
HAL Id: hal-00430015
https://hal.science/hal-00430015

Submitted on 5 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A residual inspired approach for fault localization in
DES

Matthias Roth, Jean-Jacques Lesage, Lothar Litz

To cite this version:
Matthias Roth, Jean-Jacques Lesage, Lothar Litz. A residual inspired approach for fault localization
in DES. 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS’09), Jun 2009, Bari,
Italy. paper 35. �hal-00430015�

https://hal.science/hal-00430015
https://hal.archives-ouvertes.fr

A residual inspired approach for fault localization in DES

Matthias Roth*,**. Jean-Jacques Lesage**,
Lothar Litz*

*Institute of Automatic Control, University of Kaiserslautern,
P.O. Box 3049, 67653 Kaiserslautern, Germany, {mroth, litz}@eit.uni-kl.de

**LURPA – Ecole Normal Superieur de Cachan
61, Avenue du Président Wilson, 94235 Cachan Cedex, France, {roth, lesage}@lurpa.ens-cachan.fr

Abstract: In this paper an approach for fault localization in Discrete Event Systems (DES) is proposed.
The presented diagnosis method allows fault localization using a fault-free nominal system model. Via a
systematic comparison of the observed and the expected system behavior, it is possible to determine a set
of fault candidates. Inspired by residuals known from diagnosis in continuous systems, different set
operations are presented that carry out this comparison. After a fault has been detected and a first
estimate concerning its localization has been performed, a special algorithm analyzes the further system
behavior in order to determine a more precise fault localization. The algorithm also works on the basis of
the nominal system model. The method is explained using a manufacturing system example.

Keywords: Discrete Event Systems, Fault Detection, Fault Diagnosis

1. INTRODUCTION

Diagnosis in discrete event systems (DES) has been a vital
research area for the last 15 years. One of the main purposes
of diagnosis methods is to increase the availability of
technical systems. An increased availability has positive
effects on system dependability and economic key issues
such as productivity.

An important class of DES diagnosis approaches is model
based. The idea behind is to compare the modeled and the
observed system behavior in order to detect and localize the
faults. Model-based approaches can be divided in two groups.
The first group considers models that contain fault-free
behavior as well as system behavior for given faults. The
second possibility is to use models of fault-free system
behavior only.

A prominent example for approaches with models including
the faulty behavior is given in [Sampath, et al., 1996]. One of
the main features of this “diagnoser”-approach is the
possibility to give guarantees concerning the diagnosabilty of
faults that are considered in the underlying model. If certain
conditions hold, faults that are considered in the model can be
precisely localized. A disadvantage of this class of
approaches is that only faults that actually have been
considered in the system model can be detected and
localized. Diagnosis methods working with a model that only
contains the nominal, fault-free system behavior avoid this
disadvantage. All faults that lead to a deviation from the
nominal behavior can be detected when comparing modeled
and observed behavior [Cordier, et al., 2004]. The drawback
of this second class of approaches is due to the fact that the
models have been built using less knowledge (only the
nominal system behavior): Fault localization is more difficult
and not always possible. In this paper, a method is proposed

that yields fault localization for diagnosis systems working
with a fault-free system model.

The paper is structured as follows: In section 2 an example to
illustrate the proposed method is introduced. It is very similar
to a case study of [Philippot, et al., 2007] where a timed
decentralized adaptation of the diagnoser approach is
proposed that also deals with diagnosis in manufacturing
systems. In section 3 formal definitions concerning the
models of the nominal system behavior are given. Section 4
deals with the proposed “residual-inspired” fault localization
method. In order to deliver more precise information about
fault localization, section 5 introduces a special observer
algorithm that is carried out after fault detection.

2. PRESENTATION OF AN EXAMPLE

 The proposed method will be explained using an example of
a manufacturing system. Its purpose is to sort parcels
according to their size. The programmable logic controller
(PLC) that controls the system has 9 inputs and 4 outputs.
Fig. 1 shows the system: a parcel is transported to the sorting
station using conveyor 1. Based on the optical sensors k1 and
k2 it can be decided if the parcel is a large one (k1=1 and
k2=1) or if it is a small one (k1=1 and k2=0). Large parcels are
pushed to conveyor 3, small ones to conveyor 2 using the
double-acting cylinder A. Setting the output A+ makes the
cylinder extend (A+=1, A-=0), resetting A+ and setting A-
makes the cylinder retract (A+=0, A-=1). When the parcel
arrives at the appropriate position, it is pushed by one of the
single-acting cylinders B or C on the according conveyor.
The cylinders B and C can be extended by setting the outputs
B (B=1) or C (C=1). If they are reset, the cylinders move
back to their initial position. Throughout the paper, the value
“1” represents an actuator that has been set or a sensor that is

activated. “0” represents a reset actuator and a deactivated
sensor respectively.

Conveyor 1

Conveyor 2 (small parcels)

A+ a0

a1

a2 k1, k2

Conveyor 3 (large parcels)

k2

k1

b1

B

c1

C

c0

b0

A-

Conveyor 1

Conveyor 2 (small parcels)

A+ a0

a1

a2 k1, k2

Conveyor 3 (large parcels)

k2

k1

b1

B

c1

C

c0 c1

C

c0

b0

A-

Fig. 1: Case Study: Parcel sorting station

It is assumed that the considered system is programmed such
that several components work concurrently: while cylinder A
is retracted, one of the cylinders B or C can be extended.

Classically, diagnosis is carried out in two steps: the
detection of a fault and in case of detection, fault localization.
We are now going to explain the nominal system model that
is used in our approach and how it is obtained.

3. NOMINAL DES MODEL

3.1 Data-collection

The diagnosis of a DES like in Fig. 1 using a model-based
approach necessitates sending the I/O vectors (input/output)
of the PLC to a diagnosis system. Fig. 2 shows the principle
of such a data collection. When the input information of the
sensors is read, the setting of the controller outputs is
determined by executing the control program. At the end of
the program execution the current I/O vector containing both
the last input information and the newly determined output
information is sent to the diagnosis system.

Input Reading

Program execution

Output Writing

End of I/O vector calculus

Model
data

link

PLANT

Fault localization

Fault detection

Diagnosis System
PLC

Input Reading

Program execution

Output Writing

End of I/O vector calculus

Model
data

link

PLANT

Fault localization

Fault detection

Diagnosis System
PLC

Fig. 2: Data-collection for diagnosis

The system to be diagnosed is a closed loop consisting of
PLC and plant that can be observed by the evolution of the
I/O vectors at the end of each program execution of the
controller cycle (Fig. 2). The model that will be used for
diagnosis is based on these I/O vectors. It is built using an
identification approach given in [Klein, et al., 2005].

Definition 1 (I/O vector definition): The j-th I/O vector is
defined as 1 1() ((), ..., (), (), ..., ())s mu j I j I j O j O j= with I1, ..,

Is and O1, .., Om denoting the considered inputs and outputs of
the closed loop system. The inputs and outputs can have the

values “1” or “0”. | () |u j denotes the length of the vector

(number of I/Os).

3.2 Model definition

The identification algorithm that works on the basis of the
I/O vectors delivers an automaton of the Moore type. It has
an output alphabet which contains the possible I/O vectors of
the system. Due to the non-deterministic nature of the
considered class of systems, the automaton is denoted a Non-
Deterministic Autonomous Automaton with Output:

Definition 2 (NDAAO): 0(NDAAO , , , , x)r λ= X Ω with

X finite set of states,
Ω output alphabet,

: 2r → XX non-deterministic transition relation,
:λ →X Ω output function,

0x 0 initial state.

During diagnosis, the dynamics is defined as follows: given a
current state ()x i with output (()) ()x i u iλ = and a new
observed I/O vector ()u j different from ()u i . The

automaton tries to find a state ()x j such that () (())x j r x i∈

with (()) ()x j u jλ = . If several states fulfill this condition, the
choice is not deterministic. If none of the successor states has
the observed output ()u j , the automaton can not proceed in a
valid state and a fault is detected.

The second step of diagnosis is to determine which I/O(s) is
(are) possibly responsible for a detected fault. Thus it is
necessary to analyze which I/Os change their value from one
vector to another. For this purpose a function is introduced
that delivers the rising and falling edges of the changing I/Os
when two I/O vectors are compared. In the following ()[]u j i

denotes the I/O at the i-th position of the j-th I/O vector, i.e.
the I/O with the index i.

Definition 3 (I/O label): iIO is defined as the label or name

of the I/O at the i-th position of an I/O vector u(j).

Definition 4 (Edge function): Let (), ()u j u k be two

I/O vectors of the considered system. The function

_1 if ()[]=0 ()[] 1

(()[], ()[]) _ 0 if ()[]=1 ()[] 0

_ if ()[]= ()[]

i

i

i

IO u j i u k i

Edge u j i u k i IO u j i u k i

IO u j i u k iε

∧ =
= ∧ =

delivers the rising and falling edges of i-th I/O resulting from
the comparison of ()[], ()[]u j i u k i . The rising and falling

edges are named according to the label of the related I/O. If
the analyzed I/O does not change its value, the symbol

_iIO ε is delivered.

Fig. 3 shows an example of the Edge function. The
considered I/O vector has I/Os with labels a, b and c and with
the indices 1, 2 and 3. The consecutive I/O vectors (1)u and

(2)u are compared to get the rising and falling edges. Note

that two consecutive I/O vectors can lead to the observation

of several rising and falling edges if the according I/Os
changed their value within the same cycle of the PLC. Let a
be the label of an input with a falling edge that causes the
control program to set the output b. Due to the data collection
process described in section 3.1, the two edges a_0 and b_1
will be observed simultaneously between the two I/O vectors.

1 0 ((1)[1], (2)[1]) _ 0

(1) 0 and (2) 1 ((1)[2], (2)[2]) _1

0 0 ((1)[3], (2)[3]) _

Edge u u a

u u Edge u u b

Edge u u c ε

=
 = = ⇒ =
 =

()

a

u k b

c

 =

1 0 ((1)[1], (2)[1]) _ 0

(1) 0 and (2) 1 ((1)[2], (2)[2]) _1

0 0 ((1)[3], (2)[3]) _

Edge u u a

u u Edge u u b

Edge u u c ε

=
 = = ⇒ =
 =

()

a

u k b

c

 =

Fig. 3: Example of the Edge-function

Since it is possible to observe more than one rising or falling
edge when comparing two I/O vectors, it is necessary to
define an evolution set containing the edges that have
occurred.

Definition 5 (evolution set):
ES(u(j),u(k)) = { Edge(u(j)[i],u(k)[i])| Edge(u(j)[i],u(k)[i]) ≠

_iIO ε ∀ 1≤i≤|u(j)|} determines the set of rising and falling

edges between two I/O vectors u(j) and u(k).

The ES-function applies the Edge-function to each I/O of two
I/O vectors and merges the results in one set. Results of the
Edge-function are only considered if the function does not
deliver _iIO ε , i.e. the according I/O actually changes its

value. For the example in Fig. 3 the function determines
ES(u(1),u(2)) = {a_0, b_1}.

If a system model in form of an NDAAO is used for fault
localization, it is possible to apply the ES-function to the
output of states (e.g. 1 2((), ())λ λES x x). Thus it is possible to

determine the rising and falling edges between two states.

Fig. 4 shows a part of the nominal model of the case study
from Fig. 1. The model has been identified using the
identification algorithm from [Klein, et al., 2005]. It has
overall 38 states and 44 transitions. Due to space limitations,
only the I/O vector that is the state output of x0 is shown in
the figure (0()λ x). The transitions in the diagram are labeled

with the rising and falling edges that can be observed when
applying the ES-function to the outputs of connected states.
This allows the reconstruction of each state output. From
state 4 to state 5 e.g. a falling edge of output A+ (extend
cylinder A), and rising edges of A- (retract cylinder A), B
(extend cylinder B) and a1 (sensor at the middle position of
cylinder A) have been observed (4 5((), ())λ λES x x ={A+_0,

A-_1, B_1, a1_1}).

Fig. 4 shows that different sequences are possible during a
fault-free system evolution due to the temporal non-
determinism of the plant behavior. From state 5 it is e.g.
possible to have a falling edge of a1 before a falling edge of
b0 or vice versa: if cylinder A is retracted and cylinder B is
extended, it is possible that in one system cycle cylinder A
moves faster and in another system cycle cylinder B.

0

0 1

1 0

2 0

0 1

1 0

0 1

() 1 0

1 0

2 0

0

0

0

0

a

a

a

b

b

c

x c

k

k

A

A

B

C

λ

 = =

 +

−

0

0 1

1 0

2 0

0 1

1 0

0 1

() 1 0

1 0

2 0

0

0

0

0

a

a

a

b

b

c

x c

k

k

A

A

B

C

λ

 = =

 +

−

Fig. 4: Part of an identified system model

4. FAULT LOCALIZATION

4.1 Fault localization in nominal models

The system is diagnosed using the identified nominal model
given by an NDAAO. The hypothesis of this approach is:
“each behavior that is not reproducible by the model is a fault
symptom.” Hence, as soon as an I/O vector is observed that
cannot be reproduced by the actual state or by one of its
direct successors a fault is detected and fault localization
starts.

Considering DES like the example given in section 2, fault
localization techniques have the precise aim to report I/Os
that are possibly related to the fault. For example in case of a
fault that causes the sensor at the initial position of cylinder A
to be stuck at “1”, an appropriate fault localization would be
“fault at sensor a1 (expected value 0, observed value 1).”

In continuous systems such localization is often carried out
by determining residual signal values. (Isermann et al., 1997)
give the definition of a residual as follows: “A residual is a
fault indicator, based on a deviation between measurements
and model-based computation.”

Since the method proposed in this paper yields an analysis of
the behavioral deviation between the real system and the
model, several set operations will now be defined that are
inspired by the definition of (Isermann et al., 1997).

In the following, acutalu denotes the actual I/O vector that has

led to fault detection and x denotes the actual state when the
fault is detected.

4.2 Characterization of observed but unexpected behaviors

The first class of residuals that is introduced has the aim to
localize faults that led to an observed behavior that was
unexpected in the given context. The actual context is defined
by the actual state x in the automaton. The first residual is
defined as:

' ()

Res1 ((),) \ ((), ('))λ λ λ
∀ ∈

= ∪actual
x r x

ES x u ES x x

With ((),)λ actualES x u the rising and falling edges are

determined that are observed when comparing the I/O vector
of the last actual state and the I/O vector that led to fault
detection. This set represents what actually happened when
the fault was detected.

' ()

((), ('))λ λ
∀ ∈
∪

x r x

ES x x represents the

union of the sets of rising and falling edges when the actual
state and each of its direct successor states are considered. It
represents the expected behavior. The set difference of the
observed (((),)λ actualES x u) and the expected

(
' ()

((), ('))λ λ
∀ ∈
∪

x r x

ES x x) behavior is built in the residual

equation. In residual 1, the expected behavior is given by the
union of each possible following behavior of the actual state.
A more strict formulation of the expected behavior is used in
the second residual:

' ()

Res2 ((),) \ ((), ('))λ λ λ
∀ ∈

= ∩actual
x r x

ES x u ES x x

Instead of a union over the expected behavior of the possible
following states, an intersection is used. The intersection
delivers the edges that must be observed no matter which
following state in the model is taken. It is obvious that
Res1 ⊆ Res2 since

' ()

((), ('))λ λ
∀ ∈
∪

x r x

ES x x ⊇

' ()

((), ('))λ λ
∀ ∈
∩

x r x

ES x x . As an example let us consider a fault

at sensor c0. It is assumed that due to a cable break the value
switches from 1 to 0 when the automaton is in state 14. This
situation is depicted in Fig. 5 where a part of the nominal
system model from Fig. 4 is given. A fault is detected when
an I/O vector that leads to the edge {c_0} is observed from
state 14.

' ()

((), ('))λ λ
∀ ∈
∪

x r x

ES x x = {A-_0, a0_1, b1_0} and

' ()

((), ('))λ λ
∀ ∈
∩

x r x

ES x x = {A-_0, a0_1}. In any case,

' ()

((), ('))λ λ
∀ ∈
∩

x r x

ES x x = {A-_0, a0_1} must be observed

when state 14 is left to state 15 or 16.

Fig. 5: Example for an unexpected behavior

For the given example, both Res1 and Res2 result in {c0_0}.
The input that changed its value unexpectedly due to a fault is
part of the residual and can be considered as possible fault
localization. If the observed behavior was completely
unexpected like in the example, the two residuals usually
have the same result. In case that the observation partly
contains expected behavior, it is possible that Res2 contains
more fault candidates than Res1. In this situation it is a
reasonable strategy to first check the functioning of the I/Os
in Res1. If the faulty one is not contained, the supplementary
I/Os of Res2 can be analyzed.

4.3 Characterization of expected but unobserved behaviors

In contrast to an observed but unexpected behavior it is also
possible that a fault can be localized by determining a missed
rising or falling edge. Set operations that help to localize an
expected but unobserved behavior are given by the third and
the fourth residual.

' ()

Res3 ((), (')) \ ((),)λ λ λ
∀ ∈

= ∩ actual
x r x

ES x x ES x u

Res3 is the set difference of the edges that are expected no
matter which following state is taken (

' ()

((), ('))λ λ
∀ ∈
∩

x r x

ES x x)

and the edges that have been observed (((),)λ actualES x u).

Each rising or falling edge that must occur when the actual
state is left but has not been observed is part of Res3. The
expected behavior is represented by the intersection of each
possible following behavior. It is also possible to give a less
strict formulation of the expected behavior by using the union
operation instead of the intersection:

' ()

Res4 ((), (')) \ ((),)λ λ λ
∀ ∈

= ∪ actual
x r x

ES x x ES x u

Since Res3 Res4⊆ , the result of Res4 is usually less
restrictive than Res3, it contains more elements. The example
depicted in Fig. 6 is considered to illustrate Res3 and Res4. A
possible fault that can lead to the observed edges in the
context of the example is sensor a1 stuck to 0. Cylinder A
passes the position of a1 without the sensor changing its
value. When the cylinder reaches the position of a2, the fault
is detected. The residuals in this case are Res3 = {a1_1, B_1}
and Res4 = {a1_1}. Input a1 is part of the two residuals and
can be given as possible fault localization. It can also be seen
that the edge B_1 is not always observed when state 4 is left:
only if the parcel is to be pushed on conveyor 2, the output B
will be set.

Fig. 6: Example for a missed behavior

Especially if production systems with many I/Os are
considered, the residuals can help to get a relatively small set
of I/Os that could be related to the fault. A maintenance
operator can then check the possibly faulty sensors or the
related actuators. Actuators are related to a sensor if their
activation or deactivation has an influence on the sensor state.

Usually it is not known if a detected fault is to be localized by
an analysis of the observed but unexpected or by the expected
but unobserved behavior. Hence, each residual has to be
used. If e.g. the example in Fig. 6 is analyzed using Res1, the
following candidate set is determined: Res1 = {a2_1, C_1}.
Together with the results of Res3 and Res4, it can not be
decided if the input a2 changed its value prematurely or if the
input a1 didn’t change its value. Both scenarios are possible
and thus, each I/O in the residuals has to be analyzed by the
operator. To reduce the set of possible fault candidates, a
special reduction strategy is introduced in the next section.

5. REDUCTION OF THE RESIDUAL SETS

As pointed out in the former section, applying the residuals
when a fault has been detected can lead to an ambiguous
situation with several fault candidates. The candidates that
are part of the four residuals can be given in the following
compact form:

' ()

Candidates ((),) ((), ('))λ λ λ
∀ ∈

= ∪ ∪actual
x r x

ES x u ES x x

It is obvious that Candidates Res1 Res2 Res3 Res4⊇ ∪ ∪ ∪
since the set contains the union of the observed and the
expected edges. In some cases it may be necessary that each
I/O that is part of the Candidate-set (and thus the residuals) is
checked by the maintenance operator. In order to give a more
precise estimation of which I/O is possibly affected, it is
possible to take further I/O vectors into account that follow
the vector that led to fault detection.

When a deviation between modeled and observed behavior
has been detected, the automaton does no longer have an
actual state that corresponds to the measured I/O vector.
Hence it is necessary to perform a state estimation on the
basis of the I/O vectors that follow. In this paper only faults
are considered that lead to a persistent change in value of an
I/O. A faulty change in value of an I/O can lead to
I/O vectors that do not have a corresponding state in the fault
free nominal system model. In order to perform a state
estimation in spite of a permanently affected I/O, it is
necessary to mask out I/Os that are possibly related to the
fault. Hence, each I/O with a rising or falling edge that is part
of the Candidate-set should not be considered when the state
estimation is performed.

Based on the outputs of the estimated states it is analyzed
which of the possibly affected I/Os show a normal behavior
when further I/O vectors are observed. The aim is to reduce
the set of possibly affected I/Os and thus to improve fault
localization. Before the candidate reduction algorithm is
introduced, several definitions are necessary.

Definition 6 (IndexList): IndexListdenotes a list containing
the indices of the I/Os that are in one of the residuals 1-4 (i.e.
in the Candidate-set). The index of an I/O is its position in
the I/O vector (see 0()λ x in Fig. 4 for the considered

example).

Since the possibly affected I/Os will be masked out during
the state estimation, an I/O vector projection is defined.

Definition 7 (I/O vector projection): The I/O vector
projection of an I/O vector u to a list with indices that have to
be masked out (IndexList) is defined as:

[] if
()[] 1,..,| |

* if IndexList

u i i IndexList
IOP u i i u

i IndexList

∉
= ∀ = ∈

 and

()[1]

() ...

()[| |]

IndexList

IndexList

IndexList

IOP u

IOP u

IOP u u

=

()IndexListIOP u contains for each I/O that has to be masked out

(i.e. an I/O with an index in the IndexList) the don’t care
symbol *. For each I/O that has to be considered,

()IndexListIOP u has the according value of the vector u.

The estimation algorithm in Fig. 7 starts with analyzing the
I/O vector u(t) which follows u(t-1) that led to fault detection.
Firstly, the state estimation is initialized. Each state of the
NDAAO is a possible estimate (1 :− =tX X). In step1 the set

tX is determined. A state ′∈x X is added if the following

conditions hold: Firstly, x´ is a successor of one of the states
from the set 1tX − containing the former estimation. Secondly,

exactly the edges like observed between the I/O vectors u(t-1)
and u(t) can be observed when the state x´ is reached. In the
next line of the algorithm, each state that has an output that
differs from the observed vector u(t) in one of the “healthy”
I/Os (that consequently is not part of the IndexList) gets
removed. It is assumed that such a state cannot represent a
system state that led to the new vector u(t) since it differs in
one of the not affected I/Os. After this, the old state
estimation 1tX − is replaced by the new one 1 :t tX X− = .

In Step2 it is analyzed which I/O can be taken from the fault
candidates because it showed a normal behavior. It is
assumed that a possibly affected I/O worked properly if the
following condition holds: the considered I/O has in each
state output of the estimation the same value as in the last
observed I/O vector u(t). The assumption is based on the fact
that the state estimation has been performed without
considering possibly affected I/Os (with index in the
IndexList). If a possibly affected I/O has nevertheless the
same value as the observed one in each state of the

estimation, it is highly probable that it is not a fault
candidate. If the condition holds, the index of the considered
I/O can be taken from the IndexList and the I/O can also be
removed from the residuals.

In Step3 it is determined how many candidates are left in the
IndexList and if the state estimation is unambiguous. If the
state estimation is unambiguous (| | 1=tX) and if there is no

index of an I/O left in the IndexList, the usual system
monitoring can go on using the determined state as the
current state. Probably, there was a false alert. False alerts
can arise if the fault-free (possibly identified) system model
does not capture the whole fault-free system behavior. If
there is more than one possible state in the estimation and
more than one I/O left, the state estimation continues with
step1 by considering the next I/O vector. If none of the two
conditions can be fulfilled, the algorithm cannot reduce the
candidate set by considering following I/O vectors and stops.

Algorithm 1: State estimation and candidate set reduction
Initialization:
Step1: Consider the next I/O vector denoted as

Step2: For each IOIndexin IndexList:

Step3:

1 :− =tX X
()u t

1: { ' | : ' () ((1), ())−= ∈ ∃ ∈ ∈ ∧ − =t tX x X x X x r x ES u t u t

((), (')}λ λES x x

: \ { | (()) (())}t t t IndexList IndexListX X x X IOP x IOP u tλ= ∈ ≠

1 :t tX X− =

 : ()[] ()[]tx X x IOIndex u t IOIndexλ∀ ∈ =

: \IndexList IndexList IOIndex=

| | 1tX = | | 0IndexList =

| | 1tX > | | 1IndexList >

holds

then

if

if and if

and if

then false alert

then loop back to step1if

Algorithm 1: State estimation and candidate set reduction
Initialization:
Step1: Consider the next I/O vector denoted as

Step2: For each IOIndexin IndexList:

Step3:

1 :− =tX X
()u t

1: { ' | : ' () ((1), ())−= ∈ ∃ ∈ ∈ ∧ − =t tX x X x X x r x ES u t u t

((), (')}λ λES x x

: \ { | (()) (())}t t t IndexList IndexListX X x X IOP x IOP u tλ= ∈ ≠

1 :t tX X− =

 : ()[] ()[]tx X x IOIndex u t IOIndexλ∀ ∈ =

: \IndexList IndexList IOIndex=

| | 1tX = | | 0IndexList =

| | 1tX > | | 1IndexList >

holds

then

if

if and if

and if

then false alert

then loop back to step1if

Fig. 7: State estimation and candidate set reduction

As illustration of the algorithm in Fig. 7 the example of Fig. 8
is considered. It is assumed that sensor k1 is stuck to 1 after it
noticed the presence of a parcel. A fault is detected when the
parcel arrives at conveyor 2 without k1 having changed its
value to 0.

Fig. 8: Example for the candidate set reduction algorithm

Based on the residuals it is possible to get the information
that one of the sensors k1 or a1 or one of the related actuators
is affected, since starting from state 3 Res1 = Res2 = {a1_1,
A+_0, A-_1, B_1} and Res3 = Res4 = {k1_0}.

It cannot be decided if k1_0 was missed or if a1_1 changed
its value prematurely. Hence the algorithm in Fig. 7 starts. In
the example it is assumed that after fault detection two
I/O vectors are observed that lead to the edges {b0_0} (first
vector) and {a1_0} (second vector). Fig. 9 shows the

evolution of the state estimation and the reduction of the
candidate set that is delivered by the algorithm (only inputs
are considered in the example). The I/O vector after fault
detection could possibly be represented by the two states 7 or
12 of the model in Fig. 4 since their I/O vector projection
equals the projection of the measured I/O vector. Neither a1
nor k1 did yet show a normal behavior. The next I/O vector
in the example leads to an unambiguous state estimation
since only state 13 can be reached from one of the states 7 or
12 by producing the observed edge a1_0. In state 13 the input
a1 is 0 as well as in the last observed I/O vector. Hence it can
be removed from the candidate set. After the analysis of two
I/O vectors only the index of the affected I/O k1 is in the
IndexList. The algorithm led to a more precise fault
localization.

a1

k1

State
7 or 12

Observed
edges

b0_0

Estimation State
13

a1_0

Fault

a1_1, A+_0,
A-_1, B_1

t

Fault
Candidates

a1

k1

State
7 or 12

Observed
edges

b0_0

Estimation State
13

a1_0

Fault

a1_1, A+_0,
A-_1, B_1

t

Fault
Candidates

Fig. 9: Evolution of the candidate set

6. OUTLOOK

In this paper a fault localization technique that works on the
basis of a fault-free nominal system model has been
presented. The presented approach was developed for
monolithic system models. In large applications automata
networks are often used for diagnosis purposes. In future
works the approach will be extended for the application in
such automata networks. Furthermore, the adaptation of the
approach to timed automata is part of current work.

REFERENCES

Cordier, M.-O., Dague, P., Lévy, F., Montmain, J.,
Staroswiecki, M., Travé-Massuyès, L. (2004). Conflicts
versus analytical redundancy relations: A comparative
analysis of the model based diagnosis approach from the
artificial intelligence and automatic control perspectives,
IEEE Transactions of Systems, Man, and Cybernetics-
Part B, vol. 34, No. 5, pp. 2163-2177

Isermann, R., Ballé, P. (1997). Trends in the application of
model-based fault detection and diagnosis of technical
processes, Control Engineering Practice 5, pp. 709-719.

Klein, S., Lesage, J.-J., Litz, L. (2005). Fault Detection of
Discrete Event Systems Using an Identification
Approach. 16th IFAC World Congress, Prague (Czech
Republic) CDRom paper n°02643

Philippot, A., Sayed-Mouchaweh M., Carré-Ménétrier V.
(2007). Unconditional Decentralized Structure for the
Fault Diagnosis of Discrete Event Systems. Proceedings
of the 1st IFAC Workshop on Dependable Control of
Discrete Systems, Cachan (France), pp. 255-260

Sampath, M., R. Sengutpa, S. Lafortune, K. Sinnamohideen
and D. Teneketzis (1996). Failure Diagnosis using
Discrete-Event Models. IEEE Transactions on Control
Systems Technology, vol 4, No. 2, pp. 105-124.

