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Abstract: In this paper an approach for fault localizatinDiscrete Event Systems (DES) is proposed.
The presented diagnosis method allows fault loatéin using a fault-free nominal system model. &ia
systematic comparison of the observed and the ¢eghasystem behavior, it is possible to determiseta

of fault candidates. Inspired by residuals knowonfrdiagnosis in continuous systems, different set
operations are presented that carry out this cosgrar After a fault has been detected and a first
estimate concerning its localization has been pewd, a special algorithm analyzes the furtheresyst
behavior in order to determine a more precise faghlization. The algorithm also works on the badi

the nominal system model. The method is explairsaigua manufacturing system example.

Keywords Discrete Event Systems, Fault Detection, Faulgbiesis

1. INTRODUCTION

Diagnosis in discrete event systems (DES) has beeital
research area for the last 15 years. One of the maposes
of diagnosis methods is to increase the availgbibf
technical systems. An increased availability hasitpe
effects on system dependability and economic keueis
such as productivity.

An important class of DES diagnosis approaches dslah
based. The idea behind is to compare the modelddtten
observed system behavior in order to detect analifecthe
faults. Model-based approaches can be divided angnoups.
The first group considers models that contain férek
behavior as well as system behavior for given $aulthe
second possibility is to use models of fault-fregstem
behavior only.

A prominent example for approaches with modelsuidicig
the faulty behavior is given in [Sampath, et #4D96]. One of
the main features of this “diagnoser’-approach e t
possibility to give guarantees concerning the disgbilty of
faults that are considered in the underlying motetertain
conditions hold, faults that are considered inrttaelel can be

that yields fault localization for diagnosis systemvorking
with a fault-free system model.

The paper is structured as follows: In section 2@mple to
illustrate the proposed method is introduced. lteisy similar

to a case study of [Philippot, et al., 2007] whar¢imed

decentralized adaptation of the diagnoser approa&ch
proposed that also deals with diagnosis in manuifag

systems. In section 3 formal definitions concernitige

models of the nominal system behavior are giventi@e4

deals with the proposed “residual-inspired” faoltdlization

method. In order to deliver more precise informatabout

fault localization, section 5 introduces a speddhiserver
algorithm that is carried out after fault detection

2. PRESENTATION OF AN EXAMPLE

The proposed method will be explained using amede of
a manufacturing system. Its purpose is to sort giarc
according to their size. The programmable logictiadier
(PLC) that controls the system has 9 inputs anditputs.
Fig. 1 shows the system: a parcel is transportedesorting
station using conveyor 1. Based on the optical@srig and
k, it can be decided if the parcel is a large ongXkand

precisely localized. A disadvantage of this clasé d¢=1)orifitisa small one ¢k1 and k=0). Large parcels are
approaches is that only faults that actually hawenb Pushed to conveyor 3, small ones to conveyor 2gutie
considered in the system model can be detected a#@uble-acting cylinder A. Setting the output A+ reakhe

localized. Diagnosis methods working with a modhelt tonly
contains the nominal, fault-free system behaviovidthis
disadvantage. All faults that lead to a deviatioonf the
nominal behavior can be detected when comparingefaedd
and observed behavior [Cordier, et al., 2004]. @irevback
of this second class of approaches is due to tttetfiat the

cylinder extend (A+=1, A-=0), resetting A+ and Bajt A-
makes the cylinder retract (A+=0, A-=1). When threrqel
arrives at the appropriate position, it is pushgdbe of the
single-acting cylinders B or C on the according \egyor.
The cylinders B and C can be extended by settiagthputs
B (B=1) or C (C=1). If they are reset, the cylirslenove

models have been built using less knowledge (ohly tback to their initial position. Throughout the papbe value

nominal system behavior): Fault localization is endifficult
and not always possible. In this paper, a methqataposed

“1” represents an actuator that has been set ensos that is



activated. “0” represents a reset actuator and extoated

sensor respectively.
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Fig. 1: Case Study: Parcel sorting station

It is assumed that the considered system is pragehsuch
that several components work concurrently: whilencher A
is retracted, one of the cylinders B or C can Hereded.

Classically, diagnosis is carried out in two stepke
detection of a fault and in case of detection,tfeadalization.
We are now going to explain the nominal system rhiuk

is used in our approach and how it is obtained.

3. NOMINAL DES MODEL

3.1 Data-collection

The diagnosis of a DES like in Fig. 1 using a mdukded
approach necessitates sending the 1/0O vectors t(mgput)
of the PLC to a diagnosis system. Fig. 2 showsptireciple
of such a data collection. When the input informatof the
sensors is read, the setting of the controller wastpis
determined by executing the control program. At ¢nd of
the program execution the current 1/O vector caritgj both
the last input information and the newly determirmedput

information is sent to the diagnosis system.

Input Reading

]

Program execution
PLANT

End of I/O vector

Output Writing

7

data

e e e = =

link

Diagnosis System

b Rl Fault localization

I Fault detection

Model

Fig. 2: Data-collection for diagnosis

The system to be diagnosed is a closed loop corgisf
PLC and plant that can be observed by the evolutiothe
I/0 vectors at the end of each program executiorthef
controller cycle (Fig.2). The model that will besed for
diagnosis is based on these 1/O vectors. It ist luging an

identification approach given in [Klein, et al.,CH].

Definition 1 (I/O vector definition):The j-th I/O vector is
defined asu(j) = (1,(j), 1 . ( )0, (), .0, { D with 1, ..

values “1” or “0". |u(j)| denotes the length of the vector
(number of 1/Os).

3.2 Model definition

The identification algorithm that works on the Isasif the
I/O vectors delivers an automaton of the Moore typédnas
an output alphabet which contains the possiblevé#€ors of
the system. Due to the non-deterministic nature thod
considered class of systems, the automaton is eéémMon-
DeterministicAutonomousAutomaton withOutput:

Definition 2 (NDAAO) NDAAO = (X, Q,r,4, %) with
X finite set of states,

Q output alphabet,

r:X - 2° non-deterministic transition relation,
A:X - Q@ output function,

X5 0 initial state.

During diagnosis, the dynamics is defined as foflogiven a
current state x(i) with output A(x(i)) =u(i) and a new

observed 1/0 vector u(j) different from u(i). The
automaton tries to find a stat€ j) such thatx(j)Or(x(i))
with A(x(j)) =u(j). If several states fulfill this condition, the
choice is not deterministic. If none of the sucoessates has
the observed outpui( j) , the automaton can not proceed in a
valid state and a fault is detected.

The second step of diagnosis is to determine whi@(s) is
(are) possibly responsible for a detected faultusTht is
necessary to analyze which 1/0Os change their viahra one
vector to another. For this purpose a functionnisoduced
that delivers the rising and falling edges of tharging I/Os
when two 1/O vectors are compared. In the following)[i]

denotes the I/O at theth position of thg-th 1/O vector, i.e.
the I/O with the index.

Definition 3 (I/O label): 10, is defined as the label or name
of the I/O at the-th position of an I/O vectau(j).

Definition 4 (Edge function) Let u(j),u(k) be two
I/O vectors of the considered system. The function

10, _1ifu(j)[i]=0 D uk)[i]=1
Edgg U )1, U B[P =4 1Q_0if ¢ J[F1 O ¢ B[ Ji=0
1O, _¢ if u(j)lil=u(k)lil
delivers the rising and falling edges oth 1/O resulting from
the comparison ofu( ))[il,u(K)[i] . The rising and falling

edges are named according to the label of theeckld®. If
the analyzed 1/0 does not change its value, thebsym
IO, _¢ is delivered.

Fig. 3 shows an example of thEdge function. The
considered 1/O vector has I/Os with labaJd andc and with
the indices 1, 2 and 3. The consecutive 1/O vectdty and

IsandOy, .., O, denoting the considered inputs and outputs ofi(2) are compared to get the rising and falling edgkxe

the closed loop system. The inputs and outputsheae the

that two consecutive 1/O vectors can lead to theeolation



of several rising and falling edges if the accogdiliOs
changed their value within the same cycle of th€PlLeta
be the label of an input with a falling edge thatiges the
control program to set the outpgutDue to the data collection
process described in section 3.1, the two edg€sandb_1
will be observed simultaneously between the twouétors.

a
u(k =| b
C

1 0 Edge(uD)[1], U2)1)= a 0
u@)=| 0| andu (2F =< Edgeu@)[2],u(2)[2]F b_

0 0)  |Edge(uDI3], U2)3)= c_¢

O OO 0O O0O0OO0OrR OFR OO0 R

Fig. 3: Example of the Edge-function

Since it is possible to observe more than onegisinfalling X X A+ 0/A-_1C_122_1
edge when comparing two 1/O vectors, it is necessar
define an evolution set containing the edges thaveh
occurred.

Definition 5 (evolution set): \ = =" B ob1_ 22,0 |00
ESu()u(k) = {Edgeu(j)[i],u(k)[i])| Edggu()[i],u(k)i]) #

10, _¢ 0 1<i<|u(j)|} determines the set of rising and falling
edges between two /O vectar§) andu(k).

The ESfunction applies th&dgefunction to each I/O of two
I/O vectors and merges the results in one set. IBestithe
Edgefunction are only considered if the function doest Fig. 4: Part of an identified system model
deliver 10, _¢, i.e. the according 1/O actually changes its

value. For the example in Fig. 3 the function deiaes
ESu(1),u(2)) ={a_0, b_1}.

4. FAULT LOCALIZATION

. . 4.1 Fault localization in nominal models
If a system model in form of an NDAAO is used fauk
localization, it is possible to apply theSfunction to the 4 system is diagnosed using the identified nobinadel
output of states (e.gES(A( x),4( %))). Thus itis possible 10 giyen by an NDAAO. The hypothesis of this approagh
determine the rising and falling edges betweendtaites. “each behavior that is not reproducible by the nhisla fault
. ) symptom.” Hence, as soon as an /O vector is obsethat
Fig. 4 shows a part of the nominal model of theecstsidy cannot be reproduced by the actual state or by asniés

from Fig. 1. The model has been identified usin@ thyioct successors a fault is detected and faullitation
identification algorithm from [Klein, et al., 2005]t has s

overall 38 states and 44 transitions. Due to sfiag&ations,
only the 1/O vector that is the state outputxgfis shown in  Considering DES like the example given in sectiorfazilt
the figure (A(x,) ). The transitions in the diagram are labeledbcalization techniques have the precise aim tamntefOs

with the rising and falling edges that can be obsgrwhen that are possibly related to the fault. For exanplease of a
applying theESfunction to the outputs of connected statedault that causes the sensor at the initial pasitibcylinder A
This allows the reconstruction of each state outpubm tO be stuck at “1”, an appropriate fault localipatiwould be
state 4 to state 5 e.g. a falling edge of output (&xtend ‘fault at sensor al (expected value 0, observedeva).”

cylinder A)! and rising edges of A- (retract .cylm_d_A), B In continuous systems such localization is ofterried out
(extend cylinder B) and al (sensor at the middisitin of by determining residual signal values. (Isermanal ¢t1997)

cylinder A) have been observe®§(A(%),A(%)) ={A+_0,  give the definition of a residual as follows: “Asidual is a

A-_1,B 1,al_1}). fault indicator, based on a deviation between memsents

Fig. 4 shows that different sequences are possibling a and model-based computation.

fault-free system evolution due to the temporal -norgince the method proposed in this paper yieldsnalysis of
determinism of the plant behavior. From state $site.g. the behavioral deviation between the real systeuh the
possible to have a falling edge af before a falling edge of model, several set operations will now be defineat tare

b0 or vice versa: if cylinder A is retracted and ogler B is inspired by the definition of (Isermann et al., IR9
extended, it is possible that in one system cyglnder A

moves faster and in another system cycle cylinder B



In the following, u,,, denotes the actual I/O vector that has

led to fault detection and denotes the actual state when the
fault is detected.

4.2 Characterization of observed but unexpectedbiehns

The first class of residuals that is introduced tgs aim to
localize faults that led to an observed behaviat tvas
unexpectedh the given context. The actual context is define Fig. 5: Example for an unexpected behavior

by the actual statg in the automaton. The first residual is
defined as: For the given example, both Res1 and Res2 res{it0in0}.

The input that changed its valuaexpectedlylue to a fault is
ResI=ES @ (X),Ua )\ U ESQ (X4 (X)), part of the residual and can be considered as ljesfiult
OxTr(x) localization. If the observed behavior was compete
, . . unexpected like in the example, the two residuasally
With ES(A(¥, Yua) the rising and falling edges arep,ye the same result. In case that the observatiotly
determined that are observed when comparing theéd@r contains expected behavior, it is possible thaRestains
of the last actual state and the I/O vector thdt tle fault more fault candidates than Resl. In this situaitois a
detection. This set represents what actually haggbevhen reasonable strategy to first check the functiorofighe 1/0Os
the fault was detected. U ES(A(X,A( X)) represents the in Resl. If the faulty one is not contained, thpementary
OxOr(x) I/Os of Res2 can be analyzed.
union of the sets of rising and falling edges whtes actual
state and each of its direct successor statesoasidered. It
represents the expected behavior. The set differefiche

observed  ES(A(3, Yua)) @nd  the  expected |, conirast to an observed but unexpected behévisralso

( U ES(A(3,A(X))) behavior is built in the residual possible that a fault can be localized by detemgjramissed
OxOr(x) rising or falling edge. Set operations that helpgomalize an

equation. In residual 1, the expected behavioivisrgby the expected but unobservéehavior are given by the third and

union of each possible following behavior of théuat state. the fourth residual.

A more strict formulation of the expected behav#oused in

4.3 Characterization of expected but unobservecbiens

the second residual: Res3= (] ESQ (x)A X)\ESA (X, Y |
Ox'Or(x)
Res2=ES @ (x), \ E X)) . .
@ 09 tewar ) m@m S (34 (%) Res3 is the set difference of the edges that gpeated no
) _ ) matter which following state is taken ﬁ ES(A(R,A( X))
Instead of a union over the expected behavior @fpihssible OxOr(x)

following states, an intersection is used. Thers#etion and the edges that have been obsernvES(A( 3, Uoar) )-
delivers the edges thaustbe observed no matter which Each rising or falling edge thatustoccur when the actual

following state in the_ model is taken. It is obwothat state is left but has not been observed is paRex3. The
Resl U Res2 since U ESA(R.4(x) O expected behavior is represented by the intersecticeach
Hore possible following behavior. It is also possiblegive a less

[N ES(A(3,A(X). As an example let us consider a faulkrict formulation of the expected behavior by gsine union

OxDr ) . operation instead of the intersection:
at sensor c0. It is assumed that due to a cabék lthe value

switches from 1 to 0 when the automaton is in stdteThis Res4= U ESQA (X)A (x)\ESQ (X, Wy |

situation is depicted in Fig. 5 where a part of tleminal Ox0r (x)

system model from Fig. 4 is given. A fault is dée¢ecwhen )

an 1/0 vector that leads to the edge {c_0} is obsdrfrom Since Res3J Res, the result of Res4 is usually less

state 14. restrictive than Res3, it contains more elemertie @&ample
depicted in Fig. 6 is considered to illustrate Ras8 Res4. A
U ES(A(R,A(X) = {A-_0, a0_1, bl 0} and possible fault that can lead to the observed edgethe
OxDr(x) context of the example is sensor al stuck to OinGgt A
ﬂ ES(A(R,A(X) = {A- 0, a0_1}. In any case, passes the position of al without the sensor chgnigs
DX (x) value. When the cylinder reaches the position ¢ftla fault
ﬂ ES(A(%,A(X) = {A- 0, a0_1} must be observed is detected. The residuals in this case are Rg¢a3 =1, B_1}
OxTr(x) and Res4 ={al_1}. Input al is part of the two desis and
when state 14 is left to state 15 or 16. can be given as possible fault localization. It atso be seen

that the edge B_1 is not always observed when 4tetdeft:
only if the parcel is to be pushed on conveyohg,dutput B
will be set.



Fig. 6: Example for a missed behavior

Based on the outputs of the estimated states an#yzed
which of the possibly affected I/Os show a normathdovior
when further I/O vectors are observed. The ainoisetiuce
the set of possibly affected 1/0s and thus to impréault
localization. Before the candidate reduction aldponi is
introduced, several definitions are necessary.

Definition 6 (IndexList): IndexListdenotes a list containing
the indices of the I/Os that are in one of thedeslis 1-4 (i.e.

Especially if production systems with many 1/Os argn the Candidate-set). The index of an I/O is itsifion in

considered, the residuals can help to get a relgtsmall set
of 1/0s that could be related to the fault. A mamdnce
operator can then check the possibly faulty sensorthe
related actuators. Actuators are related to a sefigheir
activation or deactivation has an influence onstresor state.

Usually it is not known if a detected fault is te localized by
an analysis of the observed but unexpected ordgtpected
but unobserved behavior. Hence, each residual halset
used. If e.g. the example in Fig. 6 is analyzedgiftesl, the
following candidate set is determined: Resl = {g2C11}.

Together with the results of Res3 and Res4, it mainbe
decided if the input a2 changed its value premtureif the

input al didn't change its value. Both scenarias @ossible
and thus, each I/O in the residuals has to be aedlpy the
operator. To reduce the set of possible fault ciatds, a
special reduction strategy is introduced in thet sextion.

5. REDUCTION OF THE RESIDUAL SETS

As pointed out in the former section, applying theiduals
when a fault has been detected can lead to an amisg
situation with several fault candidates. The caattid that
are part of the four residuals can be given inftil®wing
compact form;

Candidates ESA & gw B |J ESA (X1 (X"

Ox'Or (x)

It is obvious thatCandidated] Re$l ReB2 Ré&$3 R

since the set contains the union of the observetl the
expected edges. In some cases it may be necebsargach
I/O that is part of the Candidate-set (and thuséiséduals) is
checked by the maintenance operator. In ordent® gimore
precise estimation of which 1/O is possibly affektét is

possible to take further I/O vectors into accounat tfollow

the vector that led to fault detection.

the 1/O vector (seeA(x,)
example).

in Fig. 4 for the considered

Since the possibly affected 1/0s will be masked duiting
the state estimation, an 1/0O vector projectionafireed.

Definition 7 (I/O vector projection): The /O vector
projection of an 1/O vectau to a list with indices that have to
be masked outrfdexLis) is defined as:

op Wl = ufi] if i DIndexListDi “1.lu|
IndexList ) % if i OIndexList o
IO PIndexList( U) [1]

and IOP

IndexList( U) =

IOPIndexList( U)[l u |]

IOP, 4ei(W) contains for each I/O that has to be masked out

(i.,e. an I/O with an index in théndexLis) the don't care
symbol *. For each I/O that has to be considered,
IOP (u) has the according value of the veator

IndexLis

The estimation algorithm in Fig. 7 starts with aaalg the

I/0O vectoru(t) which followsu(t-1) that led to fault detection.
Firstly, the state estimation is initialized. Eastate of the
NDAAO is a possible estimateX_, := X). In stepl the set

X, is determined. A stateX' ] X is added if the following

conditions hold: Firstlyx” is a successor of one of the states
from the sei,_, containing the former estimation. Secondly,

exactly the edges like observed between the |/@ovea(t-1)
andu(t) can be observed when the statés reached. In the
next line of the algorithm, each state that hasatput that
differs from the observed vectaft) in one of the “healthy”
I/Os (that consequently isot part of thelndexLis) gets
removed. It is assumed that such a state cannoctsem a

When a deviation between modeled and observed lmwhavwsystem state that led to the new veatti) since it differs in
has been detected, the automaton does no longer &av one of the not affected I/Os. After this, the olthts

actual state that corresponds to the measured edton
Hence it is necessary to perform a state estimaiiorthe
basis of the 1/0 vectors that follow. In this papaty faults
are considered that lead to a persistent changelire of an

estimationX,_, is replaced by the new ong,_, == X .

In Step2 it is analyzed which 1/0O can be taken fitbin fault
candidates because it showed a normal behavioiis It

I/0. A faulty change in value of an 1/O can lead tassumed that a possibly affected /0O worked prgpérhe

I/0O vectors that do not have a corresponding statkee fault
free nominal system model. In order to perform atest
estimation in spite of a permanently affected 1/D,is
necessary to mask out 1/0s that are possibly bladethe
fault. Hence, each I/O with a rising or falling edtpat is part
of the Candidate-set should not be considered e state
estimation is performed.

following condition holds: the considered I/O has @éach
state output of the estimation the same value abeanlast
observed I/O vectau(t). The assumption is based on the fact
that the state estimation has been perfornweithout
considering possibly affected 1/0s (with index ihet
IndexLis). If a possibly affected 1/0O has nevertheless the
same value as the observed one in each state of the



estimation, it is highly probable that it is not fault
candidate. If the condition holds, the index of dmmsidered

evolution of the state estimation and the reducidrthe
candidate set that is delivered by the algorithmy(dnputs

I/0 can be taken from thimdexListand the 1/0O can also be are considered in the example). The I/O vectorr aftalt

removed from the residuals.

In Step3 it is determined how many candidates eftdar the

detection could possibly be represented by thestates 7 or
12 of the model in Fig. 4 since their I/O vectoojgction
equals the projection of the measured 1/O vectaithér al

IndexListand if the state estimation is unambiguous. If thgo, k1 did yet show a normal behavior. The nextu#otor

state estimation is unambiguoysX( = 1) and if there is no

index of an 1/O left in thelndexList the usual system
monitoring can go on using the determined statethes
current state. Probably, there was a false alafseFalerts
can arise if the fault-free (possibly identifiedjseem model
does not capture the whole fault-free system behnavf
there is more than one possible state in the estimand
more than one /O left, the state estimation camtinwith
stepl by considering the next I/O vector. If nofighe two
conditions can be fulfilled, the algorithm cannetiuce the
candidate set by considering following 1/0 vectansl stops.

Algorithm 1: State estimation and candidate set reduction
Initialization: X,_, == X
Stepl: Consider the next I/O vector denoted as u(t)
X, ={xOX|OxO X_,: xO €30 ES G +1), @)=

ES(A(3,4( %)}
X, = XMXO X IOR o ACY) # 10R 0 €0}
Xa=X

Step2: For each I0Indexin IndexList
if OxO X, A(X)[10Index= @) 10Indg> holds
then IndexList= IndexList 10Inde
Step3:
if | X, F1and if| IndexListF Othen false alert
if | X, P 1and if | IndexListp> 1 then loop back to stepl

Fig. 7: State estimation and candidate set reductio

As illustration of the algorithm in Fig. 7 the exalm of Fig. 8
is considered. It is assumed that sensor k1 ik stut after it
noticed the presence of a parcel. A fault is detkethen the
parcel arrives at conveyor 2 without k1 having deth its
value to 0.

Fig. 8: Example for the candidate set reductioorigm

Based on the residuals it is possible to get tffiernmation
that one of the sensors k1 or al or one of theeelactuators
is affected, since starting from statdR8sl = Res2 = {al_1,
A+ 0,A- 1,B 1} and Res3 = Res4 = {k1_0}.

It cannot be decided if k1_0 was missed or if athanged
its value prematurely. Hence the algorithm in Figtarts. In
the example it is assumed that after fault detactiwo
I/0 vectors are observed that lead to the edgesp(first
vector) and {al 0} (second vector).

Fig. 9 shows th

in the example leads to an unambiguous state dgiima
since only state 13 can be reached from one oftdtes 7 or
12 by producing the observed edge al_0. In stateelBiput
alis 0 as well as in the last observed I/O vetience it can
be removed from the candidate set. After the argalystwo
I/O vectors only the index of the affected 1/O lglin the
IndexList The algorithm led to a more precise fault
localization.

al_1, A+_0,
A_1,B1

Observed
edges

b0 0 | al0

State State
7or12 13

—_—

t

Estimation Fault

Fault at
Candidates k1

Fig. 9: Evolution of the candidate set

6. OUTLOOK

In this paper a fault localization technique thatrks on the
basis of a fault-free nominal system model has been
presented. The presented approach was developed for
monolithic system models. In large applicationsomaéta
networks are often used for diagnosis purposesfutuare
works the approach will be extended for the appbcain

such automata networks. Furthermore, the adaptafiadhe
approach to timed automata is part of current work.
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