesset, Nolting, Neppiras
and Poritsky; terminology suggested by Lauterborn) [25], or to its alternative
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within the Keller-Miksis model [26]. For coated bubbles, modeling leads to
equivalent equations that differentiate themselves from considerations on the
shell behavior (viscosity, hyperelasticity ...). Among the various models of the
agents we can quote those of Church [13], Hoff [15] and Marmottant [17]. The
corresponding NonLinear Ordinary Differential Equations (NL-ODE) thus de-
rived drive the time evolution of the radius of the bubble in response to the
ultrasonic solicitation. In most cases a harmonic activation produced by an
incident harmonic ultrasonic plane wave is considered. When the amplitudes
of the oscillations are not too important, classical perturbation methods[28, 29]
may apply and have been applied to solve these NL-ODE, resulting in a small
parameter dependency and control. In that category, one may classify all ana-
lytical papers based on low order (2nd or 3rd) approximations, in particular the
historical (and inexplicably rarely cited) paper of Nayfeh [27] who used a multi-
ple scales method that allowed him to draw frequency responses exhibiting the
natural ”softening” behavior of the bubbles. The simplicity of the parametriza-
tion generates a great interest in this method which was used by several authors
[30, 31], whereas Prosperetti [32] preferred to employ another classical pertur-
bation method, the method of Averaging. With the same purpose of drawing
frequency responses, developments to second order small parameter combined
with second order harmonic balance were chosen by many authors in order to
find explicit formulations, for example Church [13] and Khismatullin [33]. Fol-
lowing Lauterborn[25], other authors chose the opposite way of a full numerical
resolution in the time-domain, followed by a Fourier Analysis in order to ex-
tract the transfer function: [26, 34] and more recently [35, 16, 19, 18, 20]. The
method of purely numerical resolution of the time-domain ODE is currently the
unique one leading to a high precision approximation of the solution. But, only
the stable solutions of the equations can be found and exploration of hysteretic
solutions and of each harmonic and sub-harmonic component of the response
are not easy tasks. A Harmonic Balance method, without any small-parameter
development, is more suitable for the objective of high accuracy frequency re-
sponse assessment. However, when oscillations are large, i.e. for resonances
and near them, a development with a high number of harmonics is required if
sufficient precision is expected. Since the explicit balancing on a large (greater
than or equal to two) number of harmonics is rather cumbersome, an auto-
mated balancing technique has been employed here. The technique, combining
a Harmonic Balance Method (HBM) and a Continuation Method within the
framewok of Asymptotic Numerical Methods (ANM) [36], is detailed and illus-
trated with various applications in the paper [24]. It resulted in an interactive
free and open access software written for a Matlabr environment and named
Manlabr [23]. This software is intensely used in this paper for three models
of microbubbles: the RPNNP model [25] which reproduces a free microbubbles
response and two other models that describe thinly encapsulated microbubbles.
Among the latter, the first one, owed to Hoff [15], is a thin-shelled version of the
Church model [13], the second one due to Marmottant [17] accounts for buckling
and rupture. The last one is however limited here in the elastic behavior do-
main of the shell. These two models are recognized to be well suited to the last
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generation of UCA, the polymer-shelled contrast agents and the lipid-shelled
contrast agents respectively.

In the present study, for numerical experiment, it is assumed that the radial
non linear behavior of the micro-bubble or the contrast agent is sufficiently char-
acterized through its first 3 components (the fundamental plus two harmonics).
With this aim in view, the expansion of the solutions is indeed performed on the
first four harmonics to which we add the null frequency component. In practice,
this should be sufficient when the attenuation coefficient of the host medium is,
for instance, linearly dependent on the location depth of the bubble and on the
frequency which is the case for ”soft” tissues in biomedical engineering. Free
bubbles in water may require higher Fourier decomposition to be modeled with
arbitrary accuracy because of the low water viscosity that reduces the impor-
tance of the absorption phenomenon. The dedicated software used does not
present any difficulty: it is founded on a simple principle, the quadratic recast,
that enables its developers to avoid any iterative process (no problem of conver-
gence and no unpredictable computation cost), any temporal discretization (it is
a frequency domain approach), any use of numerical scheme in the computation
of the derivative (the jacobian is calculated analytically and easily). Thus, the
original bubble models are transformed into new non-linear systems (extended
state equations) for which the non-linearities are at most quadratic. The ap-
plication of the harmonic balance method on quadratic models is recognized at
once even if one searches for large harmonic number solutions.

In order to give an explicit view of the transformation procedure, we start
by presenting the procedure used to recast the nonlinear system in order to get
at most quadratic polynomial nonlinearities. With this purpose, we consider
the simple case of the forced Duffing oscillator [24]. Indeed, this simple model
is quite representative of the free bubble radial oscillations in a viscous fluid as
described by Lauterborn.

2. Generic model: Forced Duffing oscillator.

The normalized forced Duffing oscillator is described by the non-autonomous
equation:

ü + 2µu̇ + u + αu3 = f cos(λt). (1)

In this model, the damping coefficient µ, the degree of nonlinearity α and the
force amplitude f are constant; the forcing angular frequency is treated as the
varying parameter λ. By using v(t) = u̇(t) and w(t) = u2(t), this equation can
be recast in a quadratic form:







u̇ = v
v̇ = f cos(λt) −2µv − u −αuw
0
︸︷︷︸

m(Ż)

= 0
︸ ︷︷ ︸

c(t,λ)

w
︸ ︷︷ ︸

l(Z)

−uu
︸ ︷︷ ︸

q(Z,Z)

(2)

where Z = [u, v, w]t, and the forcing term is deliberately put into c. The forcing
angular frequency is related to the response frequency by putting ω = pλ (p is
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an integer). In the Harmonic Balance Method, the term u(t) is expanded into
harmonics with respect to ω. Thus the compact expression of the equivalent
quadratic system is:

m
(

Ż
)

= c + l(Z) + q(Z, Z), (3)

The unknown vector Z (size Ne) contains the original components u and
v plus the auxiliary variable w that has been added to transform (1) into the
quadratic form (2). The right hand size of (2) comprises vector c that is inde-
pendent of Z; m and l are linear operators acting on Z; q is a quadratic vector
operator that is linear with respect to both entries.

The harmonic balance method consists in searching periodic solutions to Eq.
(2), these solutions being expressed as truncated Fourier series

Z(t) ≈ Z0 +

H∑

k=1

(ak cos kλt + bk sin kλt) . (4)

The substitution of this expression in system (2) and the balance of the terms
corresponding to the different frequency components ( (ak, bk), 1 6 k 6 H)
leads to a system of (2H + 1) × Ne algebraic equations for (2H + 1) × Ne + 1
unknowns: the (2H + 1) × Ne components of vector Z and angular frequency
λ. The branches of solutions of this algebraic system are then followed by a
dedicated continuation technique (ANM) by fixing the path parameter λ. This
procedure provides only approximate solutions since in expansion (4), all the
harmonic terms greater than H are not considered. However, if the number of
harmonics H is large enough, accurate solutions can be expected.

Figures (1) and (2) show the frequency-amplitude diagrams of the responses
obtained in the case of a ”hardening” system (α ≥ 0). A classical bent resonance
curve can be observed, as well as some additional peaks corresponding to super-
harmonic resonances. Note that only the individual amplitudes Ai =

√

a2
i + b2

i

of the odd harmonics have been plotted, since the even harmonics (A0, A2,
A4, . . . ) are zero. In this example, the computation of this branch required
25 steps of MAN-continuation when 5 harmonics were included, and 35 steps
when 9 harmonics were included. The curves obtained for harmonics 1 and 3
were slightly hanged when shifting from H = 5 (solid line) to H = 9 (broken
line) harmonics in Eq. (4). The curve obtained for A5 is more affected, which
confirms the logical result according to which more than 5 harmonics have to
be used to obtain accurate results with harmonic 5. We also established that
the curve obtained for A5 was only very slightly modified when shifting from
H = 9 to H = 11 harmonics in Eq. (4). The frequency responses of ”softening”
systems (α ≤ 0) are shown in figures (3) and (4) which reveal instabilities and
the so-called jump-frequencies. Latter, we shall see that bubbles and contrast
agents are mainly softening systems. At the jump-down (respectively the jump-
up) frequency, the vibration amplitude of the system suddenly jumps-down
(paths [3]-[4] on the curves)(resp. jumps-up (paths [3’]-[2])) when it is excited
harmonically with slowly changing frequency. The frequencies at which these

5



0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

Angular frequency  

H
a
rm

o
n
ic

 a
m

p
lit

u
d
e
 A

1
, 

A
3
, 

A
5

3’
A5

A3
5

4

3

1

A1

2

Figure 1: Duffing oscillator, Eq. (1) with µ = 0.05, f = 1.0 and α = 1, ”hardening” system,
as in ([39]). The figure shows the amplitude of harmonics 1, 3 and 5 versus forcing angular
frequency λ. Continuous line : results when 5 harmonics are included (H=5 in Eq. (4)).
Dotted line : results when 9 harmonics are included.

jumps occur depend upon whether the modulation is increasing or decreasing
and whether the nonlinearity is hardening (Fig. 1) or softening (Fig. 3)

Besides, when assuming a harmonic balance restricted to the fundamental
component, the jump-down frequency of the Duffing oscillator is written [37]

ωJ ≈
1

2
1

2

(

1 +

[

1 +
3α

4µ2

] 1

2

) 1

2

. (5)

and the amplitude of vibration at this frequency is given by

AJ ≈

(

2

3α

([

1 +
3α

4µ2

] 1

2

− 1

)) 1

2

. (6)

For ωJ to be real for a softening system, the following condition is necessary:

α ≥ αJ = −4µ2/3. (7)

If this condition is not met, then a jump-down does not occur.
Furthermore, if the assumption 3α/(4µ2) ≪ 1 is valid (this is quite restrictive
if the damping is light), the jump-down frequency is written ωJ ≈ 1 + 3α/32µ2

and the amplitude at the jump-down frequency is given by AJ ≈ 1/2µ. Then,
the degree of nonlinearity alone is not the important parameter but how it com-
pares with the damping, i.e. the ratio 3α/4µ2 is the relevant parameter.
Thus, in first order approximation, the amplitude of the system response is lead
principally by the damping, the deviation of the jump-down frequency from the
natural frequency of the associated linear system (measurements obtained with
an excitation force of low level) is dependent of the degree of nonlinearity and
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Figure 2: Duffing oscillator, same conditions as in Fig. (1): zoom of the region ω < 0.6.
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Figure 3: Duffing oscillator (log scale), Eq. (1) with µ = 0.05, α = −0.5 and f = 0.05,
”softening” system. Amplitude of harmonics 1, 3 and 5 versus forcing angular frequency λ.
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Figure 4: Duffing oscillator, Eq. (1) with µ = 0.05 and f = 0.04. A1 amplitudes versus
angular frequency when α = −1; α = −0.5 and α = 0.
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of the damping through the ratio 3α/4µ2.

To sum up, the key idea of the global procedure is the quadratic recast.
It provides a close form solution to the continuation problem in the frequency
domain with an arbitrary high number of harmonics [24]. In addition, neither
any iterative process nor any temporal sampling is required, thus avoiding low
convergence and possible aliasing problems. The Duffing model introduced here
is a pedagogical introduction to the HBM using the Manlab software. It is
rather representative of the various theoretical models of free and encapsulated
bubbles in viscous fluid that will now be analyzed.

3. Bubble in viscous fluid: the ”RPNNP” model.

Let R be the radius of the vibrating bubble, R0 the radius at rest, the
”RPNNP” equation is

ρL

[

RR̈ +
3

2
Ṙ2

]

=

(

P0 +
2σ

R0

)(
R0

R

)3ς

−
2σ

R
− 4ηL

Ṙ

R
− P0 + P cos Ωt, (8)

where P0 is the static pressure in the fluid, ρL the fluid density, σ the surface
tension, ηL the fluid viscosity, Ω the angular frequency of the plane pressure-
wave and ς the polytropic exponent.

In order to be able to recast this expression in the spirit of quadratic form,
we consider isothermal oscillations: ς = 1. It is obvious that this working
assumption has poor reality but responds to numerical limitations of the present
Manlabr software: derivation of non-integer order are not yet implemented in
it.

We note τ = ωt and
dX

dτ
= Ẋ. By using u =

R

R0
, v =

Ṙ

R0
, x =

1

u
, y = x2,

z = v2 and f = P cos Ωt. Eq. (8) can be rewritten:

v̇ = −
P0

ρLω2R2
0

x−
2σ/R0

ρLω2R2
0

y +
P0 + 2σ/R0

ρLω2R2
0

y2 −
4ηL

ρLωR2
0

yv −
3

2
xz +

1

ρLω2R2
0

xf.

(9)
where the respective coefficients are:

A =
P0

ρLω2R2
0

, B =
2σ/R0

ρLω2R2
0

, C =
4ηL

ρLωR2
0

and D =
1

ρLω2R2
0

, (10)

with P0 = 1, 013.105 Pa, ρL = 103 kg/m3, σ = 72.10−3 N/m, ηL = 10−3 Pa.s,
ω = 106 rad/s, R0 = 2.10−6 m (air bubble in water of micrometer size studied
within the megahertz range).

Equation (9) can recover the form of a quadratic system leading to the
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following state space extension of vector Z:







u̇ = v

v̇ = −Ax − By + (A + B) y2 − Cyv −
3

2
xz + Dxf

0 = 1 −ux

0 = y −x2

0 = z −v2

0
︸︷︷︸

m(Ż)

= −P cos (Ωt)
︸ ︷︷ ︸

c(t)

f
︸ ︷︷ ︸

l(Z)

︸ ︷︷ ︸

q(Z,Z)

(11)
where space vector is Z = [u, v, x, y, z, f ].

We observe that the compact expression of the equivalent quadratic system
is analogous to (3). The unknown vector Z (size Ne = 5 + 1) contains the
original components u, v, plus the auxiliary variables x, y, z, f that have been
added to transform (8) into the quadratic form (11).

Remember that vector Z is written in the general form (4), thus

u =
R

R0
= u0 +

H∑

k=1

(ak cos kΩt + bk sin kΩt) . (12)

When the amplitude of the driving term is very weak (P ≃ 0, 01 Pa) com-
pared to the other terms of Eq.(8), the graph of amplitude A1 versus angu-
lar frequency Ω describes the free response of the system. For low ampli-
tudes, this amplitude/frequency curve remains tangential to the linear mode,
ΩL = ω0 = 8.72 106 rad/s (cf Table (1)), then gradually bends to the left with
the activation intensity: this corresponds to a ”softening” system as depicted in
figures 3 and 4.

Nota : In all the following figures, the angular frequency unit is 106 rad/s.
Changing radius R0 of the bubble or considering the surface tension (σ =

72.10−3N/m) does not alter the global shape of the curve amplitude/angular
frequency.

Only the ”starting” angular frequency ΩL for which the amplitude is non
zero changes. This value is the undamped natural frequency of the linear system
(nonlinear term set to zero) associated with Eq. (8): i.e. the Minnaert isother-
mal angular frequency when σ = 0 or the Robinson[38] angular frequency when
the surface tension is taken into consideration.

The angular frequencies obtained thanks to these two models are considered
as functions of the radius and gathered in Table (1); these values fit very well
with the results provided by Manlab software; we systematically find that ΩL =
ωMinnaert (respectively ΩL = ωRobinson; σ 6= 0) when A1 = 10−3.
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Figure 5: Frequency responses of the damped system (broken lines) and of the undamped
system (continuous line)

The introduction of the fluid viscosity (for water, ηL = 10−3Pa.s) in the
modeling leads to a modification of the resonance behavior of the bubble. In
order to observe this resonance, the damping term being non negligible in com-
parison with the other entities present in the equation, it is necessary to increase
the amplitude P of the driving oscillator. In fact we can observe (cf Fig. 5) the
main resonance of the forced system which occurs when the driving harmonic
component has an angular frequency close to that of the free system, in our case
(R0 = 2µm, ω0 = 10.57 106 rad/s), it corresponds to the angular frequency
derived by Houghton [40].

ωHoughton =
1

R0

√

3γ(P0 + 2σ
R0

) − 2σ
R0

ρL

−
4η2

L

ρ2
LR2

0

. (13)

Figure (6) depicts the evolution of the first, second and third harmonics ver-
sus angular frequency, the amplitude of the driving source being P = 5.104Pa.
The main resonance is given when Ω = ω0, but there also exist secondary res-
onances, called super-harmonics, which occur when the angular activation fre-
quency equals ω0/2 or ω0/3. At this secondary resonance, the amplitude of the
second harmonic becomes higher than that of the first one (the fundamental).
This has been found interesting [41] to transmit ultrasonic waves at the angular
frequency Ω = ω0/2 with a sufficient amplitude (P ≥ 50 kPa = 0.5 atm) in order
to perform non linear (harmonic) imaging of the bubble in water or in tissues.
However, when the amplitude of the driving wave is less than 10 kPa = 0.1 atm,
the non linear character of the bubble response is ”erased” by the (water) vis-
cous attenuation. Then, a linear damped oscillator model may be sufficient to
characterize the bubble in water.
The resemblance of the frequency response curves with those obtained with the
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Figure 6: Amplitude of the first, second and third harmonics - P = 5.104 Pa

damped Duffing oscillator is obvious. This permits the use of the Duffing model
as a ”canonical” model of the system ”free bubble in viscous fluid” and to char-
acterize this system with the pair of parameters: the damping and the degree
of nonlinearity.
Furthermore, considering an isolated bubble in a viscous fluid, a numerical ex-
periment can be performed (using Matlab ”ODE45” solver) in which the exci-
tation amplitude is held constant but the frequency is varied continuously and
linearly. Then, as described in the previous chapter, the jump phenomena in
the amplitude response will be observed.
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Figure 7: Temporal response of a 4-micron bubble to a linear down-chirp (range [2.1 , 0] MHz)
of constant amplitude (50 kPa)
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Figure 8: Temporal response of a 4-micron bubble to a linear up-chirp (range [0 , 2.1] MHz)
of constant amplitude (50 kPa)

If, for instance, the excitation is started at a frequency larger than the linear
natural frequency, a decreasing frequency sweep will induce a larger jump in
amplitude than an increasing frequency sweep starting at a frequency lower than
the natural frequency (cf. figure 7 versus figure 8). In practice, this means that
a higher signal to noise ratio will be obtained in the former case. In addition,
this distinction between these increasing and decreasing sweeps can constitute
the basis of a differential harmonic imaging that reveals the presence of the
bubbles.

4. Shelled contrast agent

Most contrast agent bubbles are encapsulated in a shell that has two major
effects on the acoustic response. First, the shell renders the bubble stiffer than
a free gas bubble of equal size, making its resonance frequency higher than with
the free bubble and reducing the non-linear effects. Secondly, the shell makes
the bubble more viscous inducing an absorbed sound energy converted into heat
instead of being radiated; the scatter/attenuation ratio is decreased. Numerous
studies conclude that the influence of the shell is crucial and confirm that the
properties of the acoustic field scattered by the agent are highly altered by the
shell properties. Various shell models have been proposed; Fox and Hertzfeld [42]
studied bubbles in sea water and underlined the influence of the organic shell,
De Jong et al.[11, 12] introduced the empirical models of the Albunex, Church
published a well-founded visco-elastic model [13] that assumes linear material
properties but includes non-linear geometric effects. Angelsen and Hoff [14, 15]
proposed an exponential stress strain relationship for the shell material. A few
years ago, Marmottant introduced a ”buckling” model [17] that accounts for
buckling and rupture phenomena. These last two models will be analyzed in
the following paragraphs.
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4.1. Polymer-shell contrast Agent - Hoff model.

Hoff considers contrast agents whose shell thickness, es, is low in comparison
with internal and external radii, i.e. es << R1, R2. This assumption enables
one to reduce the equation of the movement. By noting R2 the external radius
of the shell and writing R = R2, the equation reduces to:

ρL

[

RR̈ +
3

2
Ṙ2

]

=

(

P0 +
2σ

R0

)(
R0

R

)3ς

−
2σ

R
− 4ηL

Ṙ

R

−P0 + P cos Ωt − 12ηSR2
0eS

Ṙ

R4
− 12µS

R2
0eS

R3

(

1 −
R0

R

)

, (14)

where µs and ηs are respectively the shear modulus and the shear viscosity of
the shell that can be estimated via ultrasound attenuation measurements. Once
again the behavior is assumed to be isothermal (ς = 1) for present numerical
possibilities of the Manlab software.

Quadratic form Recast : Equations (8) and (14) differentiate themselves only
by the last two terms which sum up the shell contribution. In order to derive
the associated quadratic form of Eq. (14), we re-use the variables defined in the
former algebraic system (11), the latter being extended with two supplementary

variables α = y2 and β = αx and two supplementary constants E =
12µSeS

ρLω2R3
0

and F =
12ηSeS

ρLωR3
0

.

Then, Eq. (14) is equivalent to the following system of first order differential
equations:






u′ = v
v′ = −Ax − By + (A + B − E)α −Cvy − 3

2xz + Dxf − Fβv
0 = 1 −xu
0 = y −x2

0 = z −v2

0 = −P cos Ωt +f
0 = α −y2

0 = β −αx
(15)

where Z = [u, v, x, y, z, f, α, β]t. Once again, the operators of the formal
expression

m(Z ′) = c(t) + l(Z) + q(Z, Z). (16)

may be easily identified in the above system.
This model has been worked out by Hoff with the aim of characterizing a

contrast agent with a gas core and a polymeric shell (such as AI-700 from Acu-
sphere or Sonavist from Shering). On the assumption that the shell thickness
equals 5% of the nominal radius R0 of the contrast agent, the comparison with
the theoretical prediction and the experimental measurements makes it possi-
ble to assess the viscoelastic coefficients of the shell[15]: µs = 11.6 MPa and
ηs = 0.48 Pa.s.
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Results: First, in order to evaluate the influence of the shear modulus µs

of the UCA response, the shear viscosity is fixed to zero. Figure (9) shows the
evolution of the fundamental amplitudes A1 of four UCAs (radius R0 = 3 µm)
of respective shear modulus values: 11.6, 50, 88 and 150 MPa (these values
are issued from [13]). To the increase of µs values corresponds an increase of
the shell rigidity, this in turn limits the amplitude of the oscillations and fades
the non-linear character of the UCA responses . The values of the angular
frequencies for which the amplitudes start rising are in total agreement with
those predicted by the close formulation derived from the linearization of Eq.
(14)[15].
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Figure 9: Influence of the shear modulus on amplitude A1
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Figure 10: Amplitude of the first and second harmonics - zoom (µs = 11.6 MPa)

The first and second harmonic amplitude values are illustrated in Fig. 10 for
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a fixed value of the shear modulus (µs = 11.6 MPa) and for two excitation levels
(P = 5.104 Pa i.e. 0.5 atm and P = 105 Pa i.e. 1 atm). The main resonance
largely exceeds the secondary super-harmonic resonance. However, since in the
latter case the secondary harmonic amplitude is greater than the fundamantal
one when the amplitude of the driving source is large enough (typically, of the
order of 100 kPa), the secondary resonance is still of interest for non-linear
contrast imaging of tissues. Besides, for a given shear modulus (for instance
µs = 11.6 MPa), the viscosity of the shell leads to a strong reduction of the
oscillation amplitudes as shown on graph 11. The resonance phenomenon is
almost absent for viscosity values such as ηs = 0.48Pa.s, which is in agreement
with Hoff’s conclusion. The experimental measurements[15] being performed
on polydisperse UCA populations, the non-consideration of multiple scattering
phenomena and the assumption that properties (thickness, visco-elasticity) are
constant lead us to think that in this case, the shell viscosity assessment had
certainly been over-estimated.
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Figure 11: Influence of the viscosity of the shell on amplitude A1

4.2. Phospholipid-coated Contrast Agent: Marmottant model

In this case, we are interested in the characterization of a lipid-shell UCA
(e.g. Sonovue from Bracco; Imagent from Alliance)) whose model derived in
[17] corresponds to the following Ordinary Differential Equation:

ρL

[

RR̈ +
3

2
Ṙ2

]

=

(

P0 +
2σ(R0)

R0

)(
R0

R

)3ς

−
2σ(R)

R
− 4ηL

Ṙ

R
− 4κS

Ṙ

R2
− P0 + P cos Ωt.

(17)
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We limit ourselves to the elastic behavior of the shell interface (excluding buck-
ling and rupture) for which the surface tension verifies

σ(R) = χS

(
R2

R2
b

− 1

)

. (18)

where Rb stands for the threshold radius of the shell under which buckling of
the phospholipid molecules occurs.

Quadratic form Recast : Let us note g = xy, Z = [u, v, x, y, z, f, g]t

(variables u, v, x, y, z and f remain unchanged) and let us define the following
constants:

AM =
2χS

ρLω2R0R2
b

, BM =
P0

ρLω2R2
0

, CM =
2χS

ρLω2R3
0

, DM =
R2

0

R2
b

− 1,

EM =
4ηL

ρLωR2
0

, FM =
4κS

ρLωR3
0

, GM =
1

ρLω2R2
0

.
(19)

Equation (17) can be rewritten in the quadratic form:







u′ = v
v′ = −AM −BMx + CMy − 3

2xz + (BM + CMDM )y2 − EMvy − FMgv + GMxf
0 = 1 −xu
0 = y −x2

0 = z −v2

0 = −P cos Ωt +f
0 = g −xy

(20)
Figure 12 shows the natural (P = 10−2 Pa) response of the undamped

system (R0 = Rf = 1.98 µm, χS = 0.55 N/m and ηL = κS = 0) in addition to
the forced response (P = 5.104 Pa) of the damped system when only the liquid
viscosity is taken into account (ηL = 103 Pa.s). Finally, the shell viscosity is
also considered (κS = 7.2.10−9 N). The values of the parameters originate from
[17] and [19].

Figure 12 shows that the system is hardening at the lower amplitudes of
the activation source, then as the driving power increases, it softens. However,
once again, taking into account the viscosity of both fluid and shell reduces
drastically the oscillation amplitude and ”erases” the non-linear character of
the behavior. This result is in agreement with the work of Van der Meer and
al [19] who demonstrate that a simple oscillator model derived by linearization
of the Marmottant model is sufficient for describing the radial oscillations of
an UCA driven by a 40 kPa excitation amplitude. These conclusions were
deduced from the experimental observations obtained using the Brandaris ultra-
fast video camera[19].
Figure 13 shows the evolution of the first and second harmonics as functions of
angular frequency Ω for various amplitude levels P of the driving source. One
can easily isolate (on A2 curve) resonances at Ω = ΩL/2 and at Ω = ΩL/3 when
the source amplitude is greater than 100 kPa. It is interesting to note that
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Figure 13: Influence of the excitation pressure on the first and second harmonics

for the two previous models (for similar values of P ), at the secondary super-
harmonic resonance (Ω = ΩL/2), the amplitude of the second harmonic is less
than that of the fundamental. However, here, at the super-harmonic resonance
and for the highest pressure level, the amplitude of the second harmonic exceeds
its main resonance value; this situation has never been met before.

5. Application to ”small” bubble sizing

The problem of detecting and sizing microbubbles in their host environment
has received particular attention over the last thirty years. Concerning reflection
measurements only, most techniques are based on the use of a ”pumping” field
[1, 2, 3, 4] whose frequency is close to the resonance frequency of the bubble
to be detected, associated with an ”imaging” field of a higher frequency. When
interacting with the bubble and because of the latter’s non-linear behavior,
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the two waves generate among all the sideband components sum and difference
frequencies that exhibit unambiguous spectral peaks as functions of the bubble
radius. This double frequency method is robust and is mainly implemented in
two ways depending on the possible synchronization of the pump and imaging
fields. Implementations that do not consider temporal dependence between
these two fields were first introduced. Then, an improved version providing
both lateral and axial resolutions was obtained with a pulsed Doppler approach
[2]. Recently, a low frequency ”manipulation” pulse modifying the scattering
properties of the bubble and a high frequency imaging pulse, phase-controlled
with relation to this manipulation wave, has made it possible to generate bubble
detection signals[43]. However, when small bubbles are sought for (diameter
comprised between [1, 10] microns), e. g. in relation to prevent decompression
sickness and to obtain accurate assessment of the bubble distribution when
using current medical ultrasounds (frequency range [1, 15] MHz) , the double
frequency method becomes impracticable. Indeed, for these bubble sizes, the low
frequency required varies from 0.65 MHz up to 6.5 MHz and enters the frequency
range of the imaging field. Consequently, the relevant sideband components fall
out of the bandpass of the imaging transducers.
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Figure 14: Frequency responses of bubbles (diameters 10, 4, 3 microns) to a pressure wave of
50 kPa

We propose here to use the non-linear frequency bubble responses (same
conditions as in paragraph 3) in order to obtain a small microbubble detec-
tion/sizing tool. Figures 14 and 15 that depict the frequency responses of air
bubbles in water(same physical parameters as in §3) with size comprised be-
tween 1 and 10 microns reveal that bubbles of diameter larger than 2 microns
exhibit strong non-linearities when excited by an acoustical pressure wave of
50 kPa. But this is not the case for bubbles whose radii are inferior to one
micron. However, figure (16) shows that doubling the pressure amplitude of a
2-micron in diameter bubble to 100 kPa restitutes the non-linear character of
its frequency response.
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Figure 16: Frequency responses of 2-micron in diameter bubble to pressure waves of 50 kPa
(”linear” behavior) and 100 kPa (nonlinear behavior)

The non-linear behavior induces the presence of jump-up and jump-down
frequencies which are relevant characteristics of the size of the bubbles placed
in a given viscous fluid. Then, if a bubble of a given size is insonified with
linearly modulated chirps of decreasing and rising frequency sweeps whose limits
encompass its jump-up frequency, the response of the bubble will be maximal
when compared with those for which the jump-up frequency is not included in
this interval. For instance, the amplitude signal backscattered by a 4-micron
bubble is 3 or 4 greater compared with the signals generated by bubbles whose
radius differs only by 1 micron. This resonance phenomenon is illustrated in the
four following figures (fig. 17-20). In these numerical experiments with various
bubble sizes dedicated to the detection of 4-micron bubbles, the activation signal
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of 530 ms duration is linearly modulated from 1.55 MHz (9.7 Mrad/s) down to
1.25 MHz (7.8 Mrad/s) during the first half of the duration, then up-modulated
to 1.55 MHz during the second half. The temporal responses of the bubble are
obtained using ”ODE45” Matlab solver.
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Figure 17: Response of a 10-micron bubble to a linear down/up chirp (range [1.25-1.55 MHz])
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Figure 18: Response of a 5-micron bubble to the same pressure wave as in fig. 17
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Figure 19: Response of a 4-micron bubble to the same pressure wave as in fig. 17

One can observe that the temporal responses of the bubbles whose diame-
ters are different by more than 1 micron compared to the 4-micron reference
bubble present symmetrical shapes. This results from the fact that, for these
bubbles, the jump-up frequency is not crossed over by the frequency sweep.
Therefore, only either the upper branch or the lower branch of their frequency
response is followed in a reversible way. On the contrary, due to the jump, the
4-micron bubble reveals a hysteretic (asymmetrical) behavior. Hence, the idea
of extracting the signal envelope and of calculating the differences between the
samples recorded at the same instantaneous frequency which leads to a nonlinear
signature of each bubble.

Figure 21 shows these signatures and proves, for instance by applying a

21



0 100 200 300 400 500
(3

(2

(1

0

1

2

3

4

5

Time (microsecond)

A
m

p
lit

u
d
e
 (

m
ic

ro
n
)

R = 1.5 microns

Figure 20: Response of a 3-micron bubble to the same pressure wave as in fig. 17
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Figure 21: Nonlinear signatures of various bubbles in case of an activation for a 4-micron
bubble detection

simple threshold, that it is possible to detect and discriminate bubbles whose
diameters are in the [1, 10] micron range with a theoretical resolution inferior
to 1 micron.
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6. Conclusion

The characterization of bare or coated (contrast agent) microbubbles is of
great interest in many industrial and medical fields of application. The search
for relevant parameters (precursors) confirming the presence of these microbub-
bles, or leading to their size distribution, or providing an unambiguous assess-
ment of their navigation conditions (free evolution versus endothelium cell or
wall surface adhesion) requires more in depth research into nonlinear tools and
methodologies. In order to extend the standard domain of linear analysis, this
paper demonstrates that the high order harmonic balance method (HBM) is a
good procedure since it provides natural means, implemented in the Manlabr

suite (open-access software), for investigating the behavior of such a nonlinear
system (i.e. the microbubble in water). For this purpose, a specific methodology
has been designed which consists in examining the NonLinear Ordinary Differ-
ential Equation (NL-ODE) that governs the time evolution of the bubble radius
in response to ultrasonic activation. A local periodic solution has been devised
whose ”tracking” is facilitated by the use of a specific continuation technique
that operates in conjunction with the HBM. The ”manual” pre-processing of the
NL-ODE consists in a quadratic recast of the nonlinear equations. In the fre-
quency domain, this provides a closed-form solution which possesses an arbitrary
number of harmonics to the continuation problem. Following this methodology,
various theoretical models of bubble response in viscous fluid have been studied
: the ”RNNP” model depicts a free microbubble response; the Hoff and Mar-
mottant models are dedicated to shelled contrast agents with polymeric and
phospholipid shells respectively.

For a start, the coherence of the results obtained thanks to the global proce-
dure has been validated, firstly by demonstrating that if the number of harmon-
ics considered in the calculus is not to be underestimated, the rapid asymptot-
ical convergence observed warrants that an arbitrary precision can be reached.
Secondly, the parametrical study that has been performed agrees with the re-
sults reported in the literature especially as far as the primary and secondary
resonances are concerned. Moreover, jump-up and jump-down frequencies are
revealed and quantified and the shape of the frequency response reveals the
straightforward analogy with a softening or hardening damped Duffing oscilla-
tor according to the strain law of the shell material. In addition, the HBM can
be used as a predictive tool that, for instance, makes it possible to anticipate the
hardening or softening behavior of the (encapsulated) microbubble in its host
fluid, to distinguish a linear from a nonlinear regime of the bubble response
according to the amplitude of the forcing, or to assess the damping attenua-
tion which affects each harmonic component according to the viscous properties
of the host medium and of the shell material. This information is crucial for
the production of anti-cavitation fluid, the monitoring of the void fraction in
nuclear coolant (liquid sodium) or the design of medical ultrasound contrast
agents. Lastly, the analysis of the bubble frequency responses shows that an
ultrasound spectroscopic method can be designed which considers the jump-
up frequency as an unambiguous parameter function of the bubble diameter.
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Using down/up chirps whose frequency ranges contain the jump-up frequency
associated with a given diameter improves the detection signal to noise ratio of
that bubble. Indeed, the sizing of [1, 10]-microns bubbles is not possible by us-
ing the so-called ”double frequency” techniques since the sideband components
generated fall out of the bandpass of the medical ultrasound transducers. The-
oretically, the present methodology offers a resolution in the detection inferior
to 1 micron for a bubble of 4 microns.
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TABLE CAPTIONS

Radius R0 (µm) 1 2 3 5 10 17

ωMinnaert (106rad/s) 17.43 8.72 5.81 3.49 1.74 1.025
ωRobinson (106rad/s) 24.33 10.58 6.66 3.80 1.82 1.05

Table 1: Linear angular frequency without (Minnaert) and with (Robinson) consideration of
the surface tension
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FIGURE CAPTIONS

Fig. 1. Duffing oscillator, Eq. (1) with µ = 0.05, f = 1.0 and α = 1, ”harden-
ing” system, as in ([39]). The figure shows the amplitude of harmonics 1, 3 and
5 versus forcing angular frequency λ. Continuous line : results when 5 harmon-
ics are included (H=5 in Eq. (4)). Dotted line : results when 9 harmonics are
included.
Fig. 2. Duffing oscillator, same conditions as in Fig. (1): zoom of the region
ω < 0.6.
Fig. 3. Duffing oscillator (log scale), Eq. (1) with µ = 0.05, α = −0.5 and
f = 0.05, ”softening” system. Amplitude of harmonics 1, 3 and 5 versus forcing
angular frequency λ.
Fig.4. Duffing oscillator, Eq. (1) with µ = 0.05 and f = 0.04. A1 amplitudes
versus angular frequency when α = −1; α = −0.5 and α = 0.
Fig. 5. Frequency responses of the damped system (broken lines) and of the
undamped system (continuous line)
Fig. 6. Amplitude of the first, second and third harmonics - P = 5.104 Pa
Fig. 7. Temporal response of a 4-micron bubble to a down-modulated signal
(range [2.1 , 0] MHz) of constant amplitude (50 kPa) Fig. 8. Temporal response
of a 4-micron bubble to a up-modulated signal (range [0 , 2.1] MHz) of constant
amplitude (50 kPa) Fig. 9. Influence of the shear modulus on amplitude A1

Fig. 10. Amplitude of the first and second harmonics - zoom (µs = 11.6 MPa)
Fig. 11. Influence of the viscosity of the shell on amplitude A1

Fig. 12. Marmottant model : Influence of the liquid and shell viscosities on
amplitude A1

Fig. 13. Influence of the excitation pressure on the first and second harmonics
Fig. 14. Frequency responses of bubbles (diameters 10, 4, 3 microns) to a pres-
sure wave of 50 kPa
Fig. 15. Frequency responses (log scale) of bubbles (diameters 3, 2, 1 microns)
to a pressure wave of 50 kPa
Fig. 16. Frequency responses of 2-micron bubble to pressure waves of 50 kPa
(”linear” behavior) and 100 kPa (nonlinear behavior)
Fig. 17. Response of a 10-micron bubble to a decrease and increase in linear
modulation (range [1.25-1.55 MHz])
Fig. 18. Response of a 5-micron bubble to the same pressure wave as in fig. 17
Fig. 19. Response of a 4-micron bubble to the same pressure wave as in fig. 17
Fig. 20. Response of a 3-micron bubble to the same pressure wave as in fig.
Fig. 21. Nonlinear signatures of various bubbles in case of an activation for a
4-micron bubble detection
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