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Abstract:  In this paper an approach for fault localization in Discrete Event Systems (DES) is proposed. 
The presented diagnosis method allows fault localization using a fault-free nominal system model. Via a 
systematic comparison of the observed and the expected system behavior, it is possible to determine a set 
of fault candidates. Inspired by residuals known from diagnosis in continuous systems, different set 
operations are presented that carry out this comparison. After a fault has been detected and a first 
estimate concerning its localization has been performed, a special algorithm analyzes the further system 
behavior in order to determine a more precise fault localization. The algorithm also works on the basis of 
the nominal system model. The method is explained using a manufacturing system example. 
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1. INTRODUCTION 

Diagnosis in discrete event systems (DES) has been a vital 
research area for the last 15 years. One of the main purposes 
of diagnosis methods is to increase the availability of 
technical systems. An increased availability has positive 
effects on system dependability and economic key issues 
such as productivity.  

An important class of DES diagnosis approaches is model 
based. The idea behind is to compare the modeled and the 
observed system behavior in order to detect and localize the 
faults. Model-based approaches can be divided in two groups. 
The first group considers models that contain fault-free 
behavior as well as system behavior for given faults. The 
second possibility is to use models of fault-free system 
behavior only. 

A prominent example for approaches with models including 
the faulty behavior is given in [Sampath, et al., 1996]. One of 
the main features of this “diagnoser”-approach is the 
possibility to give guarantees concerning the diagnosabilty of 
faults that are considered in the underlying model. If certain 
conditions hold, faults that are considered in the model can be 
precisely localized. A disadvantage of this class of 
approaches is that only faults that actually have been 
considered in the system model can be detected and 
localized. Diagnosis methods working with a model that only 
contains the nominal, fault-free system behavior avoid this 
disadvantage. All faults that lead to a deviation from the 
nominal behavior can be detected when comparing modeled 
and observed behavior [Cordier, et al., 2004]. The drawback 
of this second class of approaches is due to the fact that the 
models have been built using less knowledge (only the 
nominal system behavior): Fault localization is more difficult 
and not always possible. In this paper, a method is proposed 

that yields fault localization for diagnosis systems working 
with a fault-free system model.  

The paper is structured as follows: In section 2 an example to 
illustrate the proposed method is introduced. It is very similar 
to a case study of [Philippot, et al., 2007] where a timed 
decentralized adaptation of the diagnoser approach is 
proposed that also deals with diagnosis in manufacturing 
systems. In section 3 formal definitions concerning the 
models of the nominal system behavior are given. Section 4 
deals with the proposed “residual-inspired” fault localization 
method. In order to deliver more precise information about 
fault localization, section 5 introduces a special observer 
algorithm that is carried out after fault detection.  

2. PRESENTATION OF AN EXAMPLE 

  The proposed method will be explained using an example of 
a manufacturing system. Its purpose is to sort parcels 
according to their size. The programmable logic controller 
(PLC) that controls the system has 9 inputs and 4 outputs. 
Fig. 1 shows the system: a parcel is transported to the sorting 
station using conveyor 1. Based on the optical sensors k1 and 
k2 it can be decided if the parcel is a large one (k1=1 and 
k2=1) or if it is a small one (k1=1 and k2=0). Large parcels are 
pushed to conveyor 3, small ones to conveyor 2 using the 
double-acting cylinder A. Setting the output A+ makes the 
cylinder extend (A+=1, A-=0), resetting A+ and setting A- 
makes the cylinder retract (A+=0, A-=1). When the parcel 
arrives at the appropriate position, it is pushed by one of the 
single-acting cylinders B or C on the according conveyor. 
The cylinders B and C can be extended by setting the outputs 
B (B=1) or C (C=1). If they are reset, the cylinders move 
back to their initial position. Throughout the paper, the value 
“1” represents an actuator that has been set or a sensor that is 



  

activated. “0” represents a reset actuator and a deactivated 
sensor respectively.  
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Fig. 1: Case Study: Parcel sorting station 

It is assumed that the considered system is programmed such 
that several components work concurrently: while cylinder A 
is retracted, one of the cylinders B or C can be extended.  

Classically, diagnosis is carried out in two steps: the 
detection of a fault and in case of detection, fault localization. 
We are now going to explain the nominal system model that 
is used in our approach and how it is obtained.  

3. NOMINAL DES MODEL 

3.1 Data-collection 

The diagnosis of a DES like in Fig. 1 using a model-based 
approach necessitates sending the I/O vectors (input/output) 
of the PLC to a diagnosis system. Fig. 2 shows the principle 
of such a data collection. When the input information of the 
sensors is read, the setting of the controller outputs is 
determined by executing the control program. At the end of 
the program execution the current I/O vector containing both 
the last input information and the newly determined output 
information is sent to the diagnosis system.  
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Fig. 2: Data-collection for diagnosis 

The system to be diagnosed is a closed loop consisting of 
PLC and plant that can be observed by the evolution of the 
I/O vectors at the end of each program execution of the 
controller cycle (Fig. 2). The model that will be used for 
diagnosis is based on these I/O vectors. It is built using an 
identification approach given in [Klein, et al., 2005].  

Definition 1 (I/O vector definition): The j-th I/O vector is 
defined as 1 1( ) ( ( ), ..., ( ), ( ), ..., ( ))s mu j I j I j O j O j=  with I1, .., 

Is and O1, .., Om denoting the considered inputs and outputs of 
the closed loop system. The inputs and outputs can have the 

values “1” or “0”. | ( ) |u j  denotes the length of the vector 

(number of I/Os).  

3.2 Model definition 

The identification algorithm that works on the basis of the 
I/O vectors delivers an automaton of the Moore type. It has 
an output alphabet which contains the possible I/O vectors of 
the system. Due to the non-deterministic nature of the 
considered class of systems, the automaton is denoted a Non-
Deterministic Autonomous Automaton with Output:  

Definition 2 (NDAAO): 0(NDAAO , , , , x )r λ= X Ω  with 

X  finite set of states,  
Ω  output alphabet, 

: 2r → XX  non-deterministic transition relation, 
:λ →X Ω  output function, 

0x 0 initial state. 

During diagnosis, the dynamics is defined as follows: given a 
current state ( )x i  with output ( ( )) ( )x i u iλ =  and a new 
observed I/O vector ( )u j  different from ( )u i .  The 

automaton tries to find a state ( )x j  such that ( ) ( ( ))x j r x i∈  

with ( ( )) ( )x j u jλ = . If several states fulfill this condition, the 
choice is not deterministic. If none of the successor states has 
the observed output ( )u j , the automaton can not proceed in a 
valid state and a fault is detected.  

The second step of diagnosis is to determine which I/O(s) is 
(are) possibly responsible for a detected fault. Thus it is 
necessary to analyze which I/Os change their value from one 
vector to another. For this purpose a function is introduced 
that delivers the rising and falling edges of the changing I/Os 
when two I/O vectors are compared. In the following ( )[ ]u j i  

denotes the I/O at the i-th position of the j-th I/O vector, i.e. 
the I/O with the index i.   

Definition 3 (I/O label): iIO  is defined as the label or name 

of the I/O at the i-th position of an I/O vector u(j). 

Definition 4 (Edge function): Let ( ), ( )u j u k  be two 

I/O vectors of the considered system. The function   

_1 if ( )[ ]=0  ( )[ ] 1

( ( )[ ], ( )[ ]) _ 0 if ( )[ ]=1  ( )[ ] 0

_  if  ( )[ ]= ( )[ ]

i

i

i

IO u j i u k i

Edge u j i u k i IO u j i u k i

IO u j i u k iε

∧ =
= ∧ =



 

delivers the rising and falling edges of  i-th I/O resulting from 
the comparison of ( )[ ], ( )[ ]u j i u k i . The rising and falling 

edges are named according to the label of the related I/O. If 
the analyzed I/O does not change its value, the symbol 

_iIO ε  is delivered.  

Fig. 3 shows an example of the Edge function. The 
considered I/O vector has I/Os with labels a, b and c and with 
the indices 1, 2 and 3. The consecutive I/O vectors (1)u  and 

(2)u  are compared to get the rising and falling edges. Note 

that two consecutive I/O vectors can lead to the observation 



  

of several rising and falling edges if the according I/Os 
changed their value within the same cycle of the PLC. Let a 
be the label of an input with a falling edge that causes the 
control program to set the output b. Due to the data collection 
process described in section 3.1, the two edges a_0 and b_1  
will be observed simultaneously between the two I/O vectors. 
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Fig. 3: Example of the Edge-function 

Since it is possible to observe more than one rising or falling 
edge when comparing two I/O vectors, it is necessary to 
define an evolution set containing the edges that have 
occurred. 

Definition 5 (evolution set):  
ES(u(j),u(k)) = { Edge(u(j)[i],u(k)[i])| Edge(u(j)[i],u(k)[i]) ≠ 

_iIO ε  ∀ 1≤i≤|u(j)|} determines the set of rising and falling 

edges between two I/O vectors u(j) and u(k).  

The ES-function applies the Edge-function to each I/O of two 
I/O vectors and merges the results in one set. Results of the 
Edge-function are only considered if the function does not 
deliver _iIO ε , i.e. the according I/O actually changes its 

value. For the example in Fig. 3 the function determines 
ES(u(1),u(2)) = {a_0, b_1}. 

If a system model in form of an NDAAO is used for fault 
localization, it is possible to apply the ES-function to the 
output of states (e.g. 1 2( ( ), ( ))λ λES x x ). Thus it is possible to 

determine the rising and falling edges between two states.  

Fig. 4 shows a part of the nominal model of the case study 
from Fig. 1. The model has been identified using the 
identification algorithm from [Klein, et al., 2005]. It has 
overall 38 states and 44 transitions. Due to space limitations, 
only the I/O vector that is the state output of x0 is shown in 
the figure ( 0( )λ x ). The transitions in the diagram are labeled 

with the rising and falling edges that can be observed when 
applying the ES-function to the outputs of connected states. 
This allows the reconstruction of each state output. From 
state 4 to state 5 e.g. a falling edge of output A+ (extend 
cylinder A), and rising edges of A- (retract cylinder A), B 
(extend cylinder B) and a1 (sensor at the middle position of 
cylinder A) have been observed ( 4 5( ( ), ( ))λ λES x x ={A+_0, 

A-_1, B_1, a1_1}).  

Fig. 4 shows that different sequences are possible during a 
fault-free system evolution due to the temporal non-
determinism of the plant behavior. From state 5 it is e.g. 
possible to have a falling edge of a1 before a falling edge of 
b0 or vice versa: if cylinder A is retracted and cylinder B is 
extended, it is possible that in one system cycle cylinder A 
moves faster and in another system cycle cylinder B. 
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Fig. 4: Part of an identified system model 

4. FAULT LOCALIZATION 

4.1 Fault localization in nominal models 

The system is diagnosed using the identified nominal model 
given by an NDAAO. The hypothesis of this approach is: 
“each behavior that is not reproducible by the model is a fault 
symptom.” Hence, as soon as an I/O vector is observed that 
cannot be reproduced by the actual state or by one of its 
direct successors a fault is detected and fault localization 
starts. 

Considering DES like the example given in section 2, fault 
localization techniques have the precise aim to report I/Os 
that are possibly related to the fault. For example in case of a 
fault that causes the sensor at the initial position of cylinder A 
to be stuck at “1”, an appropriate fault localization would be 
“fault at sensor a1 (expected value 0, observed value 1).”  

In continuous systems such localization is often carried out 
by determining residual signal values. (Isermann et al., 1997) 
give the definition of a residual as follows: “A residual is a 
fault indicator, based on a deviation between measurements 
and model-based computation.” 

Since the method proposed in this paper yields an analysis of 
the behavioral deviation between the real system and the 
model, several set operations will now be defined that are 
inspired by the definition of (Isermann et al., 1997).   



  

In the following, acutalu  denotes the actual I/O vector that has 

led to fault detection and x denotes the actual state when the 
fault is detected. 

4.2 Characterization of observed but unexpected behaviors 

The first class of residuals that is introduced has the aim to 
localize faults that led to an observed behavior that was 
unexpected in the given context. The actual context is defined 
by the actual state x in the automaton. The first residual is 
defined as:  

' ( )

Res1 ( ( ), ) \ ( ( ), ( '))λ λ λ
∀ ∈

= ∪actual
x r x

ES x u ES x x  

With ( ( ), )λ actualES x u  the rising and falling edges are 

determined that are observed when comparing the I/O vector 
of the last actual state and the I/O vector that led to fault 
detection. This set represents what actually happened when 
the fault was detected.  

' ( )

( ( ), ( '))λ λ
∀ ∈
∪

x r x

ES x x  represents the 

union of the sets of rising and falling edges when the actual 
state and each of its direct successor states are considered. It 
represents the expected behavior. The set difference of the 
observed ( ( ( ), )λ actualES x u ) and the expected 

(
' ( )

( ( ), ( '))λ λ
∀ ∈
∪

x r x

ES x x ) behavior is built in the residual 

equation. In residual 1, the expected behavior is given by the 
union of each possible following behavior of the actual state. 
A more strict formulation of the expected behavior is used in 
the second residual:  

' ( )

Res2 ( ( ), ) \ ( ( ), ( '))λ λ λ
∀ ∈

= ∩actual
x r x

ES x u ES x x  

Instead of a union over the expected behavior of the possible 
following states, an intersection is used. The intersection 
delivers the edges that must be observed no matter which 
following state in the model is taken. It is obvious that 
Res1 ⊆  Res2 since 

' ( )

( ( ), ( '))λ λ
∀ ∈
∪

x r x

ES x x  ⊇  

 
' ( )

( ( ), ( '))λ λ
∀ ∈
∩

x r x

ES x x . As an example let us consider a fault 

at sensor c0. It is assumed that due to a cable break the value 
switches from 1 to 0 when the automaton is in state 14. This 
situation is depicted in Fig. 5 where a part of the nominal 
system model from Fig. 4 is given. A fault is detected when 
an I/O vector that leads to the edge {c_0} is observed from 
state 14. 

' ( )

( ( ), ( '))λ λ
∀ ∈
∪

x r x

ES x x  = {A-_0, a0_1, b1_0} and 

' ( )

( ( ), ( '))λ λ
∀ ∈
∩

x r x

ES x x  = {A-_0, a0_1}. In any case, 

' ( )

( ( ), ( '))λ λ
∀ ∈
∩

x r x

ES x x  = {A-_0, a0_1} must be observed 

when state 14 is left to state 15 or 16. 

 

Fig. 5: Example for an unexpected behavior 

For the given example, both Res1 and Res2 result in {c0_0}. 
The input that changed its value unexpectedly due to a fault is 
part of the residual and can be considered as possible fault 
localization. If the observed behavior was completely 
unexpected like in the example, the two residuals usually 
have the same result. In case that the observation partly 
contains expected behavior, it is possible that Res2 contains 
more fault candidates than Res1. In this situation it is a 
reasonable strategy to first check the functioning of the I/Os 
in Res1. If the faulty one is not contained, the supplementary 
I/Os of Res2 can be analyzed.  

4.3 Characterization of expected but unobserved behaviors 

In contrast to an observed but unexpected behavior it is also 
possible that a fault can be localized by determining a missed 
rising or falling edge. Set operations that help to localize an 
expected but unobserved behavior are given by the third and 
the fourth residual.  

' ( )

Res3 ( ( ), ( ')) \ ( ( ), )λ λ λ
∀ ∈

= ∩ actual
x r x

ES x x ES x u  

Res3 is the set difference of the edges that are expected no 
matter which following state is taken (

' ( )

( ( ), ( '))λ λ
∀ ∈
∩

x r x

ES x x ) 

and the edges that have been observed (( ( ), )λ actualES x u ). 

Each rising or falling edge that must occur when the actual 
state is left but has not been observed is part of Res3. The 
expected behavior is represented by the intersection of each 
possible following behavior. It is also possible to give a less 
strict formulation of the expected behavior by using the union 
operation instead of the intersection: 

' ( )

Res4 ( ( ), ( ')) \ ( ( ), )λ λ λ
∀ ∈

= ∪ actual
x r x

ES x x ES x u  

Since Res3 Res4⊆ , the result of Res4 is usually less 
restrictive than Res3, it contains more elements. The example 
depicted in Fig. 6 is considered to illustrate Res3 and Res4. A 
possible fault that can lead to the observed edges in the 
context of the example is sensor a1 stuck to 0. Cylinder A 
passes the position of a1 without the sensor changing its 
value. When the cylinder reaches the position of a2, the fault 
is detected. The residuals in this case are Res3 = {a1_1, B_1} 
and Res4 = {a1_1}. Input a1 is part of the two residuals and 
can be given as possible fault localization. It can also be seen 
that the edge B_1 is not always observed when state 4 is left: 
only if the parcel is to be pushed on conveyor 2, the output B 
will be set.  



  

 

Fig. 6: Example for a missed behavior 

Especially if production systems with many I/Os are 
considered, the residuals can help to get a relatively small set 
of I/Os that could be related to the fault. A maintenance 
operator can then check the possibly faulty sensors or the 
related actuators. Actuators are related to a sensor if their 
activation or deactivation has an influence on the sensor state.  

Usually it is not known if a detected fault is to be localized by 
an analysis of the observed but unexpected or by the expected 
but unobserved behavior. Hence, each residual has to be 
used. If e.g. the example in Fig. 6 is analyzed using Res1, the 
following candidate set is determined: Res1 = {a2_1, C_1}. 
Together with the results of Res3 and Res4, it can not be 
decided if the input a2 changed its value prematurely or if the 
input a1 didn’t change its value. Both scenarios are possible 
and thus, each I/O in the residuals has to be analyzed by the 
operator. To reduce the set of possible fault candidates, a 
special reduction strategy is introduced in the next section.  

5. REDUCTION OF THE RESIDUAL SETS 

As pointed out in the former section, applying the residuals 
when a fault has been detected can lead to an ambiguous 
situation with several fault candidates. The candidates that 
are part of the four residuals can be given in the following 
compact form: 

' ( )

Candidates ( ( ), ) ( ( ), ( '))λ λ λ
∀ ∈

= ∪ ∪actual
x r x

ES x u ES x x  

It is obvious that Candidates Res1 Res2 Res3 Res4⊇ ∪ ∪ ∪  
since the set contains the union of the observed and the 
expected edges. In some cases it may be necessary that each 
I/O that is part of the Candidate-set (and thus the residuals) is 
checked by the maintenance operator. In order to give a more 
precise estimation of which I/O is possibly affected, it is 
possible to take further I/O vectors into account that follow 
the vector that led to fault detection.  

When a deviation between modeled and observed behavior 
has been detected, the automaton does no longer have an 
actual state that corresponds to the measured I/O vector. 
Hence it is necessary to perform a state estimation on the 
basis of the I/O vectors that follow. In this paper only faults 
are considered that lead to a persistent change in value of an 
I/O. A faulty change in value of an I/O can lead to 
I/O vectors that do not have a corresponding state in the fault 
free nominal system model. In order to perform a state 
estimation in spite of a permanently affected I/O, it is 
necessary to mask out I/Os that are possibly related to the 
fault. Hence, each I/O with a rising or falling edge that is part 
of the Candidate-set should not be considered when the state 
estimation is performed.  

Based on the outputs of the estimated states it is analyzed 
which of the possibly affected I/Os show a normal behavior 
when further I/O vectors are observed. The aim is to reduce 
the set of possibly affected I/Os and thus to improve fault 
localization. Before the candidate reduction algorithm is 
introduced, several definitions are necessary.  

Definition 6 (IndexList): IndexListdenotes a list containing 
the indices of the I/Os that are in one of the residuals 1-4 (i.e. 
in the Candidate-set). The index of an I/O is its position in 
the I/O vector (see 0( )λ x  in Fig. 4 for the considered 

example). 

Since the possibly affected I/Os will be masked out during 
the state estimation, an I/O vector projection is defined. 

Definition 7 (I/O vector projection): The I/O vector 
projection of an I/O vector u to a list with indices that have to 
be masked out (IndexList) is defined as: 

[ ] if 
( )[ ] 1,..,| |

* if IndexList

u i i IndexList
IOP u i i u

i IndexList

∉
= ∀ = ∈

 

 and 

( )[1]

( ) ...

( )[| |]

IndexList

IndexList

IndexList

IOP u

IOP u

IOP u u


= 



 

( )IndexListIOP u  contains for each I/O that has to be masked out 

(i.e. an I/O with an index in the IndexList) the don’t care 
symbol *. For each I/O that has to be considered, 

( )IndexListIOP u  has the according value of the vector u. 

The estimation algorithm in Fig. 7 starts with analyzing the 
I/O vector u(t) which follows u(t-1) that led to fault detection. 
Firstly, the state estimation is initialized. Each state of the 
NDAAO is a possible estimate ( 1 :− =tX X ). In step1 the set 

tX  is determined. A state ′∈x X  is added if the following 

conditions hold: Firstly, x´ is a successor of one of the states 
from the set 1tX −  containing the former estimation. Secondly, 

exactly the edges like observed between the I/O vectors u(t-1) 
and u(t) can be observed when the state x´ is reached. In the 
next line of the algorithm, each state that has an output that 
differs from the observed vector u(t) in one of the “healthy” 
I/Os (that consequently is not part of the IndexList) gets 
removed. It is assumed that such a state cannot represent a 
system state that led to the new vector u(t) since it differs in 
one of the not affected I/Os. After this, the old state 
estimation 1tX −  is replaced by the new one 1 :t tX X− = .  

In Step2 it is analyzed which I/O can be taken from the fault 
candidates because it showed a normal behavior. It is 
assumed that a possibly affected I/O worked properly if the 
following condition holds: the considered I/O has in each 
state output of the estimation the same value as in the last 
observed I/O vector u(t). The assumption is based on the fact 
that the state estimation has been performed without 
considering possibly affected I/Os (with index in the 
IndexList). If a possibly affected I/O has nevertheless the 
same value as the observed one in each state of the 



  

estimation, it is highly probable that it is not a fault 
candidate. If the condition holds, the index of the considered 
I/O can be taken from the IndexList and the I/O can also be 
removed from the residuals.  

In Step3 it is determined how many candidates are left in the 
IndexList and if the state estimation is unambiguous. If the 
state estimation is unambiguous (| | 1=tX ) and if there is no 

index of an I/O left in the IndexList, the usual system 
monitoring can go on using the determined state as the 
current state. Probably, there was a false alert. False alerts 
can arise if the fault-free (possibly identified) system model 
does not capture the whole fault-free system behavior. If 
there is more than one possible state in the estimation and 
more than one I/O left, the state estimation continues with 
step1 by considering the next I/O vector. If none of the two 
conditions can be fulfilled, the algorithm cannot reduce the 
candidate set by considering following I/O vectors and stops.  

Algorithm 1: State estimation and candidate set reduction
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Step1: Consider the next I/O vector denoted as
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Step3: 

1 :− =tX X
( )u t

1: { ' | : ' ( ) ( ( 1), ( ))−= ∈ ∃ ∈ ∈ ∧ − =t tX x X x X x r x ES u t u t
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then loop back to step1if
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Fig. 7: State estimation and candidate set reduction 

As illustration of the algorithm in Fig. 7 the example of Fig. 8 
is considered. It is assumed that sensor k1 is stuck to 1 after it 
noticed the presence of a parcel. A fault is detected when the 
parcel arrives at conveyor 2 without k1 having changed its 
value to 0.  

 

Fig. 8: Example for the candidate set reduction algorithm 

Based on the residuals it is possible to get the information 
that one of the sensors k1 or a1 or one of the related actuators 
is affected, since starting from state 3 Res1 = Res2 = {a1_1, 
A+_0, A-_1, B_1} and Res3 = Res4 = {k1_0}.  

It cannot be decided if k1_0 was missed or if a1_1 changed 
its value prematurely. Hence the algorithm in Fig. 7 starts. In 
the example it is assumed that after fault detection two 
I/O vectors are observed that lead to the edges {b0_0} (first 
vector) and {a1_0} (second vector). Fig. 9 shows the 

evolution of the state estimation and the reduction of the 
candidate set that is delivered by the algorithm (only inputs 
are considered in the example). The I/O vector after fault 
detection could possibly be represented by the two states 7 or 
12 of the model in Fig. 4 since their I/O vector projection 
equals the projection of the measured I/O vector. Neither a1 
nor k1 did yet show a normal behavior. The next I/O vector 
in the example leads to an unambiguous state estimation 
since only state 13 can be reached from one of the states 7 or 
12 by producing the observed edge a1_0. In state 13 the input 
a1 is 0 as well as in the last observed I/O vector. Hence it can 
be removed from the candidate set. After the analysis of two 
I/O vectors only the index of the affected I/O k1 is in the 
IndexList. The algorithm led to a more precise fault 
localization. 
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Fig. 9: Evolution of the candidate set  

6. OUTLOOK 

In this paper a fault localization technique that works on the 
basis of a fault-free nominal system model has been 
presented. The presented approach was developed for 
monolithic system models. In large applications automata 
networks are often used for diagnosis purposes. In future 
works the approach will be extended for the application in 
such automata networks. Furthermore, the adaptation of the 
approach to timed automata is part of current work.  
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